1
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
2
|
Chen J, Zhang S. The Role of Inflammation in Cholestatic Liver Injury. J Inflamm Res 2023; 16:4527-4540. [PMID: 37854312 PMCID: PMC10581020 DOI: 10.2147/jir.s430730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Cholestasis is a common clinical event in which bile formation and excretion are blocked, leading to retention of bile acids or bile salts; whether it occurs intra- or extrahepatically, primary or secondary, its pathogenesis is still unclear and is influenced by a combination of factors. In a variety of inflammatory and immune cells such as neutrophils, macrophages (intrahepatic macrophages are also known as Kupffer cells), mast cells, NK cells, and even T cells in humoral immunity and B cells in cellular immunity, inflammation can be a "second strike" against cholestatic liver injury. These cells, stimulated by a variety of factors such as bile acids, inflammatory chemokines, and complement, can be activated and accumulate in the cholestatic liver, and with the involvement of inflammatory mediators and modulation by cytokines, can lead to destruction of hepatocytes and bile duct epithelial cells and exacerbate (and occasionally retard) the progression of cholestatic liver disease. In this paper, we summarized the new research advances proposed so far regarding the relationship between inflammation and cholestasis, aiming to provide reference for researchers and clinicians in the field of cholestatic liver injury research.
Collapse
Affiliation(s)
- Jie Chen
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Nango H, Ohtani M. S-1-propenyl-L-cysteine suppresses lipopolysaccharide-induced expression of matrix metalloproteinase-1 through inhibition of tumor necrosis factor-α converting enzyme-epidermal growth factor receptor axis in human gingival fibroblasts. PLoS One 2023; 18:e0284713. [PMID: 37083725 PMCID: PMC10121056 DOI: 10.1371/journal.pone.0284713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Periodontal disease is the most common dental health problem characterized by the destruction of connective tissue and the resorption of alveolar bone resulting from a chronic infection associated with pathogenic bacteria in the gingiva. Aged garlic extract has been reported to improve gingival bleeding index and probing pocket depth score in patients with mild to moderate periodontitis. Although our previous study found that aged garlic extract and its constituents suppressed the tumor necrosis factor-α-induced inflammatory responses in a human gingival epithelial cell line, the mechanism underlying the effect of aged garlic extract on the destruction of the gingiva remains unclear. The present study investigated the effect of S-1-propenyl-L-cysteine, one of the major sulfur bioactive compounds in aged garlic extract, on the lipopolysaccharide-induced expression of matrix metalloproteinases in human gingival fibroblasts HGF-1 cells. Matrix metalloproteinases are well known to be closely related to the destruction of the gingiva. We found that S-1-propenyl-L-cysteine suppressed the lipopolysaccharide-induced expression and secretion of matrix metalloproteinase-1 in HGF-1 cells. In addition, S-1-propenyl-L-cysteine inhibited the lipopolysaccharide-induced phosphorylation of epidermal growth factor receptor and expression of the active form of tumor necrosis factor-α converting enzyme. Furthermore, the inhibitors of epidermal growth factor receptor tyrosine kinase and tumor necrosis factor-α converting enzyme, AG-1478 and TAPI-1, respectively, reduced the lipopolysaccharide-induced protein level of matrix metalloproteinase-1, as did S-1-propenyl-L-cysteine. Taken together, these results suggested that S-1-propenyl-L-cysteine suppresses the lipopolysaccharide-induced expression of matrix metalloproteinase-1 through the blockade of the tumor necrosis factor-α converting enzyme-epidermal growth factor receptor axis in gingival fibroblasts.
