1
|
Ghaisas S, Harischandra DS, Palanisamy B, Proctor A, Jin H, Dutta S, Sarkar S, Langley M, Zenitsky G, Anantharam V, Kanthasamy A, Phillips GJ, Kanthasamy A. Chronic Manganese Exposure and the Enteric Nervous System: An in Vitro and Mouse in Vivo Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:87005. [PMID: 34410835 PMCID: PMC8375672 DOI: 10.1289/ehp7877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND Chronic environmental exposure to manganese (Mn) can cause debilitating damage to the central nervous system. However, its potential toxic effects on the enteric nervous system (ENS) have yet to be assessed. OBJECTIVE We examined the effect of Mn on the ENS using both cell and animal models. METHOD Rat enteric glial cells (EGCs) and mouse primary enteric cultures were exposed to increasing concentrations of Mn and cell viability and mitochondrial health were assessed using various morphological and functional assays. C57BL/6 mice were exposed daily to a sublethal dose of Mn (15mg/kg/d) for 30 d. Gut peristalsis, enteric inflammation, gut microbiome profile, and fecal metabolite composition were assessed at the end of exposure. RESULTS EGC mitochondria were highly susceptible to Mn neurotoxicity, as evidenced by lower mitochondrial mass, adenosine triphosphate-linked respiration, and aconitase activity as well as higher mitochondrial superoxide, upon Mn exposure. Minor differences were seen in the mouse model: specifically, longer intestinal transit times and higher levels of colonic inflammation. CONCLUSION Based on our findings from this study, Mn preferentially induced mitochondrial dysfunction in a rat EGC line and in vivo resulted in inflammation in the ENS. https://doi.org/10.1289/EHP7877.
Collapse
Affiliation(s)
- Shivani Ghaisas
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Dilshan S Harischandra
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Bharathi Palanisamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Alexandra Proctor
- Department of Veterinary Microbiology & Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, Iowa, USA
| | - Souvarish Sarkar
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Monica Langley
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Gary Zenitsky
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Gregory J Phillips
- Department of Veterinary Microbiology & Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Anumantha Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Min K, Chen K, Arora R. Short versus prolonged freezing differentially impacts freeze - thaw injury in spinach leaves: mechanistic insights through metabolite profiling. PHYSIOLOGIA PLANTARUM 2020; 168:777-789. [PMID: 31600406 DOI: 10.1111/ppl.13033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/19/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Plant tissues subjected to short or prolonged freezing to a fixed sub-freezing temperature are expected to undergo similar freeze-desiccation but the former causes substantially less injury than the latter. To gain metabolic insight into this differential response, metabolome changes in spinach (Spinacia oleracea L.) leaves were determined following short-term (0.5 and 3.0 h) vs. prolonged freezing (5.5 and 10.5 h) at -4.5°C resulting in reversible or irreversible injury, respectively. LD50 , the freezing duration causing 50% injury, was estimated to be ∼3.1 h and defined as the threshold beyond which tissues were irreversibly injured. From 39 identified metabolites, 19 were selected and clustered into 3 groups: (1) signaling-related (salicylic acid, aliphatic and aromatic amino acids), (2) injury-related (GABA, lactic acid, maltose, fatty acids, policosanols, TCA intermediates) and (3) recovery-related (ascorbic acid, α-tocopherol). Initial accumulation of salicylic acid during short-term freezing followed by a decline may be involved in triggering tolerance mechanisms in moderately injured tissues, while its resurgence during prolonged freezing may signal programmed cell death. GABA accumulated with increasing freezing duration, possibly to serve as a 'pH-stat' against cytoplasmic acidification resulting from lactic acid accumulation. Mitochondria seem to be more sensitive to prolonged freezing than chloroplasts since TCA intermediates decreased after LD50 while salicylic acid and maltose, produced in chloroplasts, accumulate even at 10.5-h freezing. Fatty acids and policosanols accumulation with increasing freezing duration indicates greater injury to membrane lipids and epicuticular waxes. Ascorbic acid and α-tocopherol accumulated after short-term freezing, supposedly facilitating recovery while their levels decreased in irreversibly injured tissues.
