1
|
Gao M, Peng H, Bai L, Ye B, Qiu W, Song Z. Response of wheat (Triticum aestivum L. cv.) to the coexistence of micro-/nanoplastics and phthalate esters alters its growth environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174484. [PMID: 38969134 DOI: 10.1016/j.scitotenv.2024.174484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Micro- and nano-plastics (MPs/NPs) have emerged as a global pollutant, yet their impact on the root environment of plants remains scarcely explored. Given the widespread pollution of phthalate esters (PAEs) in the environment due to the application of plastic products, the co-occurrence of MPs/NPs and PAEs could potentially threaten the growth medium of plants. This study examined the combined effects of polystyrene (PS) MPs/NPs and PAEs, specifically dibutyl phthalate and di-(2-ethylhexyl) phthalate, on the chemical properties and microbial communities in a wheat growth medium. It was observed that the co-pollution with MPs/NPs and PAEs significantly increased the levels of oxalic acid, formic acid, and total organic carbon (TOC), enhanced microbial activity, and promoted the indigenous input and humification of dissolved organic matter, while slightly reducing the pH of the medium solution. Although changes in chemical indices were primarily attributed to the addition of PAEs, no interaction between PS MPs/NPs and PAEs was detected. High-throughput sequencing revealed no significant change in microbial diversity within the media containing both PS MPs/NPs and PAEs compared to the media with PS MPs/NPs alone. However, alterations in energy and carbohydrate metabolism were noted. Proteobacteria dominated the bacterial communities in the medium solution across all treatment groups, followed by Bacteroidetes and Verrucomicrobia. The composition and structure of these microbial communities varied with the particle size of the PS in both single and combined treatments. Moreover, variations in TOC, oxalic acid, and formic acid significantly influenced the bacterial community composition in the medium, suggesting they could modulate the abundance of dominant bacteria to counteract the stress from exogenous pollutants. This research provides new insights into the combined effects of different sizes of PS particles and another abiotic stressor in the wheat root environment, providing a critical foundation for understanding plant adaptation in complex environmental conditions.
Collapse
Affiliation(s)
- Mingling Gao
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Hongchang Peng
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Linsen Bai
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Biting Ye
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Hamilton 3240, New Zealand
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Maresca E, Aulitto M, Contursi P. Harnessing the dual nature of Bacillus (Weizmannia) coagulans for sustainable production of biomaterials and development of functional food. Microb Biotechnol 2024; 17:e14449. [PMID: 38593329 PMCID: PMC11003712 DOI: 10.1111/1751-7915.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Bacillus coagulans, recently renamed Weizmannia coagulans, is a spore-forming bacterium that has garnered significant interest across various research fields, ranging from health to industrial applications. The probiotic properties of W. coagulans enhance intestinal digestion, by releasing prebiotic molecules including enzymes that facilitate the breakdown of not-digestible carbohydrates. Notably, some enzymes from W. coagulans extend beyond digestive functions, serving as valuable biotechnological tools and contributing to more sustainable and efficient manufacturing processes. Furthermore, the homofermentative thermophilic nature of W. coagulans renders it an exceptional candidate for fermenting foods and lignocellulosic residues into L-(+)-lactic acid. In this review, we provide an overview of the dual nature of W. coagulans, in functional foods and for the development of bio-based materials.