Collapse
Affiliation(s)
- Hiroshi Nango
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| | - Masahiro Ohtani
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| |
Collapse
|
4
|
Lazcanoiturburu N, García‐Sáez J, González‐Corralejo C, Roncero C, Sanz J, Martín‐Rodríguez C, Valdecantos MP, Martínez‐Palacián A, Almalé L, Bragado P, Calero‐Pérez S, Fernández A, García‐Bravo M, Guerra C, Montoliu L, Segovia JC, Valverde ÁM, Fabregat I, Herrera B, Sánchez A. Lack of
EGFR
catalytic activity in hepatocytes improves liver regeneration following
DDC
‐induced cholestatic injury by promoting a pro‐restorative inflammatory response. J Pathol 2022; 258:312-324. [DOI: 10.1002/path.6002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Nerea Lazcanoiturburu
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy Complutense University of Madrid (UCM) Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid Spain
| | - Juan García‐Sáez
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy Complutense University of Madrid (UCM) Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid Spain
| | - Carlos González‐Corralejo
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy Complutense University of Madrid (UCM) Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid Spain
| | - Cesáreo Roncero
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy Complutense University of Madrid (UCM) Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid Spain
| | - Julián Sanz
- Anatomical Pathology Service of the “Clínica Universidad de Navarra”, Madrid, Spain, and UCM Madrid Spain
| | - Carlos Martín‐Rodríguez
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy Complutense University of Madrid (UCM) Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid Spain
| | - M. Pilar Valdecantos
- “Alberto Sols” Biomedical Research Institute, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC‐UAM) Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders of the Carlos III Health Institute (CIBERDEM‐ISCIII) Madrid Spain
| | - Adoración Martínez‐Palacián
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy Complutense University of Madrid (UCM) Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid Spain
| | - Laura Almalé
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy Complutense University of Madrid (UCM) Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid Spain
| | - Paloma Bragado
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy Complutense University of Madrid (UCM) Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid Spain
| | - Silvia Calero‐Pérez
- “Alberto Sols” Biomedical Research Institute, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC‐UAM) Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders of the Carlos III Health Institute (CIBERDEM‐ISCIII) Madrid Spain
| | - Almudena Fernández
- National Center for Biotechnology (CNB‐CSIC), Biomedical Research Networking Center on Rare Diseases (CIBERER‐ISCIII) Madrid Spain
| | - María García‐Bravo
- Cell Technology Division, Research Center for Energy, Environment and Technology (CIEMAT); Biomedical Research Networking Center on Rare Diseases (CIBERER‐ISCIII); Advanced Therapies Mixed Unit, “Fundación Jiménez Díaz” University Hospital Health Research Institute (CIEMAT/IIS‐FJD) Madrid Spain
| | - Carmen Guerra
- Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid Spain
| | - Lluis Montoliu
- National Center for Biotechnology (CNB‐CSIC), Biomedical Research Networking Center on Rare Diseases (CIBERER‐ISCIII) Madrid Spain
| | - José Carlos Segovia
- Cell Technology Division, Research Center for Energy, Environment and Technology (CIEMAT); Biomedical Research Networking Center on Rare Diseases (CIBERER‐ISCIII); Advanced Therapies Mixed Unit, “Fundación Jiménez Díaz” University Hospital Health Research Institute (CIEMAT/IIS‐FJD) Madrid Spain
| | - Ángela M. Valverde
- “Alberto Sols” Biomedical Research Institute, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC‐UAM) Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders of the Carlos III Health Institute (CIBERDEM‐ISCIII) Madrid Spain
| | - Isabel Fabregat
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona, Spain; Oncology Program, Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD‐ISCIII), Madrid, Spain; Department of Physiological Sciences Faculty of Medicine and Health Sciences, University of Barcelona (UB) Barcelona Spain
| | - Blanca Herrera
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy Complutense University of Madrid (UCM) Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid Spain
| | - Aránzazu Sánchez
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy Complutense University of Madrid (UCM) Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid Spain
| |
Collapse
|
5
|
Tenascin-C in fibrosis in multiple organs: Translational implications. Semin Cell Dev Biol 2022; 128:130-136. [PMID: 35400564 PMCID: PMC10119770 DOI: 10.1016/j.semcdb.2022.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex disease with a pathogenic triad of autoimmunity, vasculopathy, and fibrosis involving the skin and multiple internal organs [1]. Because fibrosis accounts for as much as 45% of all deaths worldwide and appears to be increasing in prevalence [2], understanding its pathogenesis and progression is an urgent scientific challenge. Fibroblasts and myofibroblasts are the key effector cells executing physiologic tissue repair on one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify innate immune signaling via toll-like receptors (TLRs) as a key driver of persistent fibrotic response in SSc. Repeated injury triggers the in-situ generation of "damage-associated molecular patterns" (DAMPs) or danger signals. Sensing of these danger signals by TLR4 on resident cells elicits potent stimulatory effects on fibrotic gene expression and myofibroblast differentiation triggering the self-limited tissue repair response to self-sustained pathological fibrosis characteristic of SSc. Our unbiased survey for DAMPs associated with SSc identified extracellular matrix glycoprotein tenascin-C as one of the most highly up-regulated ECM proteins in SSc skin and lung biopsies [3,4]. Furthermore, tenascin C is responsible for driving sustained fibroblasts activation, thereby progression of fibrosis [3]. This review summarizes recent studies examining the regulation and complex functional role of tenascin C, presenting tenascin-TLR4 axis in pathological fibrosis, and novel anti-fibrotic approaches targeting their signaling.
