1
|
Clo J, Abu Awad D, Bilde T, Bocedi G, Haag CR, Pannell J, Hartfield M. Perspectives on mating-system evolution: comparing concepts in plants and animals. J Evol Biol 2025:voaf009. [PMID: 40036782 DOI: 10.1093/jeb/voaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/28/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
The study of mating systems, defined as the distribution of who mates with whom and how often in a sexually reproducing population, forms a core pillar of evolution research due to their effects on many evolutionary phenomena. Historically, the "mating system" has either been used to refer to the rate of self-fertilization or to the formation of mating pairs between individuals of distinct sexes. Consequently, these two types of mating systems have tended to be studied separately rather than jointly. This separation often means that mating systems are not necessarily researched in a coherent manner that might apply to different types of organisms (e.g., plants versus animals, or hermaphrodites versus dioecious species), even if similar mechanisms may drive the evolution of self-fertilization and mating pair formation. Here, we review the evolution of both plant and animal mating systems, highlighting where similar concepts underlie both these fields and also where differing mechanisms are at play. We particularly focus on the effects of inbreeding, but also discuss the influence of spatial dynamics on mating-system evolution. We end with a synthesis of these different ideas and propose ideas for which concepts can be considered together to move towards a more cohesive approach to studying mating-system evolution.
Collapse
Affiliation(s)
- Josselin Clo
- Department of Botany, Faculty of Science, Charles University in Prague Benátská 2, Prague, Czech Republic
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Diala Abu Awad
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, France
| | - Trine Bilde
- Department of Biology, Aarhus University, Aarhus C, Denmark
- Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - John Pannell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Matthew Hartfield
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Leung K, Beukeboom LW, Zwaan BJ. Inbreeding and Outbreeding Depression in Wild and Captive Insect Populations. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:271-292. [PMID: 39874143 DOI: 10.1146/annurev-ento-022924-020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Major changes in genetic variation are generally considered deleterious to populations. The massive biodiversity of insects distinguishes them from other animal groups. Insect deviant effective population sizes, alternative modes of reproduction, advantageous inbreeding, endosymbionts, and other factors translate to highly specific inbreeding and outbreeding outcomes. We review the evidence for inbreeding and outbreeding depression and consequences across wild and captive insect populations, highlighting conservation, invasion, and commercial production entomology. We not only discern patterns but also explain why they are often inconsistent or absent. We discuss how insect inbreeding and outbreeding depression operates in complex, sometimes contradictory directions, such as inbreeding being detrimental to individuals but beneficial to populations. We conclude by giving recommendations to (a) more comprehensively account for important variables in insect inbreeding and outbreeding depression, (b) standardize the means of measuring genetic variation and phenotypic impacts for insect populations so as to more reliably predict when inbreeding or outbreeding depression applies, and (c) outline possible remediation options, both nongenetic and genetic, including revision of restrictive international trade laws.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands;
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands;
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Weakened inbreeding avoidance in a monogamous subterranean vole, Ellobius tancrei. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Denic S, Agarwal MM. Altruism as an Explanation for Human Consanguinity. Public Health Genomics 2021; 25:1-11. [PMID: 34569535 DOI: 10.1159/000518441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human inbreeding is a sociobiological puzzle. Despite widespread knowledge of its potential for genetic disorders, human consanguinity remains surprisingly common. The current reasons explaining its continued persistence in today's modern world have major shortcomings. SUMMARY We propose that the Neolithic Agrarian revolution modified the structure of populations. It increased competition for the limited resources in which a larger group had better chances of survival. As a result, small, drifting, socially open bands of hunter-gatherers were transformed into bigger, less mobile, and more powerful kinship groups (tribes). In this transformation, a central role was played by human trust - an aspect of human altruism which is a universal sociobiological principle of behavior. Altruism (and trust) is an essential premise of social contracts such as economic cooperation, marriage arrangement, and creation of alliances between people. In kinship groups, human trust is limited to kin, so tribes remain small, economically poor, and consanguineous due to lack of nonkin mates. The expanding of trust from kin to that of nonbiological relatives increases the size of human groups, fosters economic wealth, and decreases the rate of consanguinity. Key Messages: The lack of nonkin altruism leads to: (a) poverty (due to poor economic cooperation with nonkin), (b) maintaining small group size, and (c) inbreeding.