Collapse
Affiliation(s)
- Kyungwon Min
- Department of Horticulture, Iowa State University, Ames, IA, 50011
| | - Keting Chen
- Department of Genetic, Development, and Cell Biology, Iowa State University, Ames, IA, 50011
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA, 50011
| |
Collapse
|
3
|
Paudel D, Liu F, Wang L, Crook M, Maya S, Peng Z, Kelley K, Ané JM, Wang J. Isolation, Characterization, and Complete Genome Sequence of a Bradyrhizobium Strain Lb8 From Nodules of Peanut Utilizing Crack Entry Infection. Front Microbiol 2020; 11:93. [PMID: 32117123 PMCID: PMC7020250 DOI: 10.3389/fmicb.2020.00093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
In many legumes, the colonization of roots by rhizobia is via "root hair entry" and its molecular mechanisms have been extensively studied. However, the nodulation of peanuts (Arachis hypogaea L.) by Bradyrhizobium strains requires an intercellular colonization process called "crack entry," which is understudied. To understand the intercellular crack entry process, it is critical to develop the tools and resources related to the rhizobium in addition to focus on investigating the mechanisms of the plant host. In this study, we isolated a Bradyrhizobium sp. strain, Lb8 from peanut root nodules and sequenced it using PacBio long reads. The complete genome sequence was a circular chromosome of 8,718,147 base-pair (bp) with an average GC content of 63.14%. No plasmid sequence was detected in the sequenced DNA sample. A total of 8,433 potential protein-encoding genes, one rRNA cluster, and 51 tRNA genes were annotated. Fifty-eight percent of the predicted genes showed similarity to genes of known functions and were classified into 27 subsystems representing various biological processes. The genome shared 92% of the gene families with B. diazoefficens USDA 110T. A presumptive symbiosis island of 778 Kb was detected, which included two clusters of nif and nod genes. A total of 711 putative protein-encoding genes were in this region, among which 455 genes have potential functions related to symbiotic nitrogen fixation and DNA transmission. Of 21 genes annotated as transposase, 16 were located in the symbiosis island. Lb8 possessed both Type III and Type IV protein secretion systems, and our work elucidated the association of flagellar Type III secretion systems in bradyrhizobia. These observations suggested that complex rearrangement, such as horizontal transfer and insertion of different DNA elements, might be responsible for the plasticity of the Bradyrhizobium genome.
Collapse
Affiliation(s)
- Dev Paudel
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Fengxia Liu
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Liping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Matthew Crook
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Stephanie Maya
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Karen Kelley
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jean-Michel Ané
- Departments of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States.,Plant Molecular and Cellular Biology Program, Genetic Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Dueñas ME, Larson EA, Lee YJ. Toward Mass Spectrometry Imaging in the Metabolomics Scale: Increasing Metabolic Coverage Through Multiple On-Tissue Chemical Modifications. FRONTIERS IN PLANT SCIENCE 2019; 10:860. [PMID: 31354754 PMCID: PMC6639774 DOI: 10.3389/fpls.2019.00860] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/14/2019] [Indexed: 05/18/2023]
Abstract
Exploring the metabolic differences directly on tissues is essential for the comprehensive understanding of how multicellular organisms function. Mass spectrometry imaging (MSI) is an attractive technique toward this goal; however, MSI in metabolomics scale has been hindered by multiple limitations. This is most notable for single cell level high-spatial resolution imaging because of the limited number of molecules in small sampling size and the low ionization yields of many metabolites. Several on-tissue chemical derivatization approaches have been reported to increase MSI signals of targeted compounds, especially in matrix-assisted laser desorption/ionization (MALDI)-MSI. Herein, we adopt a combination of chemical derivatization reactions, to selectively enhance metabolite signals of a specific functional group for each consecutive tissue section. Three well-known on-tissue derivatization methods were used as a proof of concept experiment: coniferyl aldehyde for primary amines, Girard's reagent T for carbonyl groups, and 2-picolylamine for carboxylic acids. This strategy was applied to the cross-sections of leaves and roots from two different maize genotypes (B73 and Mo17), and enabled the detection of over six hundred new unique metabolite features compared to without modification. Statistical analysis indicated quantitative variation between metabolites in the tissue sections, while MS images revealed differences in localization of these metabolites. Combined, this untargeted approach facilitated the visualization of various classes of compounds, demonstrating the potential for untargeted MSI in the metabolomics scale.