Collapse
Affiliation(s)
- Emanuela Maresca
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
| | - Martina Aulitto
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR)PozzuoliItaly
| | - Patrizia Contursi
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Naples “Federico II”PorticiItaly
- Task Force on Microbiome StudiesUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
3
|
Huang X, Tian W, Wang X, Qin J. Time-resolved transcriptomic and proteomic profiling of Heyndrickxia coagulans during NaOH-buffered L-lactic acid production. Front Microbiol 2023; 14:1296692. [PMID: 38094625 PMCID: PMC10716427 DOI: 10.3389/fmicb.2023.1296692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 10/17/2024] Open
Abstract
The L-lactic acid (L-LA) fermentation process, based on sodium hydroxide neutralization, demonstrates environmental friendliness during product extraction. However, lactate fermentation is hindered by the pronounced stress effect of sodium lactate on the strain compared with calcium lactate. In this study, we performed time-resolved transcriptomic and proteomic analyses of Heyndrickxia coagulans DSM1 during NaOH-buffered L-LA production. The expression levels of the glycolytic genes demonstrated an initial increase followed by a subsequent decrease, whereas the tricarboxylic acid cycle genes exhibited an initial decrease followed by a subsequent increase throughout the fermentation process. Moreover, we identified clusters of genes consisting of transcription factors and ATP-binding cassette (ABC) transporters that demonstrate a progressive elevation of expression levels throughout the fermentation process, with significant upregulation observed at later stages. This investigation yields valuable insights into the response mechanisms of H. coagulans during NaOH-buffered L-LA fermentation and presents potential targets for metabolic engineering.
Collapse
Affiliation(s)
| | | | | | - Jiayang Qin
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
To MH, Wang H, Miao Y, Kaur G, Roelants SLKW, Lin CSK. Optimal preparation of food waste to increase its utility for sophorolipid production by Starmerella bombicola. BIORESOURCE TECHNOLOGY 2023; 379:128993. [PMID: 37011850 DOI: 10.1016/j.biortech.2023.128993] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Secondary feedstocks, such as food waste (FW), have been used for yeasts (e.g. Starmerella bombicola) to produce sophorolipids (SLs), which are commercially available biosurfactants. However, the quality of FW varies by location and season and may contains chemicals that inhibit SLs production. Therefore, it is crucial to identify such inhibitors and, if possible, remove them, to ensure efficient utilization. In this study, large scale FW was first analysed to determine the concentration of potential inhibitors. Lacticacid, acetic acid and ethanol were identified and found to be inhibitors of the growth of S. bombicola and its SLs production. Various methods were then evaluated for their ability to remove these inhibitors. Finally, a simple and effective strategy for removing inhibitors from FW was developed that complied with the 12 principles of green chemistry and could be adopted by industry for high SLs production.
Collapse
Affiliation(s)
- Ming Ho To
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Huaimin Wang
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, TX 78712-1589, USA
| | - Yahui Miao
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant, Ghent, Belgium
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Tian W, Qin J, Lian C, Yao Q, Wang X. Identification of a major facilitator superfamily protein that is beneficial to L-lactic acid production by Bacillus coagulans at low pH. BMC Microbiol 2022; 22:310. [PMID: 36536285 PMCID: PMC9764580 DOI: 10.1186/s12866-022-02736-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Product inhibition is one of the major problems in lactic acid (LA) fermentation. Our previous study revealed that Bacillus coagulans 2-6 was an efficient producer of high-optical-purity L-LA. Its mutant strain B. coagulans Na-2 has better resistance to sodium lactate stress but the resistance mechanism has not been understood. RESULTS In this study, the whole-genome sequencing of B. coagulans Na-2 was performed and one mutant gene mfs coding for the major facilitator superfamily (MFS) protein was revealed by comparative genome analysis. Ten mutation sites were identified between the wild (MFS-2-6) and mutant (MFS-Na-2) proteins, among which T127A and N154T were predicted locating in the center of the transmembrane transport channel. The MFS-2-6 and MFS-Na-2 were expressed separately in a genetically operable strain, B. coagulans DSM1, using the genes' native promoter. The expression of the two MFS proteins had no effect and a negative effect on L-LA production when the pH was controlled at 6.0 and 7.0 by sodium hydroxide, respectively. However, 4.2 and 4.6-fold of L-LA concentrations were obtained at pH 5.0 by the strains expressing MFS-2-6 and MFS-Na-2 than that by the control strain, respectively. The intracellular pH values of the strains expressing MFS-2-6 and MFS-Na-2 were approximately 0.69 and 0.45 higher than that of the control strain during pH-controlled fermentation at 5.0. Results suggest that the expression of MFS-2-6 and MFS-Na-2 were both conducive to L-LA production at low pH, while the better performance of the latter was probably due to the more appropriate intracellular pH during the whole fermentation process. CONCLUSIONS The MFS protein identified here can improve the ability of B. coagulans to resist acidic environments and produce more L-LA at low pH. The MFS protein has an application potential in environment-friendly L-LA production.
