1
|
Soliman Wadan AH, Abdelsattar Ahmed M, Hussein Ahmed A, El-Sayed Ellakwa D, Hamed Elmoghazy N, Gawish A. The Interplay of Mitochondrial Dysfunction in Oral Diseases: Recent Updates in Pathogenesis and Therapeutic Implications. Mitochondrion 2024; 78:101942. [PMID: 39111357 DOI: 10.1016/j.mito.2024.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Mitochondrial dysfunction is linked to various systemic and localized diseases, including oral diseases like periodontitis, oral cancer, and temporomandibular joint disorders. This paper explores the intricate mechanisms underlying mitochondrial dysfunction in oral pathologies, encompassing oxidative stress, inflammation, and impaired energy metabolism. Furthermore, it elucidates the bidirectional relationship between mitochondrial dysfunction and oral diseases, wherein the compromised mitochondrial function exacerbates disease progression, while oral pathologies, in turn, exacerbate mitochondrial dysfunction. Understanding these intricate interactions offers insights into novel therapeutic strategies targeting mitochondrial function for managing oral diseases. This paper pertains to the mechanisms underlying mitochondrial dysfunction, its implications in various oral pathological and inflammatory conditions, and emerging versatile treatment approaches. It reviews current therapeutic strategies to mitigate mitochondrial dysfunction, including antioxidants, mitochondrial-targeted agents, and metabolic modulators.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt.
| | - Mohamed Abdelsattar Ahmed
- Faculty of Dentistry, Sinai University, Kantra Branch, Ismailia, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Abdelnaser Hussein Ahmed
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt
| | - Nourhan Hamed Elmoghazy
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Abeer Gawish
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt; Faculty of Graduate Studies, Sinai University, Arish Branche, North Sinai, Egypt; Oral Medicine, Periodontology, Diagnosis and Radiology Department, Al Azhar University, Egypt
| |
Collapse
|
2
|
Raina R, Shetty DC, Nasreen N, DAS S, Sethi A, Chikara A, Rai G, Kumar A, Tulsyan S, Sisodiya S, Hussain S. Mitochondrial DNA content as a biomarker for oral carcinogenesis: correlation with clinicopathologic parameters. Minerva Dent Oral Sci 2023; 72:211-220. [PMID: 37066891 DOI: 10.23736/s2724-6329.23.04756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Mitochondrial genome (mtDNA) exhibits greater vulnerability to mutations and/or copy number variations than nuclear counterpart (nDNA) in both normal and cancer cells due to oxidative stress generated by inflammation, viral infections, physical, mechanical, and chemical load. The study was designed to evaluate the mtDNA content in oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC). Various parameters were analyzed including its variation with human papillomavirus (HPV) during oral carcinogenesis. METHODS The present cross-sectional study comprised of two hundred patients (100 OPMDs and 100 OSCCs) and 100 healthy controls. PCR amplifications were done for mtDNA content and HPV in OPMDs and OSCC using real-time and conventional PCR respectively. RESULTS The relative mtDNA content was assessed quantitatively and it was observed that mtDNA was greater in OSCC (7.60±0.94) followed by OPMDs (5.93±0.92) and controls (5.37±0.95). It showed a positive linear correlation with habits and increasing histopathological grades. Total HPV-positive study groups showed higher mtDNA content (7.06±1.64) than HPV-negative counterparts (6.21±1.29). CONCLUSIONS An elevated mutant mtDNA may be attributed to increased free radicals and selective cell clonal proliferation in test groups. Moreover, sustained HPV infection enhances tumorigenesis through mitochondria mediated apoptosis. Since, mtDNA content is directly linked to oxidative DNA damage, these quantifications might serve as a surrogate measure for invasiveness in dysplastic lesions and typify their malignant potential.