Collapse
Affiliation(s)
- Srdjan Denic
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mukesh M Agarwal
- California University of Science and Medicine, San Bernardino, California, USA
| |
Collapse
|
5
|
Meta-analytic evidence that animals rarely avoid inbreeding. Nat Ecol Evol 2021; 5:949-964. [PMID: 33941905 DOI: 10.1038/s41559-021-01453-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Animals are usually expected to avoid mating with relatives (kin avoidance) as incestuous mating can lead to the expression of inbreeding depression. Yet, theoretical models predict that unbiased mating with regards to kinship should be common, and that under some conditions, the inclusive fitness benefits associated with inbreeding can even lead to a preference for mating with kin. This mismatch between empirical and theoretical expectations generates uncertainty as to the prevalence of inbreeding avoidance in animals. Here, we synthesized 677 effect sizes from 139 experimental studies of mate choice for kin versus non-kin in diploid animals, representing 40 years of research, using a meta-analytical approach. Our meta-analysis revealed little support for the widely held view that animals avoid mating with kin, despite clear evidence of publication bias. Instead, unbiased mating with regards to kinship appears widespread across animals and experimental conditions. The significance of a variety of moderators was explored using meta-regressions, revealing that the degree of relatedness and prior experience with kin explained some variation in the effect sizes. Yet, we found no difference in kin avoidance between males and females, choice and no-choice experiments, mated and virgin animals or between humans and animals. Our findings highlight the need to rethink the widely held view that inbreeding avoidance is a given in experimental studies.
Collapse
|
6
|
Sinotte VM, Conlon BH, Seibel E, Schwitalla JW, de Beer ZW, Poulsen M, Bos N. Female-biased sex allocation and lack of inbreeding avoidance in Cubitermes termites. Ecol Evol 2021; 11:5598-5605. [PMID: 34026032 PMCID: PMC8131773 DOI: 10.1002/ece3.7462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
Sexually reproducing organisms face a strong selective pressure to find a mate and ensure reproduction. An important criterion during mate-selection is to avoid closely related individuals and subsequent potential fitness costs of resulting inbred offspring. Inbreeding avoidance can be active through kin recognition during mate choice, or passive through differential male and female-biased sex ratios, which effectively prevents sib-mating. In addition, sex allocation, or the resources allotted to male and female offspring, can impact mating and reproductive success. Here, we investigate mate choice, sex ratios, and sex allocation in dispersing reproductives (alates) from colonies of the termite Cubitermes tenuiceps. Termites have a short time to select a mate for life, which should intensify any fitness consequences of inbreeding. However, alates did not actively avoid inbreeding through mate choice via kin recognition based on genetic or environmental cues. Furthermore, the majority of colonies exhibited a female-biased sex ratio, and none exhibited a male-bias, indicating that differential bias does not reduce inbreeding. Sex allocation was generally female-biased, as females also were heavier, but the potential fitness effect of this costly strategy remains unclear. The bacterium Wolbachia, known in other insects to parasitically distort sex allocation toward females, was present within all alates. While Wolbachia is commonly associated with termites, parasitism has yet to be demonstrated, warranting further study of the nature of the symbiosis. Both the apparent lack of inbreeding avoidance and potential maladaptive sex allocation implies possible negative effects on mating and fitness.
