1
|
Melrose J. Dystroglycan-HSPG interactions provide synaptic plasticity and specificity. Glycobiology 2024; 34:cwae051. [PMID: 39223703 PMCID: PMC11368572 DOI: 10.1093/glycob/cwae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
AIM This study examined the roles of the laminin and proteoglycan receptor dystroglycan (DG) in extracellular matrix stabilization and cellular mechanosensory processes conveyed through communication between the extracellular matrix (ECM) and cytoskeleton facilitated by DG. Specific functional attributes of HS-proteoglycans (HSPGs) are conveyed through interactions with DG and provide synaptic specificity through diverse interactions with an extensive range of cell attachment and adaptor proteins which convey synaptic plasticity. HSPG-DG interactions are important in phototransduction and neurotransduction and facilitate retinal bipolar-photoreceptor neuronal signaling in vision. Besides synaptic stabilization, HSPG-DG interactions also stabilize basement membranes and the ECM and have specific roles in the assembly and function of the neuromuscular junction. This provides neuromuscular control of muscle systems that control conscious body movement as well as essential autonomic control of diaphragm, intercostal and abdominal muscles and muscle systems in the face, mouth and pharynx which assist in breathing processes. DG is thus a multifunctional cell regulatory glycoprotein receptor and regulates a diverse range of biological and physiological processes throughout the human body. The unique glycosylation of the αDG domain is responsible for its diverse interactions with ECM components in cell-ECM signaling. Cytoskeletal cell regulatory switches assembled by the βDG domain in its role as a nuclear scaffolding protein respond to such ECM cues to regulate cellular behavior and tissue homeostasis thus DG has fascinating and diverse roles in health and disease.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, NSW 2065, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Kawashima R, Matsushita K, Mandai K, Sugita Y, Maruo T, Mizutani K, Midoh Y, Oguchi A, Murakawa Y, Kuniyoshi K, Sato R, Furukawa T, Nishida K, Takai Y. Necl-1/CADM3 regulates cone synapse formation in the mouse retina. iScience 2024; 27:109577. [PMID: 38623325 PMCID: PMC11016759 DOI: 10.1016/j.isci.2024.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
In vertebrates, retinal neural circuitry for visual perception is organized in specific layers. The outer plexiform layer is the first synaptic region in the visual pathway, where photoreceptor synaptic terminals connect with bipolar and horizontal cell processes. However, molecular mechanisms underlying cone synapse formation to mediate OFF pathways remain unknown. This study reveals that Necl-1/CADM3 is localized at S- and S/M-opsin-containing cones and dendrites of type 4 OFF cone bipolar cells (CBCs). In Necl-1-/- mouse retina, synapses between cones and type 4 OFF CBCs were dislocated, horizontal cell distribution became abnormal, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors were dislocated. Necl-1-/- mice exhibited aberrant short-wavelength-light-elicited signal transmission from cones to OFF CBCs, which was rescued by AMPA receptor potentiator. Additionally, Necl-1-/- mice showed impaired optokinetic responses. These findings suggest that Necl-1 regulates cone synapse formation to mediate OFF cone pathways elicited by short-wavelength light in mouse retina.
