1
|
Characterization of Dendrobium catenatum CBL-CIPK signaling networks and their response to abiotic stress. Int J Biol Macromol 2023; 236:124010. [PMID: 36918075 DOI: 10.1016/j.ijbiomac.2023.124010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Dendrobium catenatum is a traditional Chinese medicine listing as rare and endangered due to environmental impacts. But little is known about its stress resistance mechanism. The CBL-CIPK signaling pathway played vital roles in various stress responses. In this study, we identified 9 calcineurin B-like (CBL) genes and 28 CBL-interacting protein kinase (CIPK) genes from D. catenatum. Phylogenetic analysis showed that DcCBL and DcCIPK families could be divided into four and six subgroups, respectively. Members in each subgroup had similar gene structures. Cis-acting element analyses showed that these genes were involved in stress responses and hormone signaling. Spatial expression profiles showed that they were tissue-specific, and expressed lower in vegetative organs than reproductive organs. Gene expression analyses revealed that these genes were involved in drought, heat, cold, and salt responses and depended on abscisic acid (ABA) and salicylic acid (SA) signaling pathways. Furthermore, we cloned 19 DcCIPK genes and 9 DcCBL genes and detected ten interacting CBL-CIPK combinations using yeast two-hybrid system. Finally, we constructed 20 CBL-CIPK signaling pathways based on their expression patterns and interaction relationships. These results established CBL-CIPK signaling pathway responding to abiotic stress and provided a molecular basis for improving D. catenatum stress resistance in the future.
Collapse
|
2
|
Molecular and expression analysis indicate the role of CBL interacting protein kinases (CIPKs) in abiotic stress signaling and development in chickpea. Sci Rep 2022; 12:16862. [PMID: 36207429 PMCID: PMC9546895 DOI: 10.1038/s41598-022-20750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Calcineurin B-like proteins (CBL)-interacting protein kinases (CIPKs) regulate the developmental processes, hormone signal transduction and stress responses in plants. Although the genome sequence of chickpea is available, information related to the CIPK gene family is missing in this important crop plant. Here, a total of 22 CIPK genes were identified and characterized in chickpea. We found a high degree of structural and evolutionary conservation in the chickpea CIPK family. Our analysis showed that chickpea CIPKs have evolved with dicots such as Arabidopsis and soybean, and extensive gene duplication events have played an important role in the evolution and expansion of the CIPK gene family in chickpea. The three-dimensional structure of chickpea CIPKs was described by protein homology modelling. Most CIPK proteins are localized in the cytoplasm and nucleus, as predicted by subcellular localization analysis. Promoter analysis revealed various cis-regulatory elements related to plant development, hormone signaling, and abiotic stresses. RNA-seq expression analysis indicated that CIPKs are significantly expressed through a spectrum of developmental stages, tissue/organs that hinted at their important role in plant development. The qRT-PCR analysis revealed that several CaCIPK genes had specific and overlapping expressions in different abiotic stresses like drought, salt, and ABA, suggesting the important role of this gene family in abiotic stress signaling in chickpea. Thus, this study provides an avenue for detailed functional characterization of the CIPK gene family in chickpea and other legume crops.
Collapse
|
3
|
Li R, Hou Z, Gao L, Xiao D, Hou X, Zhang C, Yan J, Song L. Conjunctive Analyses of BSA-Seq and BSR-Seq to Reveal the Molecular Pathway of Leafy Head Formation in Chinese Cabbage. PLANTS (BASEL, SWITZERLAND) 2019; 8:E603. [PMID: 31847231 PMCID: PMC6963953 DOI: 10.3390/plants8120603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022]
Abstract
As the storage organ of Chinese cabbage, the leafy head was harvested as a commercial product due to its edible value. In this study, the bulked segregant analysis (BSA) and bulked segregant RNA-Seq (BSR) were performed with F2 separation progeny to study the molecular mechanism of leafy head formation in Chinese cabbage. BSA-Seq analysis located four candidate regions containing 40 candidate genes, while BSR-Seq analysis revealed eight candidate regions containing 607 candidate genes. The conjunctive analyses of these two methods identified that Casein kinase gene BrCKL8 (Bra035974) is the common candidate gene related with leafy head formation in Chinese cabbage, and it showed high expression levels at the three segments of heading type plant leaves. The differentially expressed genes (DEGs) between two set pairs of cDNA sequencing bulks were divided into two categories: one category was related with five hormone pathways (Auxin, Ethylene, Abscisic acid, Jasmonic acid and Gibberellin), the other category was composed of genes that associate with the calcium signaling pathway. Moreover, a series of upregulated transcriptional factors (TFs) were also identified by the association analysis of BSR-Seq analysis. The leafy head development was regulated by various biological processes and effected by diverse external environment factors, so our research will contribute to the breeding of perfect leaf-heading types of Chinese cabbage.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (Z.H.); (L.G.); (D.X.); (X.H.)