Collapse
Affiliation(s)
- Wenzhe Tian
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jiayang Qin
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Congcong Lian
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qingshou Yao
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiuwen Wang
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
6
|
Ribosome Profiling Reveals Genome-Wide Cellular Translational Regulation in Lacticaseibacillus rhamnosus ATCC 53103 under Acid Stress. Foods 2022; 11:foods11101411. [PMID: 35626981 PMCID: PMC9140532 DOI: 10.3390/foods11101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
During fermentation and food processing, Lacticaseibacillus rhamnosus ATCC 53103 can encounter many adverse conditions, and acid stress is one of them. The purpose of the present study was to investigate the influence of acid stress on the global translational and transcriptional regulation of Lacticaseibacillus rhamnosus ATCC 53103. Two pH values (pH 6.0 vs. pH 5.0) were applied, the effects of which were studied via ribosome profiling and RNA sequencing assay. Under acid stress, many genes showed differential changes at the translational and transcriptional levels. A total of 10 genes showed different expression trends at the two levels. The expression of 337 genes—which mainly participated in the ABC transporters, amino acid metabolism, and ribosome functional group assembly pathways—was shown to be regulated only at the translational level. The translational efficiency of a few genes participating in the pyrimidine and amino acid metabolism pathways were upregulated. Ribosome occupancy data suggested that ribosomes accumulated remarkably in the elongation region of open reading frame regions under acid stress. This study provides new insights into Lacticaseibacillus rhamnosus ATCC 53103 gene expression under acid stress, and demonstrates that the bacterium can respond to acid stress with synergistic translational and transcriptional regulation mechanisms, improving the vitality of cells.
Collapse
|
7
|
Lu S, Jin H, Wang Y, Tao Y. Genome-Wide Transcriptomic Analysis of n-Caproic Acid Production in Ruminococcaceae Bacterium CPB6 with Lactate Supplementation. J Microbiol Biotechnol 2021; 31:1533-1544. [PMID: 34489376 PMCID: PMC9705837 DOI: 10.4014/jmb.2107.07009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
n-Caproic acid (CA) is gaining increased attention due to its high value as a chemical feedstock. Ruminococcaceae bacterium strain CPB6 is an anaerobic mesophilic bacterium that is highly prolific in its ability to perform chain elongation of lactate to CA. However, little is known about the genome-wide transcriptional analysis of strain CPB6 for CA production triggered by the supplementation of exogenous lactate. In this study, cultivation of strain CPB6 was carried out in the absence and presence of lactate. Transcriptional profiles were analyzed using RNA-seq, and differentially expressed genes (DEGs) between the lactate-supplemented cells and control cells without lactate were analyzed. The results showed that lactate supplementation led to earlier CA p,roduction, and higher final CA titer and productivity. 295 genes were substrate and/or growth dependent, and these genes cover crucial functional categories. Specifically, 5 genes responsible for the reverse β-oxidation pathway, 11 genes encoding ATP-binding cassette (ABC) transporters, 6 genes encoding substrate-binding protein (SBP), and 4 genes encoding phosphotransferase system (PTS) transporters were strikingly upregulated in response to the addition of lactate. These genes would be candidates for future studies aiming at understanding the regulatory mechanism of lactate conversion into CA, as well as for the improvement of CA production in strain CPB6. The findings presented herein reveal unique insights into the biomolecular effect of lactate on CA production at the transcriptional level.