Collapse
Affiliation(s)
- Rumi Kawashima
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kenji Matsushita
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
- Division of Pathogenetic Signaling, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yoshihiro Midoh
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akiko Oguchi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, IMS RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Murakawa
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, IMS RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Ryohei Sato
- Forefront Research Center for Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
3
|
Reinhard J, Mueller-Buehl C, Wiemann S, Roll L, Luft V, Shabani H, Rathbun DL, Gan L, Kuo CC, Franzen J, Joachim SC, Faissner A. Neural extracellular matrix regulates visual sensory motor integration. iScience 2024; 27:108846. [PMID: 38318351 PMCID: PMC10839651 DOI: 10.1016/j.isci.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Visual processing depends on sensitive and balanced synaptic neurotransmission. Extracellular matrix proteins in the environment of cells are key modulators in synaptogenesis and synaptic plasticity. In the present study, we provide evidence that the combined loss of the four extracellular matrix components, brevican, neurocan, tenascin-C, and tenascin-R, in quadruple knockout mice leads to severe retinal dysfunction and diminished visual motion processing in vivo. Remarkably, impaired visual motion processing was accompanied by a developmental loss of cholinergic direction-selective starburst amacrine cells. Additionally, we noted imbalance of inhibitory and excitatory synaptic signaling in the quadruple knockout retina. Collectively, the study offers insights into the functional importance of four key extracellular matrix proteins for retinal function, visual motion processing, and synaptic signaling.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Cornelius Mueller-Buehl
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Veronika Luft
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Hamed Shabani
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany
| | - Daniel L. Rathbun
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany
| | - Lin Gan
- Interdisciplinary Centre for Clinical Research Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- Interdisciplinary Centre for Clinical Research Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Franzen
- Interdisciplinary Centre for Clinical Research Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr University Bochum, 44892 Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
4
|
Sugita Y, Furukawa T. Effect of Green Tea and Tea Catechin on the Visual Motion Processing for Optokinetic Responses in Mice. Neuroscience 2022; 501:42-51. [PMID: 35987428 DOI: 10.1016/j.neuroscience.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
In general, catechins contained in green tea are believed to have positive effects on the human body and mental health. The intake of epigallocatechin gallate (EGCG), a major polyphenol in green tea, is known to be effective for retinal protection; however, whether green tea and/or EGCG affect visual function remains unknown. In the present study, we investigated the effect of green tea and EGCG on visual motion processing by measuring optokinetic responses (OKRs) in young adult and aging mice. Young and aging mice (C57BL6/J) were fed a control diet (control) or the test diet, which contained matcha green tea powder or green tea extract (dried sencha green tea infusion), for 1 month, and their OKRs were measured. They were then intraperitoneally administered saline (control) or EGCG, and OKRs were measured. We found that the OKRs of young and aging mice after green tea intake and after EGCG administration showed higher temporal sensitivity than those of control mice. The visual ability to detect moving objects was enhanced in young and aging mice upon intake of green tea or EGCG. From the above results, the visual motion processing for optokinetic responses by ingesting green tea was enhanced, which may be related to the effect of EGCG.
Collapse
Affiliation(s)
- Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Chaya T, Ishikane H, Varner LR, Sugita Y, Maeda Y, Tsutsumi R, Motooka D, Okuzaki D, Furukawa T. Deficiency of the neurodevelopmental disorder-associated gene Cyfip2 alters the retinal ganglion cell properties and visual acuity. Hum Mol Genet 2021; 31:535-547. [PMID: 34508581 PMCID: PMC8863419 DOI: 10.1093/hmg/ddab268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022] Open
Abstract
Intellectual disability (ID) is a neurodevelopmental disorder affecting approximately 0.5–3% of the population in the developed world. Individuals with ID exhibit deficits in intelligence, impaired adaptive behavior and often visual impairments. Cytoplasmic fragile X mental retardation 1 (FMR1)-interacting protein 2 (CYFIP2) is an interacting partner of the FMR protein, whose loss results in fragile X syndrome, the most common inherited cause of ID. Recently, CYFIP2 variants have been found in patients with early-onset epileptic encephalopathy, developmental delay and ID. Such individuals often exhibit visual impairments; however, the underlying mechanism is poorly understood. In the present study, we investigated the role of Cyfip2 in retinal and visual functions by generating and analyzing Cyfip2 conditional knockout (CKO) mice. While we found no major differences