| | - Zhongle Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (Z.H.); (L.G.); (D.X.); (X.H.)
| | - Liwei Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (Z.H.); (L.G.); (D.X.); (X.H.)
| | - Dong Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (Z.H.); (L.G.); (D.X.); (X.H.)
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (Z.H.); (L.G.); (D.X.); (X.H.)
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (Z.H.); (L.G.); (D.X.); (X.H.)
| | - Jiyong Yan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Lixiao Song
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| |
Collapse
|
4
|
Dwivedi V, Parida SK, Chattopadhyay D. A repeat length variation in myo-inositol monophosphatase gene contributes to seed size trait in chickpea. Sci Rep 2017; 7:4764. [PMID: 28684754 PMCID: PMC5500587 DOI: 10.1038/s41598-017-05332-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/26/2017] [Indexed: 11/11/2022] Open
Abstract
Chickpea (Cicer arietinum L.) is the third most important food legume crop. Seed size is the most economically important trait for chickpea. To understand the genetic regulation of seed size in chickpea, the present study established a three-way association of CT repeat length variation of a simple sequence repeat (SSR) in myo-inositol monophosphatase gene (CaIMP) with seed weight and phytic acid content by large scale validation and genotyping in a set of genetically diverse germplasm accessions and two reciprocal intra-specific mapping populations. Germplasms and mapping individuals with CT repeat-length expansion in the 5' untranslated region of CaIMP exhibited a pronounced increase in CaIMP protein level, enzymatic activity, seed-phytate content and seed weight. A chickpea transient expression system demonstrated this repeat-length variation influenced the translation of CaIMP mRNA, apparently by facilitating translation initiation. Our analyses proposed that the SSR marker derived from 5' UTR of a CaIMP gene is a promising candidate for selection of seed size/weight for agronomic trait improvement of chickpea.
Collapse
Affiliation(s)
- Vikas Dwivedi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Zeng H, Zhang Y, Zhang X, Pi E, Zhu Y. Analysis of EF-Hand Proteins in Soybean Genome Suggests Their Potential Roles in Environmental and Nutritional Stress Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:877. [PMID: 28596783 PMCID: PMC5443154 DOI: 10.3389/fpls.2017.00877] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/10/2017] [Indexed: 05/23/2023]
Abstract
Calcium ion (Ca2+) is a universal second messenger that plays a critical role in plant responses to diverse physiological and environmental stimuli. The stimulus-specific signals are perceived and decoded by a series of Ca2+ binding proteins serving as Ca2+ sensors. The majority of Ca2+ sensors possess the EF-hand motif, a helix-loop-helix structure which forms a turn-loop structure. Although EF-hand proteins in model plant such as Arabidopsis have been well described, the identification, classification, and the physiological functions of EF-hand-containing proteins from soybean are not systemically reported. In this study, a total of at least 262 genes possibly encoding proteins containing one to six EF-hand motifs were identified in soybean genome. These genes include 6 calmodulins (CaMs), 144 calmodulin-like proteins (CMLs), 15 calcineurin B-like proteins, 50 calcium-dependent protein kinases (CDPKs), 13 CDPK-related protein kinases, 2 Ca2+- and CaM-dependent protein kinases, 17 respiratory burst oxidase homologs, and 15 unclassified EF-hand proteins. Most of these genes (87.8%) contain at least one kind of hormonal signaling- and/or stress response-related cis-elements in their -1500 bp promoter regions. Expression analyses by exploring the published microarray and Illumina transcriptome sequencing data revealed that the expression of these EF-hand genes were widely detected in different organs of soybean, and nearly half of the total EF-hand genes were responsive to various environmental or nutritional stresses. Quantitative RT-PCR was used to confirm their responsiveness to several stress treatments. To confirm the Ca2+-binding ability of these EF-hand proteins, four CMLs (CML1, CML13, CML39, and CML95) were randomly selected for SDS-PAGE mobility-shift assay in the presence and absence of Ca2+. Results showed that all of them have the ability to bind Ca2+. This study provided the first comprehensive analyses of genes encoding for EF-hand proteins in soybean. Information on the classification, phylogenetic relationships and expression profiles of soybean EF-hand genes in different tissues and under various environmental and nutritional stresses will be helpful for identifying candidates with potential roles in Ca2+ signal-mediated physiological processes including growth and development, plant-microbe interactions and responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yaxian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Xiajun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yiyong Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
