1
|
Srivastava AK, Snapper DM, Zheng J, Yildrim BS, Srivastava S, Wood SC. Examining the role of nickel and NiTi nanoparticles promoting inflammation and angiogenesis. J Immunotoxicol 2022; 19:61-73. [PMID: 35901199 DOI: 10.1080/1547691x.2022.2080307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nickel titanium (NiTi, or Nitinol) alloy is used in several biomedical applications, including cardiac, peripheral vascular, and fallopian tube stents. There are significant biocompatibility issues of metallic implants to nickel ions and nano-/micro-sized alloy particles. Our laboratories have recently shown that microscale CoCr wear particles from metal-on-metal hips crosslink with the innate immune signaling Toll-like receptor 4 (TLR4), prompting downstream signaling that results in interleukin (IL)-1β and IL-8 gene expression. In vivo, NiTi alloy can also generate wear particles on the nanoscale (NP) that have thus far not been studied for their potential to induce inflammation and angiogenesis that can, in turn, contribute to implant (e.g. stent) failure. Earlier studies by others demonstrated that nickel could induce contact hypersensitivity by crosslinking the human, but not the mouse, TLR4. In the present work, it is demonstrated that NiCl2 ions and NiTi nanoparticles induce pro-inflammatory and pro-angiogenic cytokine/chemokine expression in human endothelial and monocyte cell lines in vitro. These observations prompt concerns about potential mechanisms for stent failure. The data here showed a direct correlation between intracellular uptake of Ni2+ and generation of reactive oxygen species. To determine a role for nickel and NiTi nanoparticles in inducing angiogenesis in vivo, 1-cm silicone angioreactors were implanted subcutaneously into athymic (T-cell-deficient) nude mice. The angioreactors contained Matrigel (a gelatinous protein mixture that resembles extracellular matrix) in addition to one of the following: PBS (negative control), VEGF/FGF-2 (positive control), NiCl2, or NiTi NP. The implantation of angioreactors represents a potential tool for quantification of angiogenic potentials of medical device-derived particles and ions in vivo. By this approach, NiTi NP were found to be markedly angiogenic, while Ni2+ was less-so. The angioreactors may provide a powerful tool to examine if debris shed from medical devices may promote untoward biological effects.
Collapse
Affiliation(s)
- Anup K Srivastava
- Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Dustin M Snapper
- Department of Biochemistry and Molecular Biology, Biochemistry, Uniform Health University, Bethesda, MD, USA
| | - Jiwen Zheng
- Children's National Medical Center, Washington, DC, USA
| | | | | | - Steven C Wood
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, USA
| |
Collapse
|
2
|
Trout KL, Holian A. Factors influencing multinucleated giant cell formation in vitro. Immunobiology 2019; 224:834-842. [PMID: 31439452 PMCID: PMC6874761 DOI: 10.1016/j.imbio.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Macrophages fuse together to form multinucleated giant cells (MGC) in granulomas associated with various pathological conditions. Improved in vitro methods are required to better enable investigations of MGC biology and potential contribution to disease. There is a need for standardization of MGC quantification, purification of MGC populations, and characterization of how cell culture variables influence MGC formation. This study examined solutions to address these needs while providing context with other current and alternative methods. Primary mouse bone marrow-derived macrophages were treated with interleukin-4, a cytokine known to induce fusion into MGC. This model was used to systematically assess the influence of cell stimulant timing, cell seeding density, colony stimulating factors, and culture vessel type. Results indicated that MGC formation is greatly impacted by alterations in certain culture variables. An assessment of previously published research showed that these culture conditions varied widely between different laboratories, which may explain inconsistencies in the literature. A particularly novel and unexpected observation was that MGC formation appears to be greatly increased by silicone, which is a component of a chamber slide system commonly used for MGC studies. The most successful quantification method was fluorescent staining with semi-automated morphological evaluation. The most successful enrichment method was microfiltration. Overall, this study takes steps toward standardizing in vitro methods, enhancing replicability, and guiding investigators attempting to culture, quantify, and enrich MGC.