Collapse
Affiliation(s)
| | | | - Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Göttlinger T, Schwerdtfeger M, Tiedge K, Lohaus G. What Do Nectarivorous Bats Like? Nectar Composition in Bromeliaceae With Special Emphasis on Bat-Pollinated Species. FRONTIERS IN PLANT SCIENCE 2019; 10:205. [PMID: 30847001 PMCID: PMC6393375 DOI: 10.3389/fpls.2019.00205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/07/2019] [Indexed: 05/26/2023]
Abstract
Floral nectar is the most important reward for pollinators and an integral component of the pollination syndrome. Nectar research has mainly focused on sugars or amino acids, whereas more comprehensive studies on the nectar composition of closely related plant species with different pollination types are rather limited. Nectar composition as well as concentrations of sugars, amino acids, inorganic ions, and organic acids were analyzed for 147 species of Bromeliaceae. This plant family shows a high diversity in terms of floral morphology, flowering time, and predominant pollination types (trochilophilous, trochilophilous/entomophilous, psychophilous, sphingophilous, chiropterophilous). Based on the analyses, we examined the relationship between nectar traits and pollination type in this family. Nectar of all analyzed species contained high amounts of sugars with different proportions of glucose, fructose, and sucrose. The total concentrations of amino acids, inorganic cations, and anions, or organic acids were much lower. The analyses revealed that the sugar composition, the concentrations of inorganic cations and anions as well as the concentration of malate in nectar of bat-pollinated species differed significantly from nectar of species with other pollination types. Flowers of bat-pollinated species contained a higher volume of nectar, which results in a total of about 25-fold higher amounts of sugar in bat-pollinated species than in insect-pollinated species. This difference was even higher for amino acids, inorganic anions and cations, and organic acids (between 50 and 100-fold). In general, bat-pollinated plant species invest large amounts of organic and inorganic compounds for their pollinators. Furthermore, statistical analyses reveal that the characteristics of nectar in Bromeliaceae are more strongly determined by the pollinator type rather than by taxonomic groups or phylogenetic relations. However, a considerable part of the variance cannot be explained by either of the variables, which means that additional factors must be responsible for the differences in the nectar composition.
Collapse
Affiliation(s)
- Thomas Göttlinger
- Molecular Plant Science and Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| | - Michael Schwerdtfeger
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Kira Tiedge
- Molecular Plant Science and Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| | - Gertrud Lohaus
- Molecular Plant Science and Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
6
|
Quintana-Rodríguez E, Ramírez-Rodríguez AG, Ramírez-Chávez E, Molina-Torres J, Camacho-Coronel X, Esparza-Claudio J, Heil M, Orona-Tamayo D. Biochemical Traits in the Flower Lifetime of a Mexican Mistletoe Parasitizing Mesquite Biomass. FRONTIERS IN PLANT SCIENCE 2018; 9:1031. [PMID: 30174673 PMCID: PMC6108335 DOI: 10.3389/fpls.2018.01031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/25/2018] [Indexed: 05/24/2023]
Abstract
Psittacanthus calyculatus is a hemiparasitic plant that infects a wide range of trees. Mainly the biology reproduction of this mistletoe lies in bright colored flower development. Furthermore, it uses the nectar secretion as the only reward to engage different flower visitors. We investigated the physiological mechanisms of the flower phenology per hour and per day to analyze the spatial-temporal patterns of the nectar secretion, Cell Wall Invertase Activity (key enzyme in the quality of nectar), nectar chemistry, volatile organic compounds (VOCs) emission, synthesis of carotenoids and frequency of floral visitors. Flowers lasted 4 days, total nectar was loaded just before the anthesis and the secretion was maintained over day 1 and 2, decreased on day 3, and stopped on day 4. The diurnal nectar secretion dynamic per hour on day 1 and 2 showed similar patterns with high production on the morning and a decrease in the afternoon, the secretion declined on day 3 and ceased on day 4. On the other hand, CWIN activity per day was less before the anthesis and increased on day 1 and 2, this enzymatic activity decreased on the old flower phenology. Moreover, diurnal CWIN activities showed different patterns in the morning, noon, and lastly in the afternoon. Nectar chemistry varied significantly throughout of the flower lifetime, sucrose decreased along the flower phenology increasing glucose and fructose. Amino acids showed the prevalence of proline and oxo-proline, both increased on the day 1 and diminished in subsequent old flower stages. The spatial VOCs emission showed the presence of 11 compounds being β-ocimene the main volatile; its release increased on day 1 and remained constant in the flower lifetime. Lutein, lycopene, and β-carotene were concentrated in old stages of the flowers. In field, the most frequent flower visitors were the hummingbirds that usually foraging in all phenologic flower stage and their foraging events decreased with the phenological flower lifetimes. The results showed that these traits presented by P. calyculatus flowers are able to engage and manipulate the behavior of flower visitors and contribute to the reproduction of the parasitic plant.