Collapse
Affiliation(s)
- Shaowen Lu
- CAS Key Laboratory of Environmental and Applied Microbiology and Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Hong Jin
- School of Basic Medical Science, Chengdu Medical College, Chengdu 610083, P.R. China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, Alabama 36849, USA
| | - Yong Tao
- CAS Key Laboratory of Environmental and Applied Microbiology and Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China,Faculty of Bioengineering, Sichuan University of Science and Engineering, Xueyuan Street 180#, Huixing Rd. Zigong 643000, P.R. China,Corresponding author Phone: 86-028-82890211 Fax: 86-028-82890211 E-mail:
| |
Collapse
|
8
|
Subirana JA, Messeguer X. DNA Satellites Are Transcribed as Part of the Non-Coding Genome in Eukaryotes and Bacteria. Genes (Basel) 2021; 12:genes12111651. [PMID: 34828257 PMCID: PMC8625621 DOI: 10.3390/genes12111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022] Open
Abstract
It has been shown in recent years that many repeated sequences in the genome are expressed as RNA transcripts, although the role of such RNAs is poorly understood. Some isolated and tandem repeats (satellites) have been found to be transcribed, such as mammalian Alu sequences and telomeric/centromeric satellites in different species. However, there is no detailed study on the eventual transcription of the interspersed satellites found in many species. Therefore, we decided to study for the first time the transcription of the abundant DNA satellites in the bacterium Bacillus coagulans and in the nematode Caenorhabditis elegans. We have updated the data for C. elegans satellites using the latest version of the genome. We analyzed the transcription of satellites in both species in available RNA-seq results and found that they are widely transcribed. Our demonstration that satellite RNAs are transcribed adds a new family of non-coding RNAs. This is a field that requires further investigation and will provide a deeper understanding of gene expression and control.
Collapse
|
9
|
Tandem Repeats in Bacillus: Unique Features and Taxonomic Distribution. Int J Mol Sci 2021; 22:ijms22105373. [PMID: 34065296 PMCID: PMC8161180 DOI: 10.3390/ijms22105373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Little is known about DNA tandem repeats across prokaryotes. We have recently described an enigmatic group of tandem repeats in bacterial genomes with a constant repeat size but variable sequence. These findings strongly suggest that tandem repeat size in some bacteria is under strong selective constraints. Here, we extend these studies and describe tandem repeats in a large set of Bacillus. Some species have very few repeats, while other species have a large number. Most tandem repeats have repeats with a constant size (either 52 or 20-21 nt), but a variable sequence. We characterize in detail these intriguing tandem repeats. Individual species have several families of tandem repeats with the same repeat length and different sequence. This result is in strong contrast with eukaryotes, where tandem repeats of many sizes are found in any species. We discuss the possibility that they are transcribed as small RNA molecules. They may also be involved in the stabilization of the nucleoid through interaction with proteins. We also show that the distribution of tandem repeats in different species has a taxonomic significance. The data we present for all tandem repeats and their families in these bacterial species will be useful for further genomic studies.