Collapse
Affiliation(s)
- Reema Raina
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Indian Council of Medical Research, Noida, India
- Department of Oral and Maxillofacial Pathology and Microbiology, I.T.S. Centre for Dental Studies and Research, Muradnagar, India
| | - Devi C Shetty
- Department of Oral and Maxillofacial Pathology and Microbiology, I.T.S. Centre for Dental Studies and Research, Muradnagar, India
| | - Nighat Nasreen
- Department of Oral Pathology and Microbiology, Divya Jyoti College of Dental Sciences and Research, Modinagar, India
| | - Shukla DAS
- Department of Microbiology, University College of Medical Sciences and GTB Hospital, Dilshad Garden, New Delhi, India
| | - Aashka Sethi
- Department of Oral and Maxillofacial Pathology and Microbiology, I.T.S. Centre for Dental Studies and Research, Muradnagar, India
| | - Atul Chikara
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Indian Council of Medical Research, Noida, India
| | - Gargi Rai
- Department of Microbiology, University College of Medical Sciences and GTB Hospital, Dilshad Garden, New Delhi, India
| | - Anshuman Kumar
- Department of Surgical Oncology, Dharamshila Narayana Superspeciality Hospital, Vasundhara Enclave, New Delhi, India
| | - Sonam Tulsyan
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Indian Council of Medical Research, Noida, India
| | - Sandeep Sisodiya
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Indian Council of Medical Research, Noida, India
| | - Showket Hussain
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Indian Council of Medical Research, Noida, India -
| |
Collapse
|
3
|
Ji X, Guo W, Gu X, Guo S, Zhou K, Su L, Yuan Q, Liu Y, Guo X, Huang Q, Xing J. Mutational profiling of mtDNA control region reveals tumor-specific evolutionary selection involved in mitochondrial dysfunction. EBioMedicine 2022; 80:104058. [PMID: 35594659 PMCID: PMC9121266 DOI: 10.1016/j.ebiom.2022.104058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) mutations alter mitochondrial function in oxidative metabolism and play an important role in tumorigenesis. A series of studies have demonstrated that the mtDNA control region (mtCTR), which is essential for mtDNA replication and transcription, represents a mutational hotspot in human tumors. However, a comprehensive pan-cancer evolutionary pattern analysis of mtCTR mutations is urgently needed. Methods We generated a comprehensive combined dataset containing 10026 mtDNA somatic mutations from 4664 patients, covering 20 tumor types based on public and private next-generation sequencing data. Findings Our results demonstrated a significantly higher and much more variable mutation rate in mtCTR than in the coding region across different tumor types. Moreover, our data showed a remarkable distributional bias of tumor somatic mutations between the hypervariable segment (HVS) and non-HVS, with a significantly higher mutation density and average mutation sites in HVS. Importantly, the tumor-specific mutational pattern between mtCTR HVS and non-HVS was identified, which was classified into three evolutionary selection types (relaxed, moderate, and strict constraint types). Analysis of substitution patterns revealed that the prevalence of CH > TH in non-HVS greatly contributed to the mutational selection pattern of mtCTR across different tumor types. Furthermore, we found that the mutational pattern of mtCTR in the four tumor types was clearly associated with mitochondrial biogenesis, mitochondrial oxidative metabolism, and the overall survival of patients. Interpretation Our results suggest that somatic mutations in mtCTR may be shaped by tumor-specific selective pressure and are involved in tumorigenesis. Fundings National Natural Science Foundation of China [grants 82020108023, 81830070, 81872302], and Autonomous Project of State Key Laboratory of Cancer Biology, China [grants CBSKL2019ZZ06, CBSKL2019ZZ27].
Collapse
|
4
|
Maclaine KD, Stebbings KA, Llano DA, Havird JC. The mtDNA mutation spectrum in the PolG mutator mouse reveals germline and somatic selection. BMC Genom Data 2021; 22:52. [PMID: 34823474 PMCID: PMC8620558 DOI: 10.1186/s12863-021-01005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) codes for products necessary for electron transport and mitochondrial gene translation. mtDNA mutations can lead to human disease and influence organismal fitness. The PolG mutator mouse lacks mtDNA proofreading function and rapidly accumulates mtDNA mutations, making it a model for examining the causes and consequences of mitochondrial mutations. Premature aging in PolG mice and their physiology have been examined in depth, but the location, frequency, and diversity of their mtDNA mutations remain understudied. Identifying the locations and spectra of mtDNA mutations in PolG mice can shed light on how selection shapes mtDNA, both within and across organisms. RESULTS Here, we characterized somatic and germline mtDNA mutations in brain and liver tissue of PolG mice to quantify mutation count (number of unique mutations) and frequency (mutation prevalence). Overall, mtDNA mutation count and frequency were the lowest in the D-loop, where an mtDNA origin of replication is located, but otherwise uniform across the mitochondrial genome. Somatic mtDNA mutations have a higher mutation count than germline mutations. However, germline mutations maintain a higher frequency and were also more likely to be silent. Cytosine to thymine mutations characteristic of replication errors were the plurality of basepair changes, and missense C to T mutations primarily resulted in increased protein hydrophobicity. Unlike wild type mice, PolG mice do not appear to show strand asymmetry in mtDNA mutations. Indel mutations had a lower count and frequency than point mutations and tended to be short, frameshift deletions. CONCLUSIONS Our results provide strong evidence that purifying selection plays a major role in the mtDNA of PolG mice. Missense mutations were less likely to be passed down in the germline, and they were less likely to spread to high frequencies. The D-loop appears to have resistance to mutations, either through selection or as a by-product of replication processes. Missense mutations that decrease hydrophobicity also tend to be selected against, reflecting the membrane-bound nature of mtDNA-encoded proteins. The abundance of mutations from polymerase errors compared with reactive oxygen species (ROS) damage supports previous studies suggesting ROS plays a minimal role in exacerbating the PolG phenotype, but our findings on strand asymmetry provide discussion for the role of polymerase errors in wild type organisms. Our results provide further insight on how selection shapes mtDNA mutations and on the aging mechanisms in PolG mice.
