1
|
Oost LJ, Slieker RC, Blom MT, 't Hart LM, Hoenderop JGJ, Beulens JWJ, de Baaij JHF. Genome-wide association study of serum magnesium in type 2 diabetes. GENES & NUTRITION 2024; 19:2. [PMID: 38279093 PMCID: PMC10811844 DOI: 10.1186/s12263-024-00738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
People with type 2 diabetes have a tenfold higher prevalence of hypomagnesemia, which is suggested to be caused by low dietary magnesium intake, medication use, and genetics. This study aims to identify the genetic loci that influence serum magnesium concentration in 3466 people with type 2 diabetes. The GWAS models were adjusted for age, sex, eGFR, and HbA1c. Associated traits were identified using publicly available data from GTEx consortium, a human kidney eQTL atlas, and the Open GWAS database. The GWAS identified a genome-wide significant locus in TAF3 (p = 2.9 × 10-9) in people with type 2 diabetes. In skeletal muscle, loci located in TAF3 demonstrate an eQTL link to ATP5F1C, a gene that is involved in the formation of Mg2+-ATP. Serum Mg2+ levels were associated with MUC1/TRIM46 (p = 2.9 × 10-7), SHROOM3 (p = 4.0 × 10-7), and SLC22A7 (p = 1.0 × 10-6) at nominal significance, which is in combination with the eQTL data suggesting that they are possible candidates for renal failure. Several genetic loci were in agreement with previous genomic studies which identified MUC1/TRIM46 (Pmeta = 6.9 × 10-29, PQ = 0.81) and SHROOM3 (Pmeta = 2.9 × 10-27, PQ = 0.04) to be associated with serum Mg2+ in the general population. In conclusion, serum magnesium concentrations are associated with genetic variability around the regions of TAF3, MUC1/TRIM46, SHROOM3, and SLC22A7 in type 2 diabetes.
Collapse
Affiliation(s)
- Lynette J Oost
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Roderick C Slieker
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
| | - Marieke T Blom
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Leen M 't Hart
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
da Silva Lopes K, Abe SK. Polymorphisms Contributing to Calcium Status: A Systematic Review. Nutrients 2021; 13:2488. [PMID: 34444650 PMCID: PMC8398213 DOI: 10.3390/nu13082488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 07/17/2021] [Indexed: 01/28/2023] Open
Abstract
This systematic review assessed genotypes and changes in calcium homeostasis. A literature search was performed in EMBASE, Medline and CENTRAL on 7 August 2020 identifying 1012 references. Studies were included with any human population related to the topic of interest, and genetic variations in genes related to calcium metabolism were considered. Two reviewers independently screened references, extracted relevant data and assessed study quality using the Q-Genie tool. Forty-one studies investigating Single Nucleotide Polymorphisms (SNPs) in relation to calcium status were identified. Almost half of the included studies were of good study quality according to the Q-Genie tool. Seventeen studies were cross-sectional, 14 case-control, seven association and three were Mendelian randomization studies. Included studies were conducted in over 18 countries. Participants were mainly adults, while six studies included children and adolescents. Ethnicity was described in 31 studies and half of these included Caucasian participants. Twenty-six independent studies examined the association between calcium and polymorphism in the calcium-sensing receptor (CASR) gene. Five studies assessed the association between polymorphisms of the Vitamin D receptor (VDR) gene and changes in calcium levels or renal excretion. The remaining ten studies investigated calcium homeostasis and other gene polymorphisms such as the CYP24A1 SNP or CLDN14. This study identified several CASR, VDR and other gene SNPs associated with calcium status. However, to provide evidence to guide dietary recommendations, further research is needed to explore the association between common polymorphisms and calcium requirements.