Collapse
|
6
|
Singh SS, Chauhan SB, Ng SSS, Corvino D, de Labastida Rivera F, Engel JA, Waddell N, Mukhopadhay P, Johnston RL, Koufariotis LT, Nylen S, Prakash Singh O, Engwerda CR, Kumar R, Sundar S. Increased amphiregulin expression by CD4 + T cells from individuals with asymptomatic Leishmania donovani infection. Clin Transl Immunology 2022; 11:e1396. [PMID: 35663920 PMCID: PMC9136704 DOI: 10.1002/cti2.1396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/08/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives There is an urgent need to be able to identify individuals with asymptomatic Leishmania donovani infection, so their risk of progressing to VL and transmitting parasites can be managed. This study examined transcriptional markers expressed by CD4+ T cells that could distinguish asymptomatic individuals from endemic controls and visceral leishmaniasis (VL) patients. Methods CD4+ T cells were isolated from individuals with asymptomatic L. donovani infection, endemic controls and VL patients. RNA was extracted and RNAseq employed to identify differentially expressed genes. The expression of one gene and its protein product during asymptomatic infection were evaluated. Results Amphiregulin (AREG) was identified as a distinguishing gene product in CD4+ T cells from individuals with asymptomatic L. donovani infection, compared to VL patients and healthy endemic control individuals. AREG levels in plasma and antigen-stimulated whole-blood assay cell culture supernatants were significantly elevated in asymptomatic individuals, compared to endemic controls and VL patients. Regulatory T (Treg) cells were identified as an important source of AREG amongst CD4+ T-cell subsets in asymptomatic individuals. Conclusion Increased Treg cell AREG expression was identified in individuals with asymptomatic L. donovani infection, suggesting the presence of an ongoing inflammatory response in these individuals required for controlling infection and that AREG may play an important role in preventing inflammation-induced tissue damage and subsequent disease in asymptomatic individuals.
Collapse
Affiliation(s)
- Siddharth Sankar Singh
- Department of Medicine, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Susanna SS Ng
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Institute for Experimental OncologyUniversity of BonnBonnGermany
| | - Dillon Corvino
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Institute for Experimental OncologyUniversity of BonnBonnGermany
| | | | | | - Nic Waddell
- Department of Medicine, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Pamela Mukhopadhay
- Department of Medicine, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Rebecca L Johnston
- Department of Medicine, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Lambros T Koufariotis
- Department of Medicine, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Susanne Nylen
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstituteStockholmSweden
| | | | | | - Rajiv Kumar
- Centre of Experimental Medicine and SurgeryInstitute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| |
Collapse
|
7
|
Afroz R, Kumarapperuma H, Nguyen QVN, Mohamed R, Little PJ, Kamato D. Lipopolysaccharide acting via toll-like receptor 4 transactivates the TGF-β receptor in vascular smooth muscle cells. Cell Mol Life Sci 2022; 79:121. [PMID: 35122536 PMCID: PMC8817999 DOI: 10.1007/s00018-022-04159-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) recognise pathogen‑associated molecular patterns, which allow the detection of microbial infection by host cells. Bacterial-derived toxin lipopolysaccharide activates TLR4 and leads to the activation of the Smad2 transcription factor. The phosphorylation of the Smad2 transcription factor is the result of the activation of the transforming growth factor-β receptor 1 (TGFBR1). Therefore, we sought to investigate LPS via TLR4-mediated Smad2 carboxy terminal phosphorylation dependent on the transactivation of the TGFBR1. The in vitro model used human aortic vascular smooth muscle cells to assess the implications of TLR4 transactivation of the TGFBR1 in vascular pathophysiology. We show that LPS-mediated Smad2 carboxy terminal phosphorylation is inhibited in the presence of TGFBR1 inhibitor, SB431542. Treatment with MyD88 and TRIF pathway antagonists does not affect LPS-mediated phosphorylation of Smad2 carboxy terminal; however, LPS-mediated Smad2 phosphorylation was inhibited in the presence of MMP inhibitor, GM6001, and unaffected in the presence of ROCK inhibitor Y27632 or ROS/NOX inhibitor DPI. LPS via transactivation of the TGFBR1 stimulates PAI-1 mRNA expression. TLRs are first in line to respond to exogenous invading substances and endogenous molecules; our findings characterise a novel signalling pathway in the context of cell biology. Identifying TLR transactivation of the TGFBR1 may provide future insight into the detrimental implications of pathogens in pathophysiology.