Collapse
Affiliation(s)
- Kendra D Maclaine
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX, 78712, USA.
| | - Kevin A Stebbings
- Neuroscience Program, The University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| | - Daniel A Llano
- Neuroscience Program, The University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, IL, 61801, USA
- Department of Molecular an Integrative Physiology, 524 Burrill Hall, MC-114, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Association Study Between Genetic Variation in Whole Mitochondrial Genome and Ischemic Stroke. J Mol Neurosci 2021; 71:2152-2162. [PMID: 33447902 DOI: 10.1007/s12031-020-01778-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial DNA (mtDNA) affects the mitochondrial function, which is potentially related to susceptibility to ischemic stroke (IS). However, study on IS genetics by whole mitochondrial genome sequencing has not been extensively explored. Therefore, a two-stage study was designed to explore the relationship between the whole mitochondrial genome variants and IS. In the first stage, whole mitochondrial genomes of 52 IS patients and 55 controls were sequenced by next-generation sequencing. Fifty-three mtDNA mutation sites which may be related to the pathogenesis of IS were discovered. Nine unreported mtDNA variation sites were found for the first time. In the second larger Chinese cohort, we confirmed that m.T195C and m.T12338C in the mitochondrial D-loop region were the protective factors of IS, especially m.T195C and m.C311T in the LAA subtype. In conclusion, our study provided population genetic information and a reference for IS-relevant research, with wide applications in diagnosis, therapeutic treatments and prediction of IS.
Collapse
|
6
|
Pérez-Amado CJ, Tovar H, Gómez-Romero L, Beltrán-Anaya FO, Bautista-Piña V, Dominguez-Reyes C, Villegas-Carlos F, Tenorio-Torres A, Alfaro-Ruíz LA, Hidalgo-Miranda A, Jiménez-Morales S. Mitochondrial DNA Mutation Analysis in Breast Cancer: Shifting From Germline Heteroplasmy Toward Homoplasmy in Tumors. Front Oncol 2020; 10:572954. [PMID: 33194675 PMCID: PMC7653098 DOI: 10.3389/fonc.2020.572954] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Studies have suggested a potential role of somatic mitochondrial mutations in cancer development. To analyze the landscape of somatic mitochondrial mutation in breast cancer and to determine whether mitochondrial DNA (mtDNA) mutational burden is correlated with overall survival (OS), we sequenced whole mtDNA from 92 matched-paired primary breast tumors and peripheral blood. A total of 324 germline variants and 173 somatic mutations were found in the tumors. The most common germline allele was 663G (12S), showing lower heteroplasmy levels in peripheral blood lymphocytes than in their matched tumors, even reaching homoplasmic status in several cases. The heteroplasmy load was higher in tumors than in their paired normal tissues. Somatic mtDNA mutations were found in 73.9% of breast tumors; 59% of these mutations were located in the coding region (66.7% non-synonymous and 33.3% synonymous). Although the CO1 gene presented the highest number of mutations, tRNA genes (T,C, and W), rRNA 12S, and CO1 and ATP6 exhibited the highest mutation rates. No specific mtDNA mutational profile was associated with molecular subtypes of breast cancer, and we found no correlation between mtDNA mutational burden and OS. Future investigations will provide insight into the molecular mechanisms through which mtDNA mutations and heteroplasmy shifting contribute to breast cancer development.
Collapse
Affiliation(s)
- Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Tovar
- Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Laura Gómez-Romero
- Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | | | | | | | | | - Luis Alberto Alfaro-Ruíz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
7
|
Fendt L, Fazzini F, Weissensteiner H, Bruckmoser E, Schönherr S, Schäfer G, Losso JL, Streiter GA, Lamina C, Rasse M, Klocker H, Kofler B, Kloss-Brandstätter A, Huck CW, Kronenberg F, Laimer J. Profiling of Mitochondrial DNA Heteroplasmy in a Prospective Oral Squamous Cell Carcinoma Study. Cancers (Basel) 2020; 12:E1933. [PMID: 32708892 PMCID: PMC7409097 DOI: 10.3390/cancers12071933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023] Open
Abstract
While a shift in energy metabolism is essential to cancers, the knowledge about the involvement of the mitochondrial genome in tumorigenesis and progression in oral squamous cell carcinoma (OSCC) is still very limited. In this study, we evaluated 37 OSCC tumors and the corresponding benign mucosa tissue pairs by deep sequencing of the complete mitochondrial DNA (mtDNA). After extensive quality control, we identified 287 variants, 137 in tumor and 150 in benign samples exceeding the 1% threshold. Variant heteroplasmy levels were significantly increased in cancer compared to benign tissues (p = 0.0002). Furthermore, pairwise high heteroplasmy frequency difference variants (∆HF% > 20) with potential functional impact were increased in the cancer tissues (p = 0.024). Fourteen mutations were identified in the protein-coding region, out of which thirteen were detected in cancer and only one in benign tissue. After eight years of follow-up, the risk of mortality was higher for patients who harbored at least one ∆HF% > 20 variant in mtDNA protein-coding regions relative to those with no mutations (HR = 4.6, (95%CI = 1.3-17); p = 0.019 in primary tumor carriers). Haplogroup affiliation showed an impact on survival time, which however needs confirmation in a larger study. In conclusion, we observed a significantly higher accumulation of somatic mutations in the cancer tissues associated with a worse prognosis.