Collapse
Affiliation(s)
| | - Sarah Krull Abe
- Center for Public Health Sciences, National Cancer Center, Division of Prevention, Tokyo 104-0045, Japan
| |
Collapse
|
3
|
Chai JF, Kao SL, Wang C, Lim VJY, Khor IW, Dou J, Podgornaia AI, Chothani S, Cheng CY, Sabanayagam C, Wong TY, van Dam RM, Liu J, Reilly DF, Paterson AD, Sim X. Genome-Wide Association for HbA1c in Malay Identified Deletion on SLC4A1 that Influences HbA1c Independent of Glycemia. J Clin Endocrinol Metab 2020; 105:5906591. [PMID: 32936915 DOI: 10.1210/clinem/dgaa658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
CONTEXT Glycated hemoglobin A1c (HbA1c) level is used to screen and diagnose diabetes. Genetic determinants of HbA1c can vary across populations and many of the genetic variants influencing HbA1c level were specific to populations. OBJECTIVE To discover genetic variants associated with HbA1c level in nondiabetic Malay individuals. DESIGN AND PARTICIPANTS We conducted a genome-wide association study (GWAS) analysis for HbA1c using 2 Malay studies, the Singapore Malay Eye Study (SiMES, N = 1721 on GWAS array) and the Living Biobank study (N = 983 on GWAS array and whole-exome sequenced). We built a Malay-specific reference panel to impute ethnic-specific variants and validate the associations with HbA1c at ethnic-specific variants. RESULTS Meta-analysis of the 1000 Genomes imputed array data identified 4 loci at genome-wide significance (P < 5 × 10-8). Of the 4 loci, 3 (ADAM15, LINC02226, JUP) were novel for HbA1c associations. At the previously reported HbA1c locus ATXN7L3-G6PC3, association analysis using the exome data fine-mapped the HbA1c associations to a 27-bp deletion (rs769664228) at SLC4A1 that reduced HbA1c by 0.38 ± 0.06% (P = 3.5 × 10-10). Further imputation of this variant in SiMES confirmed the association with HbA1c at SLC4A1. We also showed that these genetic variants influence HbA1c level independent of glucose level. CONCLUSION We identified a deletion at SLC4A1 associated with HbA1c in Malay. The nonglycemic lowering of HbA1c at rs769664228 might cause individuals carrying this variant to be underdiagnosed for diabetes or prediabetes when HbA1c is used as the only diagnostic test for diabetes.
Collapse
Affiliation(s)
- Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Shih-Ling Kao
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Victor Jun-Yu Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Ing Wei Khor
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jinzhuang Dou
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | | | - Sonia Chothani
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Nutrition, Harvard T.H Chan School of Public Health, Boston, Massachusetts
| | - Jianjun Liu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Dermot F Reilly
- Merck Research Laboratories, Kenilworth, New Jersey
- Janssen Pharmaceuticals Inc, Titusville, New Jersey
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Canada
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| |
Collapse
|
4
|
Abstract
Chronic kidney disease mineral and bone disorder (MBD) encompasses changes in mineral ion and vitamin D metabolism that are widespread in the setting of chronic kidney disease and end-stage renal disease. MBD components associate with cardiovascular disease in many epidemiologic studies. Through impacts on hypertension, activation of the renin-angiotensin-aldosterone system, vascular calcification, endothelial function, and cardiac remodeling and conduction, MBD may be a direct and targetable cause of cardiovascular disease. However, assessment and treatment of MBD is rife with challenges owing to biological tensions between its many components, such as calcium and phosphorus with their regulatory hormones fibroblast growth factor 23 and parathyroid hormone; fibroblast growth factor 23 with its co-receptor klotho; and vitamin D with control of calcium and phosphorus. These complex interactions between MBD components hinder the simple translation to clinical trials, which ultimately are needed to prove the benefits of treating MBD. Deeper investigation using precision medicine tools and principles, including genomics and individualized risk assessment and therapy, may help move the field closer toward clinical applications. This review provides a high-level overview of conventional and precision epidemiology in MBD, potential mechanisms of cardiovascular disease pathogenesis, and guiding therapeutic principles for established and emerging treatments.