Collapse
Affiliation(s)
- Rizwana Afroz
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD, 4111, Australia
| | - Hirushi Kumarapperuma
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Quang V N Nguyen
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Raafat Mohamed
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Peter J Little
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou, 510520, China.,Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Danielle Kamato
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
8
|
Roy S, Kumaravel S, Banerjee P, White TK, O’Brien A, Seelig C, Chauhan R, Ekser B, Bayless KJ, Alpini G, Glaser SS, Chakraborty S. Tumor Lymphatic Interactions Induce CXCR2-CXCL5 Axis and Alter Cellular Metabolism and Lymphangiogenic Pathways to Promote Cholangiocarcinoma. Cells 2021; 10:3093. [PMID: 34831316 PMCID: PMC8623887 DOI: 10.3390/cells10113093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cholangiocarcinoma (CCA), or cancer of bile duct epithelial cells, is a very aggressive malignancy characterized by early lymphangiogenesis in the tumor microenvironment (TME) and lymph node (LN) metastasis which correlate with adverse patient outcome. However, the specific roles of lymphatic endothelial cells (LECs) that promote LN metastasis remains unexplored. Here we aimed to identify the dynamic molecular crosstalk between LECs and CCA cells that activate tumor-promoting pathways and enhances lymphangiogenic mechanisms. Our studies show that inflamed LECs produced high levels of chemokine CXCL5 that signals through its receptor CXCR2 on CCA cells. The CXCR2-CXCL5 signaling axis in turn activates EMT (epithelial-mesenchymal transition) inducing MMP (matrix metalloproteinase) genes such as GLI, PTCHD, and MMP2 in CCA cells that promote CCA migration and invasion. Further, rate of mitochondrial respiration and glycolysis of CCA cells was significantly upregulated by inflamed LECs and CXCL5 activation, indicating metabolic reprogramming. CXCL5 also induced lactate production, glucose uptake, and mitoROS. CXCL5 also induced LEC tube formation and increased metabolic gene expression in LECs. In vivo studies using CCA orthotopic models confirmed several of these mechanisms. Our data points to a key finding that LECs upregulate critical tumor-promoting pathways in CCA via CXCR2-CXCL5 axis, which further augments CCA metastasis.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Subhashree Kumaravel
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Priyanka Banerjee
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Tori K. White
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - April O’Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Catherine Seelig
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Rahul Chauhan
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Burcin Ekser
- Department of Surgery, Division of Transplant Surgery, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA;
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - Gianfranco Alpini
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, IN 46202-3082, USA;
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202-3082, USA
| | - Shannon S. Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| |
Collapse
|
9
|