Collapse
Affiliation(s)
- Veronica M. Sinotte
- Department of BiologySection for Ecology and EvolutionUniversity of CopenhagenCopenhagen EastDenmark
| | - Benjamin H. Conlon
- Department of BiologySection for Ecology and EvolutionUniversity of CopenhagenCopenhagen EastDenmark
| | - Elena Seibel
- Leibniz Institute for Natural Product Research and Infection BiologyHans‐Knöll‐InstituteJenaGermany
| | - Jan W. Schwitalla
- Leibniz Institute for Natural Product Research and Infection BiologyHans‐Knöll‐InstituteJenaGermany
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant PathologyForestry and Agriculture Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Michael Poulsen
- Department of BiologySection for Ecology and EvolutionUniversity of CopenhagenCopenhagen EastDenmark
| | - Nick Bos
- Department of BiologySection for Ecology and EvolutionUniversity of CopenhagenCopenhagen EastDenmark
| |
Collapse
|
7
|
Gow EA, Arcese P, Dagenais D, Sardell RJ, Wilson S, Reid JM. Testing predictions of inclusive fitness theory in inbreeding relatives with biparental care. Proc Biol Sci 2019; 286:20191933. [PMID: 31795864 PMCID: PMC6939262 DOI: 10.1098/rspb.2019.1933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inclusive fitness theory predicts that parental care will vary with relatedness between potentially caring parents and offspring, potentially shaping mating system evolution. Systems with extra-pair paternity (EPP), and hence variable parent–brood relatedness, provide valuable opportunities to test this prediction. However, existing theoretical and empirical studies assume that a focal male is either an offspring's father with no inbreeding, or is completely unrelated. We highlight that this simple dichotomy does not hold given reproductive interactions among relatives, complicating the effect of EPP on parent–brood relatedness yet providing new opportunities to test inclusive fitness theory. Accordingly, we tested hierarchical hypotheses relating parental feeding rate to parent–brood relatedness, parent kinship and inbreeding, using song sparrows (Melospiza melodia) experiencing natural variation in relatedness. As predicted, male and female feeding rates increased with relatedness to a dependent brood, even controlling for brood size. Male feeding rate tended to decrease as paternity loss increased, and increased with increasing kinship and hence inbreeding between socially paired mates. We thereby demonstrate that variation in a key component of parental care concurs with subtle predictions from inclusive fitness theory. We additionally highlight that such effects can depend on the underlying social mating system, potentially generating status-specific costs of extra-pair reproduction.
Collapse
Affiliation(s)
- Elizabeth A Gow
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle Dagenais
- Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Rebecca J Sardell
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Scott Wilson
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Jane M Reid
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland.,Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Burgess SC, Sander L, Bueno M. How relatedness between mates influences reproductive success: An experimental analysis of self-fertilization and biparental inbreeding in a marine bryozoan. Ecol Evol 2019; 9:11353-11366. [PMID: 31641478 PMCID: PMC6802076 DOI: 10.1002/ece3.5636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
Kin associations increase the potential for inbreeding. The potential for inbreeding does not, however, make inbreeding inevitable. Numerous factors influence whether inbreeding preference, avoidance, or tolerance evolves, and, in hermaphrodites where both self-fertilization and biparental inbreeding are possible, it remains particularly difficult to predict how selection acts on the overall inbreeding strategy, and to distinguish the type of inbreeding when making inferences from genetic markers. Therefore, we undertook an empirical analysis on an understudied type of mating system (spermcast mating in the marine bryozoan, Bugula neritina) that provides numerous opportunities for inbreeding preference, avoidance, and tolerance. We created experimental crosses, containing three generations from two populations to estimate how parental reproductive success varies across parental relatedness, ranging from self, siblings, and nonsiblings from within the same population. We found that the production of viable selfed offspring was extremely rare (only one colony produced three selfed offspring) and biparental inbreeding more common. Paternity analysis using 16 microsatellite markers confirmed outcrossing. The production of juveniles was lower for sib mating compared with nonsib mating. We found little evidence for consistent inbreeding, in terms of nonrandom mating, in adult samples collected from three populations, using multiple population genetic inferences. Our results suggest several testable hypotheses that potentially explain the overall mating and dispersal strategy in this species, including early inbreeding depression, inbreeding avoidance through cryptic mate choice, and differential dispersal distances of sperm and larvae.
Collapse
Affiliation(s)
- Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Lisa Sander
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Marília Bueno
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
- Present address:
Departamento de Biologia AnimalInstituto de BiologiaUniversidade Estadual de Campinas – UNICAMPCampinasBrazil
| |
Collapse
|
9
|
Hajduk GK, Cockburn A, Margraf N, Osmond HL, Walling CA, Kruuk LEB. Inbreeding, inbreeding depression, and infidelity in a cooperatively breeding bird. Evolution 2018; 72:1500-1514. [PMID: 29761484 PMCID: PMC6099473 DOI: 10.1111/evo.13496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 01/17/2023]
Abstract
Inbreeding depression plays a major role in shaping mating systems: in particular, inbreeding avoidance is often proposed as a mechanism explaining extra-pair reproduction in socially monogamous species. This suggestion relies on assumptions that are rarely comprehensively tested: that inbreeding depression is present, that higher kinship between social partners increases infidelity, and that infidelity reduces the frequency of inbreeding. Here, we test these assumptions using 26 years of data for a cooperatively breeding, socially monogamous bird with high female infidelity, the superb fairy-wren (Malurus cyaneus). Although inbred individuals were rare (∼6% of offspring), we found evidence of inbreeding depression in nestling mass (but not in fledgling survival). Mother-son social pairings resulted in 100% infidelity, but kinship between a social pair did not otherwise predict female infidelity. Nevertheless, extra-pair offspring were less likely to be inbred than within-pair offspring. Finally, the social environment (the number of helpers in a group) did not affect offspring inbreeding coefficients or inbreeding depression levels. In conclusion, despite some agreement with the assumptions that are necessary for inbreeding avoidance to drive infidelity, the apparent scarcity of inbreeding events and the observed levels of inbreeding depression seem insufficient to explain the ubiquitous infidelity in this system, beyond the mother-son mating avoidance.