in the layer structures and cell compositions between the control and Cyfip2 CKO retinas, a subset of genes associated with the transporter and channel activities was differentially expressed in Cyfip2 CKO retinas than in the controls. Multi-electrode array recordings showed more sustained and stronger responses to positive flashes of the ON ganglion cells in the Cyfip2 CKO retina than in the controls, although electroretinogram analysis revealed that Cyfip2 deficiency unaffected the photoreceptor and ON bipolar cell functions. Furthermore, analysis of initial and late phase optokinetic responses demonstrated that Cyfip2 deficiency impaired the visual function at the organismal level. Together, our results shed light on the molecular mechanism underlying the visual impairments observed in individuals with CYFIP2 variants and, more generally, in patients with neurodevelopmental disorders, including ID.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hiroshi Ishikane
- Department of Psychology, Faculty of Human Sciences, Senshu University, Kawasaki, Japan
| | - Leah R Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Sugita Y, Yamamoto H, Maeda Y, Furukawa T. Influence of Aging on the Retina and Visual Motion Processing for Optokinetic Responses in Mice. Front Neurosci 2020; 14:586013. [PMID: 33335469 PMCID: PMC7736246 DOI: 10.3389/fnins.2020.586013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
The decline in visual function due to normal aging impacts various aspects of our daily lives. Previous reports suggest that the aging retina exhibits mislocalization of photoreceptor terminals and reduced amplitudes of scotopic and photopic electroretinogram (ERG) responses in mice. These abnormalities are thought to contribute to age-related visual impairment; however, the extent to which visual function is impaired by aging at the organismal level is unclear. In the present study, we focus on the age-related changes of the optokinetic responses (OKRs) in visual processing. Moreover, we investigated the initial and late phases of the OKRs in young adult (2-3 months old) and aging mice (21-24 months old). The initial phase was evaluated by measuring the open-loop eye velocity of OKRs using sinusoidal grating patterns of various spatial frequencies (SFs) and moving at various temporal frequencies (TFs) for 0.5 s. The aging mice exhibited initial OKRs with a spatiotemporal frequency tuning that was slightly different from those in young adult mice. The late-phase OKRs were investigated by measuring the slow-phase velocity of the optokinetic nystagmus evoked by sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that optimal SF and TF in the normal aging mice are both reduced compared with those in young adult mice. In addition, we measured the OKRs of 4.1G-null (4.1G -/-) mice, in which mislocalization of photoreceptor terminals is observed even at the young adult stage. We found that the late phase OKR was significantly impaired in 4.1G - / - mice, which exhibit significantly reduced SF and TF compared with control mice. These OKR abnormalities observed in 4.1G - / - mice resemble the abnormalities found in normal aging mice. This finding suggests that these mice can be useful mouse models for studying the aging of the retinal tissue and declining visual function. Taken together, the current study demonstrates that normal aging deteriorates to visual motion processing for both the initial and late phases of OKRs. Moreover, it implies that the abnormalities of the visual function in the normal aging mice are at least partly due to mislocalization of photoreceptor synapses.
Collapse
Affiliation(s)
- Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Haruka Yamamoto
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Furukawa T, Ueno A, Omori Y. Molecular mechanisms underlying selective synapse formation of vertebrate retinal photoreceptor cells. Cell Mol Life Sci 2020; 77:1251-1266. [PMID: 31586239 PMCID: PMC11105113 DOI: 10.1007/s00018-019-03324-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
In vertebrate central nervous systems (CNSs), highly diverse neurons are selectively connected via synapses, which are essential for building an intricate neural network. The vertebrate retina is part of the CNS and is comprised of a distinct laminar organization, which serves as a good model system to study developmental synapse formation mechanisms. In the retina outer plexiform layer, rods and cones, two types of photoreceptor cells, elaborate selective synaptic contacts with ON- and/or OFF-bipolar cell terminals as well as with horizontal cell terminals. In the mouse retina, three photoreceptor subtypes and at least 15 bipolar subtypes exist. Previous and recent studies have significantly progressed our understanding of how selective synapse formation, between specific subtypes of photoreceptor and bipolar cells, is designed at the molecular level. In the ON pathway, photoreceptor-derived secreted and transmembrane proteins directly interact in trans with the GRM6 (mGluR6) complex, which is localized to ON-bipolar cell dendritic terminals, leading to selective synapse formation. Here, we review our current understanding of the key factors and mechanisms underlying selective synapse formation of photoreceptor cells with bipolar and horizontal cells in the retina. In addition, we describe how defects/mutations of the molecules involved in photoreceptor synapse formation are associated with human retinal diseases and visual disorders.