Collapse
Affiliation(s)
- Kevin L Trout
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States.
| |
Collapse
|
3
|
Bijukumar DR, Segu A, Souza JCM, Li X, Barba M, Mercuri LG, J Jacobs J, Mathew MT. Systemic and local toxicity of metal debris released from hip prostheses: A review of experimental approaches. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:951-963. [PMID: 29339190 PMCID: PMC6017990 DOI: 10.1016/j.nano.2018.01.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022]
Abstract
Despite the technological improvements in orthopedic joint replacement implants, wear and corrosion products associated with the metal components of these implants may result in adverse local tissue and perhaps systemic reactions and toxicities. The current review encompasses a literature review of the local and systemic toxicity studies concerning the effect of CoCrMo wear debris released from wear and corrosion of orthopedic implants and prostheses. Release of metallic debris is mainly in the form of micro- and nano-particles, ions of different valences, and oxides composed of Co and Cr. Though these substances alter human biology, their direct effects of these substances on specific tissue types remain poorly understood. This may partially be the consequence of the multivariate research methodologies employed, leading to inconsistent reports. This review proposes the importance of developing new and more appropriate in-vitro methodologies to study the cellular responses and toxicity mediated by joint replacement wear debris in-vivo.
Collapse
Affiliation(s)
- Divya Rani Bijukumar
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Abhijith Segu
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Júlio C M Souza
- Center for MicroElectromechanical Systems (CMEMS-UMINHO), University of Minho, Guimaraes, Portugal
| | - XueJun Li
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Mark Barba
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA; OrthoIllinois, Rockford, IL, USA
| | - Louis G Mercuri
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Joshua J Jacobs
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Mathew Thoppil Mathew
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA; Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
4
|
Bernhardt A, Schamel M, Gbureck U, Gelinsky M. Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements. PLoS One 2017; 12:e0182109. [PMID: 28763481 PMCID: PMC5538673 DOI: 10.1371/journal.pone.0182109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/12/2017] [Indexed: 11/19/2022] Open
Abstract
Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement modification because of their high cytocompatibility and support of active resorption by osteoclasts.
Collapse
Affiliation(s)
- Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Martha Schamel
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Leuridan S, Goossens Q, Pastrav L, Van Tongel A, De Wilde L, Debeer P, Denis K, Desmet W, Vander Sloten J. A nondestructive method to verify the glenosphere-baseplate assembly in reverse shoulder arthroplasty. J Shoulder Elbow Surg 2016; 25:e156-65. [PMID: 27079218 DOI: 10.1016/j.jse.2016.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/13/2016] [Accepted: 01/22/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Glenoid dissociation is a rare postoperative complication in reverse shoulder arthroplasty that has severe consequences for the patient and requires revision in most cases. A mechanically compromised Morse taper is hypothesized to be the main cause of this complication, with bony impingements and soft tissue interpositioning being cited as the most important problems. Intraoperative assessment of the taper assembly is challenging. Current methods require applying considerable torque to the glenosphere or relying on radiographs. MATERIALS AND METHODS This in vitro study demonstrates how the assembly quality can be accurately determined in a nondestructive way by exploiting the implant-specific relation between screw and Morse taper characteristics by measuring the angular rotation-torque curve. RESULTS The feasibility of the method is demonstrated on 2 reverse implant models. Several data features that can statistically discriminate between optimal and suboptimal assemblies are proposed. CONCLUSION Suboptimal assemblies can be detected using the method presented, which could easily be integrated in the current surgical workflow. Clinical recommendations based on the method's rationale are also presented, allowing detection of the most severe defect cases with surgical instruments currently in use.
Collapse
Affiliation(s)
- Steven Leuridan
- Biomechanics Division, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Quentin Goossens
- Health Engineering Technology, Campus Groep T, KU Leuven, Leuven, Belgium
| | - Leonard Pastrav
- Health Engineering Technology, Campus Groep T, KU Leuven, Leuven, Belgium
| | - Alexander Van Tongel
- Department of Orthopedic Surgery and Traumatology, Ghent University Hospital, Gent, Belgium
| | - Lieven De Wilde
- Department of Orthopedic Surgery and Traumatology, Ghent University Hospital, Gent, Belgium
| | - Philippe Debeer
- Department of Orthopedic Surgery, Leuven University Hospitals, Pellenberg, Belgium
| | - Kathleen Denis
- Health Engineering Technology, Campus Groep T, KU Leuven, Leuven, Belgium
| | - Wim Desmet
- Production Engineering, Machine Design and Automation Division, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Jos Vander Sloten
- Biomechanics Division, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|