Collapse
Affiliation(s)
- Gabriela K. Hajduk
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Andrew Cockburn
- Division of Evolution and Ecology, Research School of BiologyThe Australian National UniversityCanberraACTAustralia
| | - Nicolas Margraf
- Division of Evolution and Ecology, Research School of BiologyThe Australian National UniversityCanberraACTAustralia
- Current Address: Nicolas Margraf, Musée d'histoire naturelle de La Chaux‐de‐FondsAv. Léopold‐Robert 63CH‐2300La Chaux‐de‐FondsSwitzerland
| | - Helen L. Osmond
- Division of Evolution and Ecology, Research School of BiologyThe Australian National UniversityCanberraACTAustralia
| | - Craig A. Walling
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Loeske E. B. Kruuk
- Division of Evolution and Ecology, Research School of BiologyThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
10
|
Duthie AB, Bocedi G, Germain RR, Reid JM. Evolution of precopulatory and post-copulatory strategies of inbreeding avoidance and associated polyandry. J Evol Biol 2018; 31:31-45. [PMID: 28986951 PMCID: PMC5765502 DOI: 10.1111/jeb.13189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/16/2023]
Abstract
Inbreeding depression is widely hypothesized to drive adaptive evolution of precopulatory and post-copulatory mechanisms of inbreeding avoidance, which in turn are hypothesized to affect evolution of polyandry (i.e. female multiple mating). However, surprisingly little theory or modelling critically examines selection for precopulatory or post-copulatory inbreeding avoidance, or both strategies, given evolutionary constraints and direct costs, or examines how evolution of inbreeding avoidance strategies might feed back to affect evolution of polyandry. Selection for post-copulatory inbreeding avoidance, but not for precopulatory inbreeding avoidance, requires polyandry, whereas interactions between precopulatory and post-copulatory inbreeding avoidance might cause functional redundancy (i.e. 'degeneracy') potentially generating complex evolutionary dynamics among inbreeding strategies and polyandry. We used individual-based modelling to quantify evolution of interacting precopulatory and post-copulatory inbreeding avoidance and associated polyandry given strong inbreeding depression and different evolutionary constraints and direct costs. We found that evolution of post-copulatory inbreeding avoidance increased selection for initially rare polyandry and that evolution of a costly inbreeding avoidance strategy became negligible over time given a lower-cost alternative strategy. Further, fixed precopulatory inbreeding avoidance often completely precluded evolution of polyandry and hence post-copulatory inbreeding avoidance, but fixed post-copulatory inbreeding avoidance did not preclude evolution of precopulatory inbreeding avoidance. Evolution of inbreeding avoidance phenotypes and associated polyandry is therefore affected by evolutionary feedbacks and degeneracy. All else being equal, evolution of precopulatory inbreeding avoidance and resulting low polyandry is more likely when post-copulatory inbreeding avoidance is precluded or costly, and evolution of post-copulatory inbreeding avoidance greatly facilitates evolution of costly polyandry.