6
|
Dong Y, Liu J, Zhang Y, Geng H, Rasheed A, Xiao Y, Cao S, Fu L, Yan J, Wen W, Zhang Y, Jing R, Xia X, He Z. Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat. PLoS One 2016; 11:e0164293. [PMID: 27802269 PMCID: PMC5089554 DOI: 10.1371/journal.pone.0164293] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/22/2016] [Indexed: 11/18/2022] Open
Abstract
Water soluble carbohydrates (WSC) in stems play an important role in buffering grain yield in wheat against biotic and abiotic stresses; however, knowledge of genes controlling WSC is very limited. We conducted a genome-wide association study (GWAS) using a high-density 90K SNP array to better understand the genetic basis underlying WSC, and to explore marker-based breeding approaches. WSC was evaluated in an association panel comprising 166 Chinese bread wheat cultivars planted in four environments. Fifty two marker-trait associations (MTAs) distributed across 23 loci were identified for phenotypic best linear unbiased estimates (BLUEs), and 11 MTAs were identified in two or more environments. Liner regression showed a clear dependence of WSC BLUE scores on numbers of favorable (increasing WSC content) and unfavorable alleles (decreasing WSC), indicating that genotypes with higher numbers of favorable or lower numbers of unfavorable alleles had higher WSC content. In silico analysis of flanking sequences of trait-associated SNPs revealed eight candidate genes related to WSC content grouped into two categories based on the type of encoding proteins, namely, defense response proteins and proteins triggered by environmental stresses. The identified SNPs and candidate genes related to WSC provide opportunities for breeding higher WSC wheat cultivars.
Collapse
Affiliation(s)
- Yan Dong
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jindong Liu
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Zhang
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongwei Geng
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, Xinjiang, 830052, China
| | - Awais Rasheed
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonggui Xiao
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuanghe Cao
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luping Fu
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Yan
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Weie Wen
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, Xinjiang, 830052, China
| | - Yong Zhang
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruilian Jing
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchun Xia
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonghu He
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang C, Ge R, Zhang J, Chen Y, Wang H, Wei J, Li R. Identification and Expression Analysis of a Novel HbCIPK2-Interacting Ferredoxin from Halophyte H. brevisubulatum. PLoS One 2015; 10:e0144132. [PMID: 26636581 PMCID: PMC4670114 DOI: 10.1371/journal.pone.0144132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/14/2015] [Indexed: 12/20/2022] Open
Abstract
Ferredoxin is a small iron-sulfer protein involved in various one-eletron transfer pathways. Little is known about how ferredoxin is regulated to distribute electron under abiotic stress. Our previous study has showed that HbCIPK2 conferred salinity and drought tolerance. Thus, we hypothesized that HbCIPK2 could mediate the activities of interacting partners as a signal transducer. In this report, we identified a novel HbCIPK2-interacting ferredoxin (HbFd1) from halophyte Hordeum brevisubulatum by yeast two-hybrid screens, confirmed this interaction by BiFC in vivo and CoIP in vitro, and presented the expression pattern of HbFd1. HbFd1 was down-regulated under salinity and cold stress but up-regulated under PEG stress, its expression showed tissue-specific, mainly in shoot chloroplast, belonging to leaf-type subgroup. Moreover, HbCIPK2 could recruit HbFd1 to the nucleus for their interaction. The C-terminal segment in HbFd1 protein was involved in the interaction with HbCIPK2. These results provided insight into the connection between CBL-CIPK signaling network and Fd-dependent metabolic pathways.