Collapse
Affiliation(s)
- Joseph Lunyera
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Julia J Scialla
- Department of Medicine, Duke University School of Medicine, Durham, NC; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC; Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC.
| |
Collapse
|
5
|
Corre T, Arjona FJ, Hayward C, Youhanna S, de Baaij JHF, Belge H, Nägele N, Debaix H, Blanchard MG, Traglia M, Harris SE, Ulivi S, Rueedi R, Lamparter D, Macé A, Sala C, Lenarduzzi S, Ponte B, Pruijm M, Ackermann D, Ehret G, Baptista D, Polasek O, Rudan I, Hurd TW, Hastie ND, Vitart V, Waeber G, Kutalik Z, Bergmann S, Vargas-Poussou R, Konrad M, Gasparini P, Deary IJ, Starr JM, Toniolo D, Vollenweider P, Hoenderop JGJ, Bindels RJM, Bochud M, Devuyst O. Genome-Wide Meta-Analysis Unravels Interactions between Magnesium Homeostasis and Metabolic Phenotypes. J Am Soc Nephrol 2017; 29:335-348. [PMID: 29093028 DOI: 10.1681/asn.2017030267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/19/2017] [Indexed: 12/15/2022] Open
Abstract
Magnesium (Mg2+) homeostasis is critical for metabolism. However, the genetic determinants of the renal handling of Mg2+, which is crucial for Mg2+ homeostasis, and the potential influence on metabolic traits in the general population are unknown. We obtained plasma and urine parameters from 9099 individuals from seven cohorts, and conducted a genome-wide meta-analysis of Mg2+ homeostasis. We identified two loci associated with urinary magnesium (uMg), rs3824347 (P=4.4×10-13) near TRPM6, which encodes an epithelial Mg2+ channel, and rs35929 (P=2.1×10-11), a variant of ARL15, which encodes a GTP-binding protein. Together, these loci account for 2.3% of the variation in 24-hour uMg excretion. In human kidney cells, ARL15 regulated TRPM6-mediated currents. In zebrafish, dietary Mg2+ regulated the expression of the highly conserved ARL15 ortholog arl15b, and arl15b knockdown resulted in renal Mg2+ wasting and metabolic disturbances. Finally, ARL15 rs35929 modified the association of uMg with fasting insulin and fat mass in a general population. In conclusion, this combined observational and experimental approach uncovered a gene-environment interaction linking Mg2+ deficiency to insulin resistance and obesity.
Collapse
Affiliation(s)
- Tanguy Corre
- Institute of Social and Preventive Medicine.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Francisco J Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Sonia Youhanna
- Institute of Physiology, University of Zürich, Zurich, Switzerland
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hendrica Belge
- Institute of Physiology, University of Zürich, Zurich, Switzerland
| | - Nadine Nägele
- Institute of Physiology, University of Zürich, Zurich, Switzerland
| | - Huguette Debaix
- Institute of Physiology, University of Zürich, Zurich, Switzerland
| | - Maxime G Blanchard
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology.,Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland, UK
| | - Sheila Ulivi
- Department of Medical Genetics, Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico "Burlo Garofolo," Trieste, Italy
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David Lamparter
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Aurélien Macé
- Institute of Social and Preventive Medicine.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Lenarduzzi
- Department of Medical Genetics, Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico "Burlo Garofolo," Trieste, Italy
| | | | - Menno Pruijm
- Service of Nephrology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Daniel Ackermann
- University Clinic for Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georg Ehret
- Division of Cardiology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Daniela Baptista
- Division of Cardiology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics
| | - Toby W Hurd
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Nicholas D Hastie
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | | | - Zoltán Kutalik
- Institute of Social and Preventive Medicine.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosa Vargas-Poussou
- Department of Genetics, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France
| | - Martin Konrad
- Department of General Pediatrics, University Hospital Münster, Munster, Germany
| | - Paolo Gasparini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy; and.,Department of Experimental Genetics, Sidra, Doha, Qatar
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology.,Department of Psychology, and
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology.,Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, Scotland, UK
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Olivier Devuyst
- Institute of Physiology, University of Zürich, Zurich, Switzerland;
| |
Collapse
|
6
|
Costello RB, Elin RJ, Rosanoff A, Wallace TC, Guerrero-Romero F, Hruby A, Lutsey PL, Nielsen FH, Rodriguez-Moran M, Song Y, Van Horn LV. Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Adv Nutr 2016; 7:977-993. [PMID: 28140318 PMCID: PMC5105038 DOI: 10.3945/an.116.012765] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The 2015 Dietary Guidelines Advisory Committee indicated that magnesium was a shortfall nutrient that was underconsumed relative to the Estimated Average Requirement (EAR) for many Americans. Approximately 50% of Americans consume less than the EAR for magnesium, and some age groups consume substantially less. A growing body of literature from animal, epidemiologic, and clinical studies has demonstrated a varied pathologic role for magnesium deficiency that includes electrolyte, neurologic, musculoskeletal, and inflammatory disorders; osteoporosis; hypertension; cardiovascular diseases; metabolic syndrome; and diabetes. Studies have also demonstrated that magnesium deficiency is associated with several chronic diseases and that a reduced risk of these diseases is observed with higher magnesium intake or supplementation. Subclinical magnesium deficiency can exist despite the presentation of a normal status as defined within the current serum magnesium reference interval of 0.75-0.95 mmol/L. This reference interval was derived from data from NHANES I (1974), which was based on the distribution of serum magnesium in a normal population rather than clinical outcomes. What is needed is an evidenced-based serum magnesium reference interval that reflects optimal health and the current food environment and population. We present herein data from an array of scientific studies to support the perspective that subclinical deficiencies in magnesium exist, that they contribute to several chronic diseases, and that adopting a revised serum magnesium reference interval would improve clinical care and public health.