Collapse
Affiliation(s)
- A. B. Duthie
- Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | - G. Bocedi
- Institute of Biological and Environmental SciencesSchool of Biological SciencesUniversity of AberdeenAberdeenUK
| | - R. R. Germain
- Institute of Biological and Environmental SciencesSchool of Biological SciencesUniversity of AberdeenAberdeenUK
| | - J. M. Reid
- Institute of Biological and Environmental SciencesSchool of Biological SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
11
|
Duthie AB, Lee AM, Reid JM. Inbreeding parents should invest more resources in fewer offspring. Proc Biol Sci 2017; 283:rspb.2016.1845. [PMID: 27881747 PMCID: PMC5136589 DOI: 10.1098/rspb.2016.1845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/24/2016] [Indexed: 11/12/2022] Open
Abstract
Inbreeding increases parent-offspring relatedness and commonly reduces offspring viability, shaping selection on reproductive interactions involving relatives and associated parental investment (PI). Nevertheless, theories predicting selection for inbreeding versus inbreeding avoidance and selection for optimal PI have only been considered separately, precluding prediction of optimal PI and associated reproductive strategy given inbreeding. We unify inbreeding and PI theory, demonstrating that optimal PI increases when a female's inbreeding decreases the viability of her offspring. Inbreeding females should therefore produce fewer offspring due to the fundamental trade-off between offspring number and PI. Accordingly, selection for inbreeding versus inbreeding avoidance changes when females can adjust PI with the degree that they inbreed. By contrast, optimal PI does not depend on whether a focal female is herself inbred. However, inbreeding causes optimal PI to increase given strict monogamy and associated biparental investment compared with female-only investment. Our model implies that understanding evolutionary dynamics of inbreeding strategy, inbreeding depression, and PI requires joint consideration of the expression of each in relation to the other. Overall, we demonstrate that existing PI and inbreeding theories represent special cases of a more general theory, implying that intrinsic links between inbreeding and PI affect evolution of behaviour and intrafamilial conflict.
Collapse
Affiliation(s)
- A Bradley Duthie
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Aline M Lee
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Jane M Reid
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| |
Collapse
|
12
|
Duthie AB, Reid JM. Evolution of Inbreeding Avoidance and Inbreeding Preference through Mate Choice among Interacting Relatives. Am Nat 2016; 188:651-667. [DOI: 10.1086/688919] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Riehl C, Stern CA. How cooperatively breeding birds identify relatives and avoid incest: New insights into dispersal and kin recognition. Bioessays 2016; 37:1303-8. [PMID: 26577076 DOI: 10.1002/bies.201500120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cooperative breeding in birds typically occurs when offspring - usually males - delay dispersal from their natal group, remaining with the family to help rear younger kin. Sex-biased dispersal is thought to have evolved in order to reduce the risk of inbreeding, resulting in low relatedness between mates and the loss of indirect fitness benefits for the dispersing sex. In this review, we discuss several recent studies showing that dispersal patterns are more variable than previously thought, often leading to complex genetic structure within cooperative avian societies. These empirical findings accord with recent theoretical models suggesting that sex- biased dispersal is neither necessary, nor always sufficient, to prevent inbreeding. The ability to recognize relatives, primarily by learning individual or group-specific vocalizations, may play a more important role in incest avoidance than currently appreciated.
Collapse
Affiliation(s)
- Christina Riehl
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
14
|
|
15
|
Duthie AB, Bocedi G, Reid JM. When does female multiple mating evolve to adjust inbreeding? Effects of inbreeding depression, direct costs, mating constraints, and polyandry as a threshold trait. Evolution 2016; 70:1927-43. [PMID: 27464756 PMCID: PMC5053304 DOI: 10.1111/evo.13005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/06/2016] [Indexed: 12/18/2022]
Abstract
Polyandry is often hypothesized to evolve to allow females to adjust the degree to which they inbreed. Multiple factors might affect such evolution, including inbreeding depression, direct costs, constraints on male availability, and the nature of polyandry as a threshold trait. Complex models are required to evaluate when evolution of polyandry to adjust inbreeding is predicted to arise. We used a genetically explicit individual‐based model to track the joint evolution of inbreeding strategy and polyandry defined as a polygenic threshold trait. Evolution of polyandry to avoid inbreeding only occurred given strong inbreeding depression, low direct costs, and severe restrictions on initial versus additional male availability. Evolution of polyandry to prefer inbreeding only occurred given zero inbreeding depression and direct costs, and given similarly severe restrictions on male availability. However, due to its threshold nature, phenotypic polyandry was frequently expressed even when strongly selected against and hence maladaptive. Further, the degree to which females adjusted inbreeding through polyandry was typically very small, and often reflected constraints on male availability rather than adaptive reproductive strategy. Evolution of polyandry solely to adjust inbreeding might consequently be highly restricted in nature, and such evolution cannot necessarily be directly inferred from observed magnitudes of inbreeding adjustment.