Collapse
Affiliation(s)
- Liane Fendt
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Federica Fazzini
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Emanuel Bruckmoser
- Oral and Maxillofacial Surgeon, Private Practice, A-5020 Salzburg, Austria;
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Georg Schäfer
- Institute for Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Jamie Lee Losso
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Gertraud A. Streiter
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Michael Rasse
- University Hospital for Craniomaxillofacial and Oral Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
- Clinic for Maxillofacial Surgery, Sechenov University, Trubetskaya Str. 8 b.2, 119992 Moscow, Russia
| | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Barbara Kofler
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria;
| | - Anita Kloss-Brandstätter
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
- Carinthia University of Applied Sciences, A-9524 Villach, Austria
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold Franzens University Innsbruck, A-6020 Innsbruck, Austria;
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Johannes Laimer
- University Hospital for Craniomaxillofacial and Oral Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
8
|
Schubert AD, Channah Broner E, Agrawal N, London N, Pearson A, Gupta A, Wali N, Seiwert TY, Wheelan S, Lingen M, Macleod K, Allen H, Chatterjee A, Vassiliki S, Gaykalova D, Hoque MO, Sidransky D, Suresh K, Izumchenko E. Somatic mitochondrial mutation discovery using ultra-deep sequencing of the mitochondrial genome reveals spatial tumor heterogeneity in head and neck squamous cell carcinoma. Cancer Lett 2020; 471:49-60. [PMID: 31830557 PMCID: PMC6980748 DOI: 10.1016/j.canlet.2019.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
Abstract
Mutations in mitochondrial DNA (mtDNA) have been linked to risk, progression, and treatment response of head and neck squamous cell carcinoma (HNSCC). Due to their clonal nature and high copy number, mitochondrial mutations could serve as powerful molecular markers for detection of cancer cells in bodily fluids, surgical margins, biopsies and lymph node (LN) metastasis, especially at sites where tumor involvement is not histologically apparent. Despite a pressing need for high-throughput, cost-effective mtDNA mutation profiling system, current methods for library preparation are still imperfect for detection of low prevalence heteroplasmic mutations. To this end, we have designed an ultra-deep amplicon-based sequencing library preparation approach that covers the entire mitochondrial genome. We sequenced mtDNA in 28 HNSCCs, matched LNs, surgical margins and bodily fluids, and applied multiregional sequencing approach on 14 primary tumors. Our results demonstrate that this quick, sensitive and cost-efficient method allows obtaining a snapshot on the mitochondrial heterogeneity, and can be used for detection of low frequency tumor-associated mtDNA mutations in LNs, sputum and serum specimens. These findings provide the foundation for using mitochondrial sequencing for risk assessment, early detection, and tumor surveillance.
Collapse
Affiliation(s)
- Adrian D Schubert
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Esther Channah Broner
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nishant Agrawal
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Nyall London
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alexander Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Anuj Gupta
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Neha Wali
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Tanguy Y Seiwert
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Sarah Wheelan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mark Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Kay Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Hailey Allen
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Saloura Vassiliki
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Daria Gaykalova
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mohammad O Hoque
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - David Sidransky
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Karthik Suresh
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine. Baltimore, MD, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Malik AN, Rosa HS, S. de Menezes E, Tamang P, Hamid Z, Naik A, Parsade CK, Sivaprasad S. The Detection and Partial Localisation of Heteroplasmic Mutations in the Mitochondrial Genome of Patients with Diabetic Retinopathy. Int J Mol Sci 2019; 20:ijms20246259. [PMID: 31835862 PMCID: PMC6940788 DOI: 10.3390/ijms20246259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and a major cause of acquired blindness in adults. Mitochondria are cellular organelles involved in energy production which contain mitochondrial DNA (mtDNA). We previously showed that levels of circulating mtDNA were dysregulated in DR patients, and there was some evidence of mtDNA damage. In the current project, our aim was to confirm the presence of, and determine the location and prevalence of, mtDNA mutation in DR. DNA isolated from peripheral blood from diabetes patients (n = 59) with and without DR was used to amplify specific mtDNA regions which were digested with surveyor nuclease S1 to determine the presence and location of heteroplasmic mtDNA mutations were present. An initial screen of the entire mtDNA genome of 6 DR patients detected a higher prevalence of mutations in amplicon P, covering nucleotides 14,443 to 1066 and spanning the control region. Further analysis of 42 subjects showed the presence of putative mutations in amplicon P in 36% (14/39) of DR subjects and in 10% (2/20) non-DR subjects. The prevalence of mutations in DR was not related to the severity of the disease. The detection of a high-prevalence of putative mtDNA mutations within a specific region of the mitochondrial genome supports the view that mtDNA damage contributes to DR. The exact location and functional impact of these mutations remains to be determined.