Collapse
Affiliation(s)
- Elizabeth Quintana-Rodríguez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
- Departamento de Soluciones Tecnológicas, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), Guanajuato, Mexico
| | - Alan Gamaliel Ramírez-Rodríguez
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Enrique Ramírez-Chávez
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Jorge Molina-Torres
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Xicotencatl Camacho-Coronel
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - José Esparza-Claudio
- Departamento de Soluciones Tecnológicas, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), Guanajuato, Mexico
| | - Martin Heil
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Domancar Orona-Tamayo
- Departamento de Soluciones Tecnológicas, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), Guanajuato, Mexico
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| |
Collapse
|
7
|
Chatt EC, von Aderkas P, Carter CJ, Smith D, Elliott M, Nikolau BJ. Sex-Dependent Variation of Pumpkin ( Cucurbita maxima cv. Big Max) Nectar and Nectaries as Determined by Proteomics and Metabolomics. FRONTIERS IN PLANT SCIENCE 2018; 9:860. [PMID: 30008725 PMCID: PMC6034135 DOI: 10.3389/fpls.2018.00860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/04/2018] [Indexed: 05/06/2023]
Abstract
Nectar is a floral reward that sustains mutualisms with pollinators, which in turn, improves fruit set. While it is known that nectar is a chemically complex solution, extensive identification and quantification of this complexity has been lacking. Cucurbita maxima cv. Big Max, like many cucurbits, is monoecious with separate male and female flowers. Attraction of bees to the flowers through the reward of nectar is essential for reproductive success in this economically valuable crop. In this study, the sex-dependent variation in composition of male and female nectar and the nectaries were defined using a combination of GC-MS based metabolomics and LC-MS/MS based proteomics. Metabolomics analysis of nectar detected 88 metabolites, of which 40 were positively identified, and includes sugars, sugar alcohols, aromatics, diols, organic acids, and amino acids. There are differences in 29 metabolites between male and female nectar. The nectar proteome consists of 45 proteins, of which 70% overlap between nectar types. Only two proteins are unique to female nectar, and 10 are specific to male nectar. The nectary proteome data, accessible at ProteomeXchange with identifier PXD009810, contained 339 identifiable proteins, 71% of which were descriptively annotatable by homology to Plantae. The abundance of 45 proteins differs significantly between male and female nectaries, as determined by iTRAQ labeling. This rich dataset significantly expands the known complexity of nectar composition, supports the hypothesis of H+-driven nectar solute export, and provides genetic and chemical targets to understand plant-pollinator interactions.
Collapse
Affiliation(s)
- Elizabeth C. Chatt
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | | | - Clay J. Carter
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Derek Smith
- UVic Genome BC Protein Centre, Victoria, BC, Canada
| | | | - Basil J. Nikolau
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Borghi M, Fernie AR. Floral Metabolism of Sugars and Amino Acids: Implications for Pollinators' Preferences and Seed and Fruit Set. PLANT PHYSIOLOGY 2017; 175:1510-1524. [PMID: 28986424 PMCID: PMC5717749 DOI: 10.1104/pp.17.01164] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/04/2017] [Indexed: 05/10/2023]
Abstract
New discoveries open up future directions in the study of the primary metabolism of flowers.