Collapse
|
10
|
Yang H, Zhang L, Li J, Jin Y, Zou J, Huang J, Zhou R, Huang M, Wu C. Cell surface properties and transcriptomic analysis of cross protection provided between heat adaptation and acid stress in Tetragenococcus halophilus. Food Res Int 2021; 140:110005. [PMID: 33648238 DOI: 10.1016/j.foodres.2020.110005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022]
Abstract
Cross protection is a widely existed phenomenon in microorganisms which subjected to a mild stress develop tolerance to other stresses, yet the underlying mechanisms for this protection have not been fully elucidated. Here, we report that heat preadaptation induced cross protection against acid stress in Tetragenococcus halophilus, and the cross protective mechanisms were revealed based on cell surface characterizations and transcriptomic analysis. The results showed that heat preadaptation of T. halophilus at 45 °C for 1.5 h improved the acid tolerance of cells at pH 2.5, and the preadapted cells exhibited higher pHi compared with the un-preadapted cells during acid stress. Analysis of the cell surface properties suggested that the heat-treated cells displayed smoother surface, lower roughness and higher integrity than those of untreated cells. Meanwhile, the distributions of membrane fatty acids also changed in response to acid stress, and the treated cells reveled lower ratio of unsaturated to saturated fatty acids. RNA-Sequencing was employed to further elucidate the cross protective mechanism induced by heat preadaptation, and the results showed that the differentially expressed genes (DGEs) were mainly involved in cellular metabolism and membrane transport during heat preadaptation. A detailed analysis of gene expression profile of cells between heat treated and untreated revealed that genes associated with energy metabolism, amino acid metabolism and genetic information processing were induced upon heat stress. Results presented in this study may broaden our understanding on cross protection and provide a potential strategy to enhance the performance of cells during industrial processes.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liang Zhang
- Luzhou Laojiao Group Co., Ltd, Luzhou 646000, China
| | - Jinsong Li
- Luzhou Laojiao Group Co., Ltd, Luzhou 646000, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | | | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
11
|
Zhao L, Zhou Y, Li J, Xia Y, Wang W, Luo X, Yin J, Zhong J. Transcriptional response of Bacillus megaterium FDU301 to PEG200-mediated arid stress. BMC Microbiol 2020; 20:351. [PMID: 33198631 PMCID: PMC7670681 DOI: 10.1186/s12866-020-02039-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/08/2020] [Indexed: 11/12/2022] Open
Abstract
Background For microorganisms on a paper surface, the lack of water is one of the most important stress factors. A strain of Bacillus megaterium FDU301 was isolated from plaques on a paper surface using culture medium with polyethylene glycol 200 (PEG200) to simulate an arid condition. Global transcriptomic analysis of B. megaterium FDU301 grown under normal and simulated arid conditions was performed via RNA-seq technology to identify genes involved in arid stress adaptation. Results The transcriptome of B. megaterium FDU301 grown in LB medium under arid (15% PEG200 (w/w)) and normal conditions were compared. A total of 2941 genes were differentially expressed, including 1422 genes upregulated and 1519 genes downregulated under arid conditions. Oxidative stress-responsive regulatory genes perR, fur, and tipA were significantly upregulated, along with DNA protecting protein (dps), and catalase (katE). Genes related to Fe2+ uptake (feoB), sporulation stage II (spoIIB, spoIIE, spoIIGA), small acid-soluble spore protein (sspD), and biosynthesis of compatible solute ectoine (ectB, ectA) were also highly expressed to various degrees. Oxidative phosphorylation-related genes (atpB, atpE, atpF, atpH, atpA, atpG, atpD, atpC) and glycolysis-related genes (pgk, tpiA, frmA) were significantly downregulated. Conclusion This is the first report about transcriptomic analysis of a B. megaterium to explore the mechanism of arid resistance. Major changes in transcription were seen in the arid condition simulated by PEG200 (15%), with the most important one being genes related to oxidative stress. The results showed a complex mechanism for the bacteria to adapt to arid stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02039-4.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai, 200433, China
| | - Yanjun Zhou
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianbei Li
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yucheng Xia
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Weiyun Wang
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiuqi Luo
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Juan Yin
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiang Zhong
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Unique Features of Tandem Repeats in Bacteria. J Bacteriol 2020; 202:JB.00229-20. [PMID: 32839174 DOI: 10.1128/jb.00229-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
DNA tandem repeats, or satellites, are well described in eukaryotic species, but little is known about their prevalence across prokaryotes. Here, we performed the most complete characterization to date of satellites in bacteria. We identified 121,638 satellites from 12,233 fully sequenced and assembled bacterial genomes with a very uneven distribution. We also determined the families of satellites which have a related sequence. There are 85 genomes that are particularly satellite rich and contain several families of satellites of yet unknown function. Interestingly, we only found two main types of noncoding satellites, depending on their repeat sizes, 22/44 or 52 nucleotides (nt). An intriguing feature is the constant size of the repeats in the genomes of different species, whereas their sequences show no conservation. Individual species also have several families of satellites with the same repeat length and different sequences. This result is in marked contrast with previous findings in eukaryotes, where noncoding satellites of many sizes are found in any species investigated. We describe in greater detail these noncoding satellites in the spirochete Leptospira interrogans and in several bacilli. These satellites undoubtedly play a specific role in the species which have acquired them. We discuss the possibility that they represent binding sites for transcription factors not previously described or that they are involved in the stabilization of the nucleoid through interaction with proteins.IMPORTANCE We found an enigmatic group of noncoding satellites in 85 bacterial genomes with a constant repeat size but variable sequence. This pattern of DNA organization is unique and had not been previously described in bacteria. These findings strongly suggest that satellite size in some bacteria is under strong selective constraints and thus that satellites are very likely to play a fundamental role. We also provide a list and properties of all satellites in 12,233 genomes, which may be used for further genomic analysis.