Collapse
Affiliation(s)
- Afshan N. Malik
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
- Correspondence: ; Tel.: +44-207-848-6271
| | - Hannah S. Rosa
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Eliane S. de Menezes
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Priyanka Tamang
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Zaidi Hamid
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Anita Naik
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Chandani Kiran Parsade
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 2PD, UK
| |
Collapse
|
10
|
Kim H, Komiyama T, Nitta M, Kawamura Y, Hasegawa M, Shoji S, Orihashi Y, Inomoto C, Kajiwara H, Nakamura N, Kobayashi H, Miyajima A. D-loop Mutations in Renal Cell Carcinoma Improve Predictive Accuracy for Cancer-Related Death by Integrating with Mutations in the NADH Dehydrogenase Subunit 1 Gene. Genes (Basel) 2019; 10:E998. [PMID: 31810328 PMCID: PMC6947453 DOI: 10.3390/genes10120998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/10/2023] Open
Abstract
Renal cell carcinoma (RCC) is associated with various genetic alterations. Although whole-genome/exome sequencing analysis has revealed that nuclear genome alterations are associated with clinical outcomes, the association between nucleotide alterations in the mitochondrial genome and RCC clinical outcomes remains unclear. In this study, we analyzed somatic mutations in the mitochondrial D-loop region, using RCC samples from 61 consecutive patients with localized RCC. Moreover, we analyzed the relationship between D-loop mutations and NADH dehydrogenase subunit 1 (MT-ND1) mutations, which we previously found to be associated with clinical outcomes in localized RCC. Among the 61 localized RCCs, 34 patients (55.7%) had at least one mitochondrial D-loop mutation. The number of D-loop mutations was associated with larger tumor diameter (> 32 mm) and higher nuclear grade (≥ ISUP grade 3). Moreover, patients with D-loop mutations showed no differences in cancer-specific survival when compared with patients without D-loop mutations. However, the co-occurrence of D-loop and MT-ND1 mutations improved the predictive accuracy of cancer-related deaths among our cohort, increasing the concordance index (C-index) from 0.757 to 0.810. Thus, we found that D-loop mutations are associated with adverse pathological features in localized RCC and may improve predictive accuracy for cancer-specific deaths when combined with MT-ND1 mutations.
Collapse
Affiliation(s)
- Hakushi Kim
- Department of Urology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (M.N.); (Y.K.); (M.H.); (S.S.); (A.M.)
| | - Tomoyoshi Komiyama
- Department of Clinical Pharmacology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (T.K.); (Y.O.); (H.K.)
| | - Masahiro Nitta
- Department of Urology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (M.N.); (Y.K.); (M.H.); (S.S.); (A.M.)
| | - Yoshiaki Kawamura
- Department of Urology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (M.N.); (Y.K.); (M.H.); (S.S.); (A.M.)
| | - Masanori Hasegawa
- Department of Urology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (M.N.); (Y.K.); (M.H.); (S.S.); (A.M.)
| | - Sunao Shoji
- Department of Urology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (M.N.); (Y.K.); (M.H.); (S.S.); (A.M.)
| | - Yasushi Orihashi
- Department of Clinical Pharmacology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (T.K.); (Y.O.); (H.K.)
| | - Chie Inomoto
- Department of Pathology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (C.I.); (H.K.); (N.N.)
| | - Hiroshi Kajiwara
- Department of Pathology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (C.I.); (H.K.); (N.N.)
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (C.I.); (H.K.); (N.N.)