Collapse
Affiliation(s)
- Monica Borghi
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
9
|
Shin H, Min K, Arora R. Exogenous salicylic acid improves freezing tolerance of spinach (Spinacia oleracea L.) leaves. Cryobiology 2017; 81:192-200. [PMID: 29061524 DOI: 10.1016/j.cryobiol.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/07/2023]
Abstract
Salicylic acid (SA)-treatment has been reported to improve plant tolerance to various abiotic stresses. However, its effect on freezing tolerance has not been well investigated. We investigated the effect of exogenous SA on freezing tolerance of spinach (Spinacia oleracea L.) leaves. We also explored if nitric oxide (NO) and/or hydrogen peroxide (H2O2)-mediation was involved in this response, since these are known as primary signaling molecules involved in many physiological processes. A micro-centrifuge tube-based system used to apply SA to petiolate spinach leaves (0.5 mM over 4-d) was effective, as evident by SA content of leaf tissues. SA-treatment did not hamper leaf growth (fresh and dry weight; equatorial and longitudinal length) and was also not significantly different from 25% Hoagland controls vis-à-vis growth. SA application significantly improved freezing tolerance as evidenced by reduced ion-leakage and alleviated oxidative stress (lower accumulation of O2·- and H2O2) following freeze-thaw stress treatments (-6.5, -7.5, and -8.5 °C). Improved freezing tolerance of SA-treated leaves was paralleled by increased proline and ascorbic acid (AsA) accumulation. A 9-d cold acclimation (CA) treatment also improved leaf freezing tolerance (compared to non-acclimated control) and was accompanied by accumulation of SA and proline. Our results indicate that increased freezing tolerance may be associated with accumulation of compatible solutes (proline) and antioxidants (AsA). Notably, the beneficial effect of SA on freezing tolerance was abolished when either H2O2- or NO-scavenger (1 μM N-acetylneuraminic acid, NANA or 100 μM hemoglobin, HB, respectively) was added to SA as pretreatment. Our data suggest that SA-induced freezing tolerance in spinach may be mediated by NO and H2O2 signaling.
Collapse
Affiliation(s)
- Hyunsuk Shin
- Department of Horticulture, Iowa State University, Ames, IA 50011, United States
| | - Kyungwon Min
- Department of Horticulture, Iowa State University, Ames, IA 50011, United States
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
10
|
Roy R, Schmitt AJ, Thomas JB, Carter CJ. Review: Nectar biology: From molecules to ecosystems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:148-164. [PMID: 28716410 DOI: 10.1016/j.plantsci.2017.04.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 05/06/2023]
Abstract
Plants attract mutualistic animals by offering a reward of nectar. Specifically, floral nectar (FN) is produced to attract pollinators, whereas extrafloral nectar (EFN) mediates indirect defenses through the attraction of mutualist predatory insects to limit herbivory. Nearly 90% of all plant species, including 75% of domesticated crops, benefit from animal-mediated pollination, which is largely facilitated by FN. Moreover, EFN represents one of the few defense mechanisms for which stable effects on plant health and fitness have been demonstrated in multiple systems, and thus plays a crucial role in the resistance phenotype of plants producing it. In spite of its central role in plant-animal interactions, the molecular events involved in the development of both floral and extrafloral nectaries (the glands that produce nectar), as well as the synthesis and secretion of the nectar itself, have been poorly understood until recently. This review will cover major recent developments in the understanding of (1) nectar chemistry and its role in plant-mutualist interactions, (2) the structure and development of nectaries, (3) nectar production, and (4) its regulation by phytohormones.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anthony J Schmitt
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jason B Thomas
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Clay J Carter
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
11
|
Tiedge K, Lohaus G. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions. PLoS One 2017; 12:e0176865. [PMID: 28467507 PMCID: PMC5415175 DOI: 10.1371/journal.pone.0176865] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/18/2017] [Indexed: 11/18/2022] Open
Abstract
Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions.