Collapse
|
13
|
Chen Y, Sun Y, Liu Z, Dong F, Li Y, Wang Y. Genome-scale modeling for Bacillus coagulans to understand the metabolic characteristics. Biotechnol Bioeng 2020; 117:3545-3558. [PMID: 32648961 DOI: 10.1002/bit.27488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/01/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Lactic acid is widely used in many industries, especially in the production of poly-lactic acid. Bacillus coagulans is a promising lactic acid producer in industrial fermentation due to its thermophilic property. In this study, we developed the first genome-scale metabolic model (GEM) of B. coagulans iBag597, together with an enzyme-constrained model ec-iBag597. We measured strain-specific biomass composition and integrated the data into a biomass equation. Then, we validated iBag597 against experimental data generated in this study, including amino acid requirements and carbon source utilization, showing that simulations were generally consistent with the experimental results. Subsequently, we carried out chemostats to investigate the effects of specific growth rate and culture pH on metabolism of B. coagulans. Meanwhile, we used iBag597 to estimate the intracellular metabolic fluxes for those conditions. The results showed that B. coagulans was capable of generating ATP via multiple pathways, and switched among them in response to various conditions. With ec-iBag597, we estimated the protein cost and protein efficiency for each ATP-producing pathway to investigate the switches. Our models pave the way for systems biology of B. coagulans, and our findings suggest that maintaining a proper growth rate and selecting an optimal pH are beneficial for lactate fermentation.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhihao Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fengqing Dong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanyuan Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Qian J, Zhang M, Dai C, Huo S, Ma H. Transcriptomic analysis of Listeria monocytogenes under pulsed magnetic field treatment. Food Res Int 2020; 133:109195. [DOI: 10.1016/j.foodres.2020.109195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
|
15
|
Wang A, Tian W, Cheng L, Xu Y, Wang X, Qin J, Yu B. Enhanced ε-Poly-L-Lysine Production by the Synergistic Effect of ε-Poly-L-Lysine Synthetase Overexpression and Citrate in Streptomyces albulus. Front Bioeng Biotechnol 2020; 8:288. [PMID: 32391338 PMCID: PMC7188835 DOI: 10.3389/fbioe.2020.00288] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
ε-Poly-L-lysine (ε-PL) is a natural amino acid polymer produced by microbial fermentation. It has been mainly used as a preservative in the food and cosmetics industries, as a drug carrier in medicines, and as a gene carrier in gene therapy. ε-PL synthase is the key enzyme responsible for the polymerization of L-lysine to form ε-PL. In this study, the ε-PL synthase gene was overexpressed in Streptomyces albulus CICC 11022 by using the kasOp∗ promoter and the ribosome binding site from the capsid protein of phage ϕC31, which resulted in a genetically engineered strain Q-PL2. The titers of ε-PL produced by Q-PL2 were 88.2% ± 8.3% higher than that produced by the wild strain in shake flask fermentation. With the synergistic effect of 2 g/L sodium citrate, the titers of ε-PL produced by Q-PL2 were 211.2% ± 17.4% higher than that produced by the wild strain. In fed-batch fermentations, 20.1 ± 1.3 g/L of ε-PL was produced by S. albulus Q-PL2 in 72 h with a productivity of 6.7 ± 0.4 g/L/day, which was 3.2 ± 0.3-fold of that produced by the wild strain. These results indicate that ε-PL synthase is one of the rate-limiting enzymes in ε-PL synthesis pathway and lays a foundation for further improving the ε-PL production ability of S. albulus by metabolic engineering.