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (T.K.); (Y.O.); (H.K.)
| | - Akira Miyajima
- Department of Urology, Tokai University School of Medicine, Kanagawa, Isehara 259-1193, Japan; (M.N.); (Y.K.); (M.H.); (S.S.); (A.M.)
| |
Collapse
|
11
|
Németh K, Darvasi O, Likó I, Szücs N, Czirják S, Reiniger L, Szabó B, Kurucz PA, Krokker L, Igaz P, Patócs A, Butz H. Next-generation sequencing identifies novel mitochondrial variants in pituitary adenomas. J Endocrinol Invest 2019; 42:931-940. [PMID: 30684245 PMCID: PMC6647476 DOI: 10.1007/s40618-019-1005-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/08/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Disrupted mitochondrial functions and genetic variants of mitochondrial DNA (mtDNA) have been observed in different human neoplasms. Next-generation sequencing (NGS) can be used to detect even low heteroplasmy-level mtDNA variants. We aimed to investigate the mitochondrial genome in pituitary adenomas by NGS. METHODS We analysed 11 growth hormone producing and 33 non-functioning [22 gonadotroph and 11 hormone immunonegative] pituitary adenomas using VariantPro™ Mitochondrion Panel on Illumina MiSeq instrument. Revised Cambridge Reference Sequence (rCRS) of the mtDNA was used as reference. Heteroplasmy was determined using a 3% cutoff. RESULTS 496 variants were identified in pituitary adenomas with overall low level of heteroplasmy (7.22%). On average, 35 variants were detected per sample. Samples harbouring the highest number of variants had the highest Ki-67 indices independently of histological subtypes. We identified eight variants (A11251G, T4216C, T16126C, C15452A, T14798C, A188G, G185A, and T16093C) with different prevalences among different histological groups. T16189C was found in 40% of non-recurrent adenomas, while it was not present in the recurrent ones. T14798C and T4216C were confirmed by Sanger sequencing in all 44 samples. 100% concordance was found between NGS and Sanger method. CONCLUSIONS NGS is a reliable method for investigating mitochondrial genome and heteroplasmy in pituitary adenomas. Out of the 496 detected variants, 414 have not been previously reported in pituitary adenoma. The high number of mtDNA variants may contribute to adenoma genesis, and some variants (i.e., T16189C) might associate with benign behaviour.
Collapse
Affiliation(s)
- K Németh
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - O Darvasi
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary
| | - I Likó
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary
| | - N Szücs
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - S Czirják
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - L Reiniger
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - B Szabó
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - P A Kurucz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - L Krokker
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - P Igaz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - A Patócs
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - H Butz
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary.
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Toure S, Mbaye F, Gueye MD, Fall M, Dem A, Lamy JB, Sembene M. Somatic Mitochondrial Mutations in Oral Cavity Cancers among Senegalese Patients. Asian Pac J Cancer Prev 2019; 20:2203-2208. [PMID: 31350985 DOI: 10.31557/apjcp.2019.20.7.2203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Somatic mutations affecting the mitochondrial DNA (mtDNA) have been frequently observed in
human cancers and proposed as important oncological biomarkers. However, the exact mtDNA mutations that is
responsible for the pathogenesis of cancer remains unclear. The aim of this study was to investigate somatic mutations
in the MT-CYB and D-Loop regions of mitochondrial DNA (mtDNA) in oral cavity cancers from Senegalese patients.
Methods: MT-CYB and the D-Loop of mtDNA derived from 45 oral cavity cancer tissues and 21 control blood
samples were assessed by PCR and sequencing. The sequences of MT-CYB and the D-Loop from cancerous tissues
were compared with control sequences, and sequence differences were recognized as somatic mutations. Results:
Overall, 389 somatic mtDNA mutations were identified, most of which (79.43%) were located in the D-Loop
region. The majority of base substitution mutations were G-to-A (63.93%) and T-to-C (16.39%) transitions. In the
protein-coding MT-CYB gene, 29 missense mutations were observed. The pathogenic mutation load of MT-CYB was
3.11%. Pathogenic mutations were carried by 25% of patients. pArg76Pro (pArg282Pro in rCRS) was novel and was
the most common pathogenic mutation observed. Conclusion: These results strongly indicate that mtDNA mutations
are a potential marker of oral cavity cancer.
Collapse
Affiliation(s)
- Silly Toure
- Department of Maxillofacial Surgery and Stomatology University Hospital Center Aristide le Dantec, Dakar, Senegal
| | - Fatimata Mbaye
- GENGESPOP Team, Department of Animal Biology, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal.
| | - Mame Diarra Gueye
- GENGESPOP Team, Department of Animal Biology, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal.
| | - Malick Fall
- Department of Animal Biology, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal
| | - Ahmadou Dem
- Cancer Institut, Faculty of Medicine, Pharmacy and Stomatology, Cheikh Anta Diop University, Dakar, Senegal
| | - Jean Baptiste Lamy
- LIMICS, Université Paris 13, Sorbonne Paris Cité, 93017 Bobigny, France, INSERM UMRS 1142, UPMC Université Paris 6, Sorbonne Université, Paris, France.,Laboratoire de Recherche en Informatique (LRI), CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Mbacké Sembene
- GENGESPOP Team, Department of Animal Biology, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal.