Collapse
Affiliation(s)
- A Bradley Duthie
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, Tillydrone Avenue, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
| | - Greta Bocedi
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, Tillydrone Avenue, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Jane M Reid
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, Tillydrone Avenue, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| |
Collapse
|
16
|
Reid JM, Bocedi G, Nietlisbach P, Duthie AB, Wolak ME, Gow EA, Arcese P. Variation in parent-offspring kinship in socially monogamous systems with extra-pair reproduction and inbreeding. Evolution 2016; 70:1512-29. [PMID: 27174154 PMCID: PMC4949684 DOI: 10.1111/evo.12953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 01/18/2023]
Abstract
Female extra‐pair reproduction in socially monogamous systems is predicted to cause cuckolded socially‐paired males to conditionally reduce paternal care, causing selection against extra‐pair reproduction and underlying polyandry. However, existing models and empirical studies have not explicitly considered that cuckolded males might be related to their socially‐paired female and/or to her extra‐pair mate, and therefore be related to extra‐pair offspring that they did not sire but could rear. Selection against paternal care, and hence against extra‐pair reproduction, might then be weakened. We derive metrics that quantify allele‐sharing between within‐pair and extra‐pair offspring and their mother and her socially‐paired male in terms of coefficients of kinship and inbreeding. We use song sparrow (Melospiza melodia) paternity and pedigree data to quantify these metrics, and thereby quantify the joint effects of extra‐pair reproduction and inbreeding on a brood's total allelic value to its socially‐paired parents. Cuckolded male song sparrows were almost always detectably related to extra‐pair offspring they reared. Consequently, although brood allelic value decreased substantially following female extra‐pair reproduction, this decrease was reduced by within‐pair and extra‐pair reproduction among relatives. Such complex variation in kinship within nuclear families should be incorporated into models considering coevolutionary dynamics of extra‐pair reproduction, parental care, and inbreeding.
Collapse
Affiliation(s)
- Jane M Reid
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland.
| | - Greta Bocedi
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland
| | - Pirmin Nietlisbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - A Bradley Duthie
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland
| | - Matthew E Wolak
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland
| | - Elizabeth A Gow
- Department of Forest and Conservation Sciences, 2424 Main Mall, University of British Columbia, Vancouver BC, Canada, V6T 1Z4
| | - Peter Arcese
- Department of Forest and Conservation Sciences, 2424 Main Mall, University of British Columbia, Vancouver BC, Canada, V6T 1Z4
| |
Collapse
|
17
|
Wolak ME, Reid JM. Is Pairing with a Relative Heritable? Estimating Female and Male Genetic Contributions to the Degree of Biparental Inbreeding in Song Sparrows (Melospiza melodia). Am Nat 2016; 187:736-52. [DOI: 10.1086/686198] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Reid JM, Arcese P, Bocedi G, Duthie AB, Wolak ME, Keller LF. Resolving the conundrum of inbreeding depression but no inbreeding avoidance: Estimating sex-specific selection on inbreeding by song sparrows (Melospiza melodia). Evolution 2015; 69:2846-61. [PMID: 26420476 PMCID: PMC5057356 DOI: 10.1111/evo.12780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/04/2015] [Accepted: 09/16/2015] [Indexed: 11/29/2022]
Abstract
Inbreeding avoidance among interacting females and males is not always observed despite inbreeding depression in offspring fitness, creating an apparent "inbreeding paradox." This paradox could be resolved if selection against inbreeding was in fact weak, despite inbreeding depression. However, the net magnitude and direction of selection on the degree to which females and males inbreed by pairing with relatives has not been explicitly estimated. We used long-term pedigree data to estimate phenotypic selection gradients on the degree of inbreeding that female and male song sparrows (Melospiza melodia) expressed by forming socially persistent breeding pairs with relatives. Fitness was measured as the total numbers of offspring and grand offspring contributed to the population, and as corresponding expected numbers of identical-by-descent allele copies, thereby accounting for variation in offspring survival, reproduction, and relatedness associated with variation in parental inbreeding. Estimated selection gradients on the degree to which individuals paired with relatives were weakly positive in females, but negative in males that formed at least one socially persistent pairing. However, males that paired had higher mean fitness than males that remained socially unpaired. These analyses suggest that net selection against inbreeding may be weak in both sexes despite strong inbreeding depression, thereby resolving the "inbreeding paradox."
Collapse
Affiliation(s)
- Jane M Reid
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland.
| | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Greta Bocedi
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland
| | - A Bradley Duthie
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland
| | - Matthew E Wolak
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland
| | - Lukas F Keller
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|