Collapse
Affiliation(s)
- Aixia Wang
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wenzhe Tian
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Youqiang Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuwen Wang
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiayang Qin
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Zhang W, Li X, He Y, Xu X, Chen H, Zhang A, Liu Y, Xue G, Makinia J. Ammonia amendment promotes high rate lactate production and recovery from semi-continuous food waste fermentation. BIORESOURCE TECHNOLOGY 2020; 302:122881. [PMID: 32014732 DOI: 10.1016/j.biortech.2020.122881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
In this study, a reliable approach using ammonia nitrogen was proposed to increase lactate production during semi-continuous food waste (FW) fermentation under mesophilic conditions. Both free ammonia nitrogen (FAN) and ammonium ion (NH4+-N) were present in mesophilic reactors, with a wide FAN/NH4+-N ratio variation due to the intermittent pH control. The investigation of responsible mechanisms revealed that the increased production yield of LA was associated with the acceleration of solubilization, hydrolysis, glycolysis and acidification. The presence of FAN and NH4+-N in proper concentrations increased lactate production by 2.4 folds and recovered lactate production to 24.5 g COD/L from low rate control reactor (9.6 g COD/L) under mesophilic conditions. Furthermore, the microorganisms responsible for LA accumulation (Bavariicoccus, Enterococcus, Bifidobacterium and Corynebacterium) were selectively enriched, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with carbohydrate transport and LA production were enhanced in nitrogen fed reactors.
Collapse
Affiliation(s)
- Wenjuan Zhang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States
| | - Ya He
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States
| | - Xianbao Xu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
17
|
Wang C, Wang Z, You Y, Xu W, Lv Z, Liu Z, Chen W, Shi Y. Response of Arthrobacter QD 15-4 to dimethyl phthalate by regulating energy metabolism and ABC transporters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:146-152. [PMID: 30825737 DOI: 10.1016/j.ecoenv.2019.02.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Ubiquitous dimethyl phthalate (DMP) has severely threatened environmental safety and the health of organisms. Therefore, it is necessary to degrade DMP, removing it from the environment. Microbiological degradation is an efficient and safe method for degrading DMP. In this study, the response of Arthrobacter QD 15-4 to DMP was investigated. The results showed that the growth of Arthrobacter QD 15-4 was not impacted by DMP and Arthrobacter QD 15-4 could degrade DMP. RNA-Seq and RT-qPCR results showed that DMP treatment caused some changes in the expression of key genes in Arthrobacter QD 15-4. The transcriptional expressions of pstSCAB and phoU were downregulated by DMP. The transcriptional expressions of potACD, gluBC, oppAB, pdhAB, aceAF, gltA were upregulated by DMP. The genes are mainly involved in regulating energy metabolism and ATP-binding cassette (ABC) transporters. The increasing of pyruvic acid and citrate in Arthrobacter QD 15-4 further supported the energy metabolism was improved by DMP. It was clearly shown that Arthrobacter QD 15-4 made response to dimethyl phthalate by regulating energy metabolism and ABC transporters.