| |
Collapse
|
13
|
Keratinocyte differentiation induces APOBEC3A, 3B, and mitochondrial DNA hypermutation. Sci Rep 2018; 8:9745. [PMID: 29950685 PMCID: PMC6021414 DOI: 10.1038/s41598-018-27930-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are found in many types of cancers and suspected to be involved in carcinogenesis, although the mechanism has not been elucidated. In this study, we report that consecutive C-to-T mutations (hypermutations), a unique feature of mutations induced by APOBECs, are found in mtDNA from cervical dysplasia and oropharyngeal cancers. In vitro, we found that APOBEC3A (A3A) and 3B (A3B) expression, as well as mtDNA hypermutation, were induced in a cervical dysplastic cell line W12 when cultured in a differentiating condition. The ectopic expression of A3A or A3B was sufficient to hypermutate mtDNA. Fractionation of W12 cell lysates and immunocytochemical analysis revealed that A3A and A3B could be contained in mitochondrion. These results suggest that mtDNA hypermutation is induced upon keratinocyte differentiation, and shed light on its molecular mechanism, which involves A3s. The possible involvement of mtDNA hypermutations in carcinogenesis is also discussed.
Collapse
|
14
|
Choudhury AR, Singh KK. Mitochondrial determinants of cancer health disparities. Semin Cancer Biol 2017; 47:125-146. [PMID: 28487205 PMCID: PMC5673596 DOI: 10.1016/j.semcancer.2017.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Mitochondria, which are multi-functional, have been implicated in cancer initiation, progression, and metastasis due to metabolic alterations in transformed cells. Mitochondria are involved in the generation of energy, cell growth and differentiation, cellular signaling, cell cycle control, and cell death. To date, the mitochondrial basis of cancer disparities is unknown. The goal of this review is to provide an understanding and a framework of mitochondrial determinants that may contribute to cancer disparities in racially different populations. Due to maternal inheritance and ethnic-based diversity, the mitochondrial genome (mtDNA) contributes to inherited racial disparities. In people of African ancestry, several germline, population-specific haplotype variants in mtDNA as well as depletion of mtDNA have been linked to cancer predisposition and cancer disparities. Indeed, depletion of mtDNA and mutations in mtDNA or nuclear genome (nDNA)-encoded mitochondrial proteins lead to mitochondrial dysfunction and promote resistance to apoptosis, the epithelial-to-mesenchymal transition, and metastatic disease, all of which can contribute to cancer disparity and tumor aggressiveness related to racial disparities. Ethnic differences at the level of expression or genetic variations in nDNA encoding the mitochondrial proteome, including mitochondria-localized mtDNA replication and repair proteins, miRNA, transcription factors, kinases and phosphatases, and tumor suppressors and oncogenes may underlie susceptibility to high-risk and aggressive cancers found in African population and other ethnicities. The mitochondrial retrograde signaling that alters the expression profile of nuclear genes in response to dysfunctional mitochondria is a mechanism for tumorigenesis. In ethnic populations, differences in mitochondrial function may alter the cross talk between mitochondria and the nucleus at epigenetic and genetic levels, which can also contribute to cancer health disparities. Targeting mitochondrial determinants and mitochondrial retrograde signaling could provide a promising strategy for the development of selective anticancer therapy for dealing with cancer disparities. Further, agents that restore mitochondrial function to optimal levels should permit sensitivity to anticancer agents for the treatment of aggressive tumors that occur in racially diverse populations and hence help in reducing racial disparities.