Singh SS, Chauhan SB, Kumar A, Kumar S, Engwerda CR, Sundar S, Kumar R. Amphiregulin in cellular physiology, health, and disease: Potential use as a biomarker and therapeutic target. J Cell Physiol 2021; 237:1143-1156. [PMID: 34698381 DOI: 10.1002/jcp.30615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Amphiregulin (AREG), which acts as one of the ligands for epidermal receptor growth factor receptor (EGFR), plays a crucial role in tissue repair, inflammation, and immunity. AREG is synthesized as membrane-anchored pre-protein, and is excreted after proteolytic cleavage, and serves as an autocrine or paracrine factor. After engagement with the EGFR, AREG triggers a cascade of signaling events required for many cellular physiological processes including metabolism, cell cycle, and proliferation. Under different inflammatory and pathogenic conditions, AREG is expressed by various activated immune cells that orchestrate both tolerance and host resistance mechanisms. Several factors including xenobiotics, cytokines, and inflammatory lipids have been shown to trigger AREG gene expression and release. In this review, we discuss the structure, function, and regulation of AREG, its role in tissue repair, inflammation, and homeostasis as well as the potential of AREG as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Siddharth S Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi B Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Christian R Engwerda
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Kuznietsova H, Byelinska I, Dziubenko N, Lynchak O, Milokhov D, Khilya O, Finiuk N, Klyuchivska O, Stoika R, Rybalchenko V. Suppression of systemic inflammation and signs of acute and chronic cholangitis by multi-kinase inhibitor 1-(4-Cl-benzyl)-3-chloro-4-(CF3-phenylamino)-1H-pyrrole-2,5-dione. Mol Cell Biochem 2021; 476:3021-3035. [PMID: 33792809 DOI: 10.1007/s11010-021-04144-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
An aberrant activity of growth factor receptors followed by excessive cell proliferation plays a significant role in pathogenesis of cholangitis. Therefore, inhibition of these processes could be a fruitful therapeutic strategy. The effects of multi-kinase inhibitor 1-(4-Cl-benzyl)-3-chloro-4-(CF3-phenylamino)-1H-pyrrole-2,5-dione (MI-1) on the hepatic and systemic manifestations of acute and chronic cholangitis in rats were addressed. MI-1 (2.7 mg/kg per day) was applied to male rats that experienced α-naphthylisothiocyanate-induced acute (3 days) or chronic (28 days) cholangitis. Liver autopsy samples, blood serum markers, and leukograms were studied. MI-1 localization in liver cells and its impact on viability of HepG2 (human hepatoma), HL60 (human leukemia), and NIH3T3 (normal murine fibroblasts) cell lines and lymphocytes of human peripheral blood (MTT, DNA fragmentation, DNA comet assays, Propidium Iodide staining) were assessed. Under both acute and chronic cholangitis, MI-1 substantially reduced liver injury, fibrosis, and inflammatory scores (by 46-86%) and normalized blood serum markers and leukograms. Moreover, these effects were preserved after a 28-day recovery period (without any treatment). MI-1 inhibited the HL60, HepG2 cells, and human lymphocytes viability (IC50 0.6, 9.5 and 8.3 µg/ml, respectively), while NIH3T3 cells were resistant to that. Additionally, HepG2 cells and lymphocytes being incubated with MI-1 demonstrated insignificant pro-apoptotic and pro-necrotic changes and DNA single-strand breaks, suggesting that MI-1 effects in liver might be partly caused by its cytotoxic action towards liver cells and lymphocytes. In conclusion, MI-1 attenuated the systemic inflammation and signs of acute and chronic cholangitis partly through cytotoxicity towards cells of hepatic and leukocytic origin.