Collapse
Affiliation(s)
- Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Sugita Y, Miura K, Furukawa T. Retinal ON and OFF pathways contribute to initial optokinetic responses with different temporal characteristics. Eur J Neurosci 2020; 52:3160-3165. [PMID: 32027443 DOI: 10.1111/ejn.14697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/05/2020] [Accepted: 01/29/2020] [Indexed: 11/30/2022]
Abstract
Visual information in the retina is processed via two pathways: ON and OFF pathways that originate from ON and OFF bipolar cells. The differences in the receptors that mediate signal transmission from photoreceptors imply that the response speed to light signals differs between ON and OFF pathways. We studied the initial optokinetic responses (OKRs) of mice using two-frame motion stimuli presented with interstimulus intervals (ISIs) to understand functional difference of these pathways. When two successive image frames were presented with an ISI, observers often perceived motion in the opposite direction of the actual shift. This directional reversal results from the biphasic nature of the temporal filters in visual systems whose characteristics can be estimated from the dependence on ISIs. We examined the dependence on ISIs in the OKRs of TRPM1-/- mice, whose ON bipolar cells are dysfunctional, as well as in those of wild-type control mice. Wild type and TRPM1-/- mice showed comparable OKRs in the veridical direction when no ISI was present. Both types of mice showed OKRs that decreased and eventually reversed as the ISI increased, but with a directional reversal at a shorter ISI in TRPM1-/- than wild-type mice. In addition, the temporal filters of TRPM1-/- mice estimated from dependence on ISIs were tuned for higher frequencies, suggesting that compared with wild-type mice, the visual system of TRPM1-/- mice responds to light signals with faster dynamics. We conclude that the ON and OFF pathways contribute to initial OKRs by providing visual signals processed with different temporal resolutions.
Collapse
Affiliation(s)
- Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kenichiro Miura
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Miura K, Sugita Y, Furukawa T, Kawano K. Two-frame apparent motion presented with an inter-stimulus interval reverses optokinetic responses in mice. Sci Rep 2018; 8:17816. [PMID: 30546049 PMCID: PMC6292883 DOI: 10.1038/s41598-018-36260-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/19/2018] [Indexed: 11/08/2022] Open
Abstract
Two successive image frames presented with a blank inter-stimulus interval (ISI) induce reversals of perceived motion in humans. This illusory effect is a manifestation of the temporal properties of image filters embedded in the visual processing pathway. In the present study, ISI experiments were performed to identify the temporal characteristics of vision underlying optokinetic responses (OKRs) in mice. These responses are thought to be mediated by subcortical visual processing. OKRs of C57BL/6 J mice, induced by a 1/4-wavelength shift of a square-wave grating presented with and without an ISI were recorded. When a 1/4-wavelength shift was presented without, or with shorter ISIs (≤106.7 ms), OKRs were induced in the direction of the shift, with progressively decreasing amplitude as the ISI increased. However, when ISIs were 213.3 ms or longer, OKR direction reversed. Similar dependence on ISIs was also obtained using a sinusoidal grating. We subsequently quantitatively estimated temporal filters based on the ISI effects. We found that filters with biphasic impulse response functions could reproduce the ISI and temporal frequency dependence of the mouse OKR. Comparison with human psychophysics and behaviors suggests that mouse vision has more sluggish response dynamics to light signals than that of humans.
Collapse
Affiliation(s)
- Kenichiro Miura
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Yuko Sugita
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kenji Kawano
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Rubio-Fernández M, Uribe ML, Vicente-Tejedor J, Germain F, Susín-Lara C, Quereda C, Montoliu L, de la Villa P, Martín-Nieto J, Cruces J. Impairment of photoreceptor ribbon synapses in a novel Pomt1 conditional knockout mouse model of dystroglycanopathy. Sci Rep 2018; 8:8543. [PMID: 29867208 PMCID: PMC5986861 DOI: 10.1038/s41598-018-26855-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/16/2018] [Indexed: 11/09/2022] Open
Abstract
Hypoglycosylation of α-dystroglycan (α-DG) resulting from deficiency of protein O-mannosyltransferase 1 (POMT1) may cause severe neuromuscular dystrophies with brain and eye anomalies, named dystroglycanopathies. The retinal involvement of these disorders motivated us to generate a conditional knockout (cKO) mouse experiencing a Pomt1 intragenic deletion (exons 3-4) during the development of photoreceptors, mediated by the Cre recombinase expressed from the cone-rod homeobox (Crx) gene promoter. In this mouse, retinal α-DG was unglycosylated and incapable of binding laminin. Retinal POMT1 deficiency caused significant impairments in both electroretinographic recordings and optokinetic reflex in Pomt1 cKO mice, and immunohistochemical analyses revealed the absence of β-DG and of the α-DG-interacting protein, pikachurin, in the outer plexiform layer (OPL). At the ultrastructural level, noticeable alterations were observed in the ribbon synapses established between photoreceptors and bipolar cells. Therefore, O-mannosylation of α-DG in the retina carried out by POMT1 is crucial for the establishment of proper synapses at the OPL and transmission of visual information from cones and rods to their postsynaptic neurons.