Collapse
Affiliation(s)
- Chao Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rongchao Ge
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Junwen Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yajuan Chen
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongzhi Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ruifen Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
8
|
Dong L, Wang Q, Manik SMN, Song Y, Shi S, Su Y, Liu G, Liu H. Nicotiana sylvestris calcineurin B-like protein NsylCBL10 enhances salt tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2015; 34:2053-63. [PMID: 26318216 DOI: 10.1007/s00299-015-1851-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Nicotiana sylvestris calcineurin B-like protein NsylCBL10 improves tolerance to high-salt stress through better maintenance of Na (+) balance. The calcineurin B-like (CBL) proteins represent a unique group of plant calcium sensors and play an important role in regulating the response of a plant cell to the stress. Although many studies have been made in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and poplar (Populus trichocarpa), the characterization and elucidation of the functions of CBLs in tobacco have not yet been reported. In this study, NsylCBL10, a CBL gene showing higher similarities to other CBL10 genes, was cloned from Nicotiana sylvestris. NsylCBL10 is expressed in most of the tobacco tissues, and the protein targets to the plasma membrane specifically. Over-expression of NsylCBL10 enhanced the salt tolerance of Arabidopsis wild type plants greatly, and rescued the high-salt-sensitive phenotype of Arabidopsis cbl10 mutant. The analysis of ion content indicated that over-expressing NsylCBL10 in plants is able to maintain a lower Na(+)/K(+) ratio in roots and higher Na(+)/K(+) ratio in shoots, compared with cbl10 mutant. The results suggest that NsylCBL10 might play an important role in response to high salinity stress in N. sylvestris, by keeping a better ionic homeostasis to reduce the damage of toxic ion to the plant cell.
Collapse
Affiliation(s)
- Lianhong Dong
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Wang
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - S M Nuruzzaman Manik
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yufeng Song
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sujuan Shi
- College of Agriculture and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yulong Su
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanshan Liu
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China.
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Haobao Liu
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China.
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
Meena MK, Ghawana S, Dwivedi V, Roy A, Chattopadhyay D. Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco. FRONTIERS IN PLANT SCIENCE 2015; 6:683. [PMID: 26442004 PMCID: PMC4561800 DOI: 10.3389/fpls.2015.00683] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/17/2015] [Indexed: 05/02/2023]
Abstract
Calcium signaling plays an important role in adaptation and developmental processes in plants and animals. A class of calcium sensors, known as Calcineurin B-like (CBL) proteins sense specific temporal changes in cytosolic Ca(2+) concentration and regulate activities of a group of ser/thr protein kinases called CBL-interacting protein kinases (CIPKs). Although a number of CIPKs have been shown to play crucial roles in the regulation of stress signaling, no study on the function of CIPK25 or its orthologs has been reported so far. In the present study, an ortholog of Arabidopsis CIPK25 was cloned from chickpea (Cicer arietinum). CaCIPK25 gene expression in chickpea increased upon salt, dehydration, and different hormonal treatments. CaCIPK25 gene showed differential tissue-specific expression. 5'-upstream activation sequence (5'-UAS) of the gene and its different truncated versions were fused to a reporter gene and studied in Arabidopsis to identify promoter regions directing its tissue-specific expression. Replacement of a conserved threonine residue with an aspartic acid at its catalytic site increased the kinase activity of CaCIPK25 by 2.5-fold. Transgenic tobacco plants overexpressing full-length and the high active versions of CaCIPK25 displayed a differential germination period and longer root length in comparison to the control plants. Expression of CaCIPK25 and its high active form differentially increased salt and water-deficit tolerance demonstrated by improved growth and reduced leaf chlorosis suggesting that the kinase activity of CaCIPK25 was required for these functions. Expressions of the abiotic stress marker genes were enhanced in the CaCIPK25-expressing tobacco plants. Our results suggested that CaCIPK25 functions in root development and abiotic stress tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Debasis Chattopadhyay
- *Correspondence: Debasis Chattopadhyay, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|