Collapse
Affiliation(s)
| | - Ronald J Elin
- Department of Pathology and Laboratory Medicine, University of Louisville, KY
| | | | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA
| | | | - Adela Hruby
- Nutritional Epidemiology Program, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Pamela L Lutsey
- School of Public Health, Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | | | | | - Yiqing Song
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN; and
| | - Linda V Van Horn
- Division of Nutrition, Department of Preventive Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
7
|
Bovo S, Schiavo G, Mazzoni G, Dall'Olio S, Galimberti G, Calò DG, Scotti E, Bertolini F, Buttazzoni L, Samorè AB, Fontanesi L. Genome-wide association study for the level of serum electrolytes in Italian Large White pigs. Anim Genet 2016; 47:597-602. [DOI: 10.1111/age.12459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 01/15/2023]
Affiliation(s)
- S. Bovo
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - G. Schiavo
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - G. Mazzoni
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - S. Dall'Olio
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - G. Galimberti
- Department of Statistical Sciences “Paolo Fortunati”; University of Bologna; Via delle Belle Arti 41 40126 Bologna Italy
| | - D. G. Calò
- Department of Statistical Sciences “Paolo Fortunati”; University of Bologna; Via delle Belle Arti 41 40126 Bologna Italy
| | - E. Scotti
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - F. Bertolini
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - L. Buttazzoni
- Centro di Ricerca per la Produzione delle Carni e il Miglioramento Genetico; Consiglio per la Ricerca in agricoltura e l'analisi dell'Economia Agraria (CREA); Via Salaria 31 00015 Monterotondo (RM) Italy
| | - A. B. Samorè
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - L. Fontanesi
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| |
Collapse
|
8
|
Genome-wide association study reveals two loci for serum magnesium concentrations in European-American children. Sci Rep 2015; 5:18792. [PMID: 26685716 PMCID: PMC4685389 DOI: 10.1038/srep18792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/25/2015] [Indexed: 01/30/2023] Open
Abstract
Magnesium ions are essential to the basic metabolic processes in the human body. Previous genetic studies indicate that serum magnesium levels are highly heritable, and a few genetic loci have been reported involving regulation of serum magnesium in adults. In this study, we examined if additional loci influence serum magnesium levels in children. We performed a genome-wide association study (GWAS) on 2,267 European-American children genotyped on the Illumina HumanHap550 or Quad610 arrays, sharing over 500,000 markers, as the discovery cohort and 257 European-American children genotyped on the Illumina Human OmniExpress arrays as the replication cohort. After genotype imputation, the strongest associations uncovered were with imputed SNPs residing within the FGFR2 (rs1219515, P = 1.1 × 10(-5)) and PAPSS2 (rs1969821, P = 7.2 × 10(-6)) loci in the discovery cohort, both of which were robustly replicated in our independent patient cohort (rs1219515, P = 3.5 × 10(-3); rs1969821, P = 1.2 × 10(-2)). The associations at the FGFR2 locus were also weakly replicated in a dataset from a previous GWAS of serum magnesium in European adults. Our results indicate that FGFR2 and PAPSS2 may play an important role in the regulation of magnesium homeostasis in children of European-American ancestry.
Collapse
|