Collapse
Affiliation(s)
- Halyna Kuznietsova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
| | - Iryna Byelinska
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Natalia Dziubenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Oksana Lynchak
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Demyd Milokhov
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olga Khilya
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Nataliya Finiuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
- Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Olga Klyuchivska
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Rostyslav Stoika
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
- Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Volodymyr Rybalchenko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
11
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Al Suraih MS, Trussoni CE, Splinter PL, LaRusso NF, O’Hara SP. Senescent cholangiocytes release extracellular vesicles that alter target cell phenotype via the epidermal growth factor receptor. Liver Int 2020; 40:2455-2468. [PMID: 32558183 PMCID: PMC7669612 DOI: 10.1111/liv.14569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by peribiliary inflammation and fibrosis. Cholangiocyte senescence is a prominent feature of PSC. Here, we hypothesize that extracellular vesicles (EVs) from senescent cholangiocytes influence the phenotype of target cells. METHODS EVs were isolated from normal human cholangiocytes (NHCs), cholangiocytes from PSC patients and NHCs experimentally induced to senescence. NHCs, malignant human cholangiocytes (MHCs) and monocytes were exposed to 108 EVs from each donor cell population and assessed for proliferation, MAPK activation and migration. Additionally, we isolated EVs from plasma of wild-type and Mdr2-/- mice (a murine model of PSC), and assessed mouse monocyte activation. RESULTS EVs exhibited the size and protein markers of exosomes. The number of EVs released from senescent human cholangiocytes was increased; similarly, the EVs in plasma from Mdr2-/- mice were increased. Additionally, EVs from senescent cholangiocytes were enriched in multiple growth factors, including EGF. NHCs exposed to EVs from senescent cholangiocytes showed increased NRAS and ERK1/2 activation. Moreover, EVs from senescent cholangiocytes promoted proliferation of NHCs and MHCs, findings that were blocked by erlotinib, an EGF receptor inhibitor. Furthermore, EVs from senescent cholangiocytes induced EGF-dependent Interleukin 1-beta and Tumour necrosis factor expression and migration of human monocytes; similarly, Mdr2-/- mouse plasma EVs induced activation of mouse monocytes. CONCLUSIONS The data continue to support the importance of cholangiocyte senescence in PSC pathogenesis, directly implicate EVs in cholangiocyte proliferation, malignant progression and immune cell activation and migration, and identify novel therapeutic approaches for PSC.
Collapse
Affiliation(s)
- Mohammed S. Al Suraih
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota. 55905.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota. 55905
| | - Christy E. Trussoni
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| | - Patrick L. Splinter
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| |
Collapse
|
13
|
Fu HY, Bao WM, Yang CX, Lai WJ, Xu JM, Yu HY, Yang YN, Tan X, Gupta AK, Tang YM. Kupffer Cells Regulate Natural Killer Cells Via the NK group 2, Member D (NKG2D)/Retinoic Acid Early Inducible-1 (RAE-1) Interaction and Cytokines in a Primary Biliary Cholangitis Mouse Model. Med Sci Monit 2020; 26:e923726. [PMID: 32599603 PMCID: PMC7346879 DOI: 10.12659/msm.923726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Kupffer cells and natural killer (NK) cells has been identified as contributing factors in the pathogenesis of hepatitis, but the detailed mechanism of these cell types in the pathogenesis of primary biliary cholangitis (PBC) is poorly understood. Material/Methods In this study, polyinosinic: polycytidylic acid (poly I: C), 2-octynoic acid-bovine serum albumin (2OA-BSA) and Freund’s adjuvant (FA) were injected to establish a murine PBC model, from which NK cells and Kupffer cells were extracted and isolated. The cells were then co-cultivated in a designed culture system, and then NK group 2, member D (NKG2D), retinoic acid early inducible-1 (RAE-1), F4/80, and cytokine expression levels were detected. Results The results showed close crosstalk between Kupffer cells and NK cells. PBC mice showed increased surface RAE-1 protein expression and Kupffer cell cytokine secretion, which subsequently activated NK cell-mediated target cell killing via NKG2D/RAE-1 recognition, and increased inflammation. NK cell-derived interferon-γ (IFN-γ) and Kupffer cell-derived tumor necrosis factor α (TNF-α) were found to synergistically regulate inflammation. Moreover, interleukin (IL)-12 and IL-10 improved the crosstalk between NK cells and Kupffer cells. Conclusions Our findings in mice are the first to suggest the involvement of the NKG2D/RAE-1 interaction and cytokines in the synergistic effects of NK and Kupffer cells in PBC.
Collapse
Affiliation(s)
- Hai-Yan Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Wei-Min Bao
- Department of Hepatobiliary Surgery, First People's Hospital of Yunnan, Kunming, Yunnan, China (mainland)
| | - Cai-Xia Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Wei-Ju Lai
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Jia-Min Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Hai-Yan Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yi-Na Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Xu Tan
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Ajay Kumar Gupta
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Ying-Mei Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| |
Collapse
|
14
|
Biliary antibiotics irrigation for E. coli-induced chronic proliferative cholangitis and hepatolithiasis: A pathophysiological study in rabbits. Clin Res Hepatol Gastroenterol 2020; 44:356-367. [PMID: 31420296 DOI: 10.1016/j.clinre.2019.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/25/