Collapse
Affiliation(s)
| | - Keshav K Singh
- Departments of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Environmental Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
15
|
Mohamed Yusoff AA, Mohd Nasir KN, Haris K, Mohd Khair SZN, Abdul Ghani ARI, Idris Z, Abdullah JM. Detection of somatic mutations in the mitochondrial DNA control region D-loop in brain tumors: The first report in Malaysian patients. Oncol Lett 2017; 14:5179-5188. [PMID: 29098023 PMCID: PMC5652220 DOI: 10.3892/ol.2017.6851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 05/11/2017] [Indexed: 01/01/2023] Open
Abstract
Although the role of nuclear-encoded gene alterations has been well documented in brain tumor development, the involvement of the mitochondrial genome in brain tumorigenesis has not yet been fully elucidated and remains controversial. The present study aimed to identify mutations in the mitochondrial DNA (mtDNA) control region D-loop in patients with brain tumors in Malaysia. A mutation analysis was performed in which DNA was extracted from paired tumor tissue and blood samples obtained from 49 patients with brain tumors. The D-loop region DNA was amplified using the PCR technique, and genetic data from DNA sequencing analyses were compared with the published revised Cambridge sequence to identify somatic mutations. Among the 49 brain tumor tissue samples evaluated, 25 cases (51%) had somatic mutations of the mtDNA D-loop, with a total of 48 mutations. Novel mutations that had not previously been identified in the D-loop region (176 A-deletion, 476 C>A, 566 C>A and 16405 A-deletion) were also classified. No significant associations between the D-loop mutation status and the clinicopathological parameters were observed. To the best of our knowledge, the current study presents the first evidence of alterations in the mtDNA D-loop regions in the brain tumors of Malaysian patients. These results may provide an overview and data regarding the incidence of mitochondrial genome alterations in Malaysian patients with brain tumors. In addition to nuclear genome aberrations, these specific mitochondrial genome alterations may also be considered as potential cancer biomarkers for the diagnosis and staging of brain cancers.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Khairol Naaim Mohd Nasir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Khalilah Haris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Abdul Rahman Izaini Abdul Ghani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.,Center for Neuroscience Services and Research, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.,Center for Neuroscience Services and Research, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
16
|
Pagani IS, Kok CH, Saunders VA, Van der Hoek MB, Heatley SL, Schwarer AP, Hahn CN, Hughes TP, White DL, Ross DM. A Method for Next-Generation Sequencing of Paired Diagnostic and Remission Samples to Detect Mitochondrial DNA Mutations Associated with Leukemia. J Mol Diagn 2017; 19:711-721. [PMID: 28732215 DOI: 10.1016/j.jmoldx.2017.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022] Open
Abstract
Somatic mitochondrial DNA (mtDNA) mutations have been identified in many human cancers, including leukemia. To identify somatic mutations, it is necessary to have a control tissue from the same individual for comparison. When patients with leukemia achieve remission, the remission peripheral blood may be a suitable and easily accessible control tissue, but this approach has not previously been applied to the study of mtDNA mutations. We have developed and validated a next-generation sequencing approach for the identification of leukemia-associated mtDNA mutations in 26 chronic myeloid leukemia patients at diagnosis using either nonhematopoietic or remission blood samples as the control. The entire mt genome was amplified by long-range PCR and sequenced using Illumina technology. Variant caller software was used to detect mtDNA somatic mutations, and an empirically determined threshold of 2% was applied to minimize false-positive results because of sequencing errors. Mutations were called against both nonhematopoietic and remission controls: the overall concordance between the two approaches was 81% (73/90 mutations). Some discordant results were because of the presence of somatic mutations in remission samples, because of either minimal residual disease or nonleukemic hematopoietic clones. This method could be applied to study somatic mtDNA mutations in leukemia patients who achieve minimal residual disease, and in patients with nonhematopoietic cancers who have a matched uninvolved tissue available.
Collapse
Affiliation(s)
- Ilaria S Pagani
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Chung H Kok
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Verity A Saunders
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mark B Van der Hoek
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Susan L Heatley
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Anthony P Schwarer
- Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia; Department of Haematology, Box Hill Hospital, Melbourne, Victoria, Australia
| | - Christopher N Hahn
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Timothy P Hughes
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia; Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia
| | - Deborah L White
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia; School of Biomedical Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - David M Ross
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia; Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia; Department of Molecular Medicine and Pathology, Flinders University and Medical Centre, Adelaide, South Australia, Australia.
| |
Collapse
|
17
|
Tsai WC, Kung PT, Wang YH, Huang KH, Liu SA. Influence of time interval from diagnosis to treatment on survival for oral cavity cancer: A nationwide cohort study. PLoS One 2017; 12:e0175148. [PMID: 28388649 PMCID: PMC5384671 DOI: 10.1371/journal.pone.0175148] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES We aimed to explore the relationship between the time interval from diagnosis to treatment and survival of oral cavity squamous cell carcinoma patients. MATERIALS AND METHODS A population-based study was conducted between 2004 and 2010. Claims data of oral squamous cell carcinoma patients were retrieved from the Taiwan Cancer Registry Database. Secondary data were obtained from Taiwan's National Health Insurance Research Database. RESULTS A total of 21,263 patients were included in the final analysis. The majority of the patients received treatment within 30 days of diagnosis (n = 18,193, 85.5%), while 572 patients (2.7%) underwent treatment after 120 days. The patients who were treated after 120 days had a higher risk of death when compared to those treated within 30 days (Hazard ratio: 1.32, 95% Confidence intervals: 1.19 to 1.47). CONCLUSION A longer time interval from diagnosis to treatment was found to be associated with a poorer prognosis among patients suffering from oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Wen-Chen Tsai
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Pei-Tseng Kung
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Yueh-Hsin Wang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Shih-An Liu
- Department of Otolaryngology, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|