Collapse
Affiliation(s)
- Marcos Rubio-Fernández
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Mary Luz Uribe
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080, Alicante, Spain
| | - Javier Vicente-Tejedor
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, 28805, Madrid, Spain
| | - Francisco Germain
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, 28805, Madrid, Spain
| | - Cristina Susín-Lara
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Cristina Quereda
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080, Alicante, Spain
| | - Lluis Montoliu
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pedro de la Villa
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, 28805, Madrid, Spain
| | - José Martín-Nieto
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080, Alicante, Spain.,Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, 03080, Alicante, Spain
| | - Jesús Cruces
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
| |
Collapse
|
11
|
Structural divergence of essential triad ribbon synapse proteins among placental mammals - Implications for preclinical trials in photoreceptor transplantation therapy. Exp Eye Res 2017; 159:156-167. [PMID: 28322827 DOI: 10.1016/j.exer.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/24/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022]
Abstract
As photoreceptor transplantation rapidly moves closer to the clinic, verifying graft efficacy in animal models may have unforeseen xenogeneic barriers. Although photoreceptor transplants have most convincingly exhibited functional synaptogenesis in conspecific studies, such evidence (while ruling out false-positives due to: viral graft labeling, fusion/cytosolic transfer, or neuroprotection) has not yet been shown for discordant xenografts. From this, a fundamental question should be raised: is useful xenosynaptogenesis likely between human photoreceptors and mouse retina? The triad ribbon synapse (TRS) that would normally form is unique and contains trans-synaptic proteins essential to its formation and function. Thus, could interspecific structural divergence be present that may inhibit this trans-synaptic bridge in discordant xenografts? In an effort to address this question computationally, we compared eight recently confirmed (including subcellular location) TRS specific (or predominantly expressed at the TRS) proteins among placental mammals (1-to-1 orthologs) using HyPhy selection analysis (a predictive measure of structural divergence) and by using Phyre2 tertiary structural modeling. Here, selection analysis revealed strong positive (diversifying) selection acting on a particularly important TRS protein: pikachurin. This positive selection was localized to its second Laminin-G (LG)-like domain and on its N-terminal domain - a putative region of trans-synaptic interaction. Localization of structural divergence to the N-terminus of each putative post-translational cleavage (PTC) product may suggest neofunctionalization from ancestral uncleaved pikachurin - this would be consistent with a recent counter-paradigm report of pikachurin cleavage predominating at the TRS. From this, we suggest a dual role after cleavage where the N-terminal fragment can still mediate the trans-synaptic bridge, while the C-terminal fragment may act as a diffusible trophic or "homing" factor for bipolar cell dendrite migration. Tertiary structural models mirrored the conformational divergence predicted by selection analysis. With human and mouse pikachurin (as well as other TRS proteins) likely to diverge considerably in structure among placental mammals - alongside known inter-mammalian variation in TRS phenotype and protein repertoire, high levels of diversifying selection acting on genes involving sensation, considerable timespans allowing for genetic drift that can create xenogeneic epistasis, and uncertainty surrounding the extent of xenosynaptogenesis in PPC transplant studies to date - use of distantly related hosts to test human photoreceptor graft therapeutic efficacy should be considered with caution.
Collapse
|