Collapse
Affiliation(s)
- Kira Tiedge
- Molecular Plant Science/ Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| | - Gertrud Lohaus
- Molecular Plant Science/ Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
12
|
Metabolic Analysis of Medicinal Dendrobium officinale and Dendrobium huoshanense during Different Growth Years. PLoS One 2016; 11:e0146607. [PMID: 26752292 PMCID: PMC4709240 DOI: 10.1371/journal.pone.0146607] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/18/2015] [Indexed: 11/19/2022] Open
Abstract
Metabolomics technology has enabled an important method for the identification and quality control of Traditional Chinese Medical materials. In this study, we isolated metabolites from cultivated Dendrobium officinale and Dendrobium huoshanense stems of different growth years in the methanol/water phase and identified them using gas chromatography coupled with mass spectrometry (GC-MS). First, a metabolomics technology platform for Dendrobium was constructed. The metabolites in the Dendrobium methanol/water phase were mainly sugars and glycosides, amino acids, organic acids, alcohols. D. officinale and D. huoshanense and their growth years were distinguished by cluster analysis in combination with multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Eleven metabolites that contributed significantly to this differentiation were subjected to t-tests (P<0.05) to identify biomarkers that discriminate between D. officinale and D. huoshanense, including sucrose, glucose, galactose, succinate, fructose, hexadecanoate, oleanitrile, myo-inositol, and glycerol. Metabolic profiling of the chemical compositions of Dendrobium species revealed that the polysaccharide content of D. huoshanense was higher than that of D. officinale, indicating that the D. huoshanense was of higher quality. Based on the accumulation of Dendrobium metabolites, the optimal harvest time for Dendrobium was in the third year. This initial metabolic profiling platform for Dendrobium provides an important foundation for the further study of secondary metabolites (pharmaceutical active ingredients) and metabolic pathways.
Collapse
|
13
|
Tuttolomondo T, Martinelli F, Mariotti L, Leto C, Maggio A, La Bella S. Agronomic, metabolomic and lipidomic characterisation of Sicilian Origanum vulgare (L.) ecotypes. Nat Prod Res 2015; 30:1103-7. [PMID: 26540480 DOI: 10.1080/14786419.2015.1104672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although Origanum vulgare (L.) has been deeply analysed at phytochemical level, poor knowledge is available regarding non-volatile compounds such as lipids. The aim of this work was to characterise five wild Sicilian Origanum ecotypes from an agronomic, metabolomic and lipidomic perspective. Serradifalco presented higher dry weight and inflorescences/plant than the others while Favara had a significantly higher number of branches per plant and more extensive flowered stratum. Metabolomic analysis, performed with LC-MS-TOF, allowed a preliminary characterisation of the non-volatile metabolome of the five oregano ecotypes Origanum vulgare ssp. hirtum. Twenty-five metabolites were identified belonging to organic acids, amino acids, lysophosphatidylcholines, carnithines, nucleic bases and lysophosphatidylethanolamines. Lipidomic analysis identified 115 polar plant membrane glycerolipid species. Thirteen of them were differentially present in the two chosen ecotypes. The role of these metabolites in plant physiology from a qualitative and pharmacological point of view was discussed.
Collapse
Affiliation(s)
- Teresa Tuttolomondo
- a Dipartimento di Scienze Agrarie e Forestali , Università degli Studi di Palermo, viale delle scienze Ed. 4 , Palermo , Italy
| | - Federico Martinelli
- a Dipartimento di Scienze Agrarie e Forestali , Università degli Studi di Palermo, viale delle scienze Ed. 4 , Palermo , Italy.,b Department of Sustainable Agriculture, Biodiversity and Food Security , I.E.M.E.S.T. Istituto Euro Mediterraneo di Scienza e Tecnologia , Palermo , Italy
| | - Lorenzo Mariotti
- c Dipartimento di Biologia , Università degli Studi di Pisa , Pisa , Italy
| | - Claudio Leto
- a Dipartimento di Scienze Agrarie e Forestali , Università degli Studi di Palermo, viale delle scienze Ed. 4 , Palermo , Italy
| | - Antonella Maggio
- d Dipartimento STEBICEF , Università degli Studi di Palermo, viale delle scienze , Palermo , Italy
| | - Salvatore La Bella
- a Dipartimento di Scienze Agrarie e Forestali , Università degli Studi di Palermo, viale delle scienze Ed. 4 , Palermo , Italy
| |
Collapse
|
14
|
Noutsos C, Perera AM, Nikolau BJ, Seaver SMD, Ware DH. Correction: Metabolomic Profiling of the Nectars of Aquilegia pubescens and A. Canadensis. PLoS One 2015; 10:e0141384. [PMID: 26492042 PMCID: PMC4619629 DOI: 10.1371/journal.pone.0141384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|