Collapse
Affiliation(s)
- Chunlong Wang
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Zhigang Wang
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China.
| | - Yimin You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihui Xu
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Zhihang Lv
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Zeping Liu
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Wenjing Chen
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Yiran Shi
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| |
Collapse
|
18
|
Wang Y, Cao W, Luo J, Qi B, Wan Y. One step open fermentation for lactic acid production from inedible starchy biomass by thermophilic Bacillus coagulans IPE22. BIORESOURCE TECHNOLOGY 2019; 272:398-406. [PMID: 30388577 DOI: 10.1016/j.biortech.2018.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to establish a simplified operational process for lactic acid (LA) production by Bacillus coagulans IPE22 from inedible starchy biomass with open fermentation method. First, 29.47 mU/mg specific amylase activity was detected in direct batch fermentation from soluble starch, but the activity of the produced amylase was too low for effective production of LA. Then seven batches from 72 g/L soluble starch were conducted without sterilization. It was found that one step simultaneous liquefaction, saccharification and fermentation (SLSF) with the addition of mesothermal α-amylase and glucoamylase was the optimal mode with LA concentration, yield and productivity of 68.72 g/L, 0.99 g/g and 1.72 g/L h respectively. Finally, inedible starchy biomass, cassava and sorghum flours, were proved to be alternatives to refined soluble starch. For the first time, one step open SLSF of inedible starchy biomass was reported for LA production by B. coagulans.
Collapse
Affiliation(s)
- Yujue Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Benkun Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
19
|
Suo Y, Gao S, Baranzoni GM, Xie Y, Liu Y. Comparative transcriptome RNA-Seq analysis of Listeria monocytogenes with sodium lactate adaptation. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Zhu Y, Ma N, Jin W, Wu S, Sun C. Genomic and Transcriptomic Insights into Calcium Carbonate Biomineralization by Marine Actinobacterium Brevibacterium linens BS258. Front Microbiol 2017; 8:602. [PMID: 28428780 PMCID: PMC5382220 DOI: 10.3389/fmicb.2017.00602] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 01/31/2023] Open
Abstract
Calcium carbonate (CaCO3) biomineralization has been investigated due to its wide range of scientific and technological implications, however, the molecular mechanisms of this important geomicrobiological process are largely unknown. Here, a urease-positive marine actinobacterium Brevibacterium linens BS258 was demonstrated to effectively form CaCO3 precipitates. Surprisingly, this bacterium could also dissolve the formed CaCO3 with the increase of the Ca2+ concentration. To disclose the mechanisms of biomineralization, the genome of B. linens BS258 was further completely sequenced. Interestingly, the expression of three carbonic anhydrases was significantly up-regulated along with the increase of Ca2+ concentration and the extent of calcite dissolution. Moreover, transcriptome analyses revealed that increasing concentration of Ca2+ induced KEGG pathways including quorum sensing (QS) in B. linens BS258. Notably, most up-regulated genes related to QS were found to encode peptide/nickel ABC transporters, which suggested that nickel uptake and its associated urease stimulation were essential to boost CaCO3 biomineralization. Within the genome of B. linens BS258, there are both cadmium and lead resistance gene clusters. Therefore, the sequestration abilities of Cd2+ and Pb2+ by B. linens BS258 were checked. Consistently, Pb2+ and Cd2+ could be effectively sequestered with the precipitation of calcite by B. linens BS258. To our knowledge, this is the first study investigating the microbial CaCO3 biomineralization from both genomic and transcriptomic insights, which paves the way to disclose the relationships among bacterial metabolisms and the biomineralization.
Collapse
Affiliation(s)
- Yuying Zhu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
- College of Earth Science, University of Chinese Academy of SciencesBeijing, China
| | - Ning Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
- College of Earth Science, University of Chinese Academy of SciencesBeijing, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou, China
| | - Shimei Wu
- College of Life Sciences, Qingdao UniversityQingdao, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
21
|
Van Hecke W, Verhoef S, Groot W, Sarić M, de Bunt BV, de Haan A, De Wever H. Investigation of lactate productivity in membrane bioreactors on C5/C6 carbohydrates. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Comparison of high-titer lactic acid fermentation from NaOH- and NH 3-H 2O 2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation. Sci Rep 2016; 6:37245. [PMID: 27853308 PMCID: PMC5112544 DOI: 10.1038/srep37245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH3-H2O2-pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH3-H2O2-pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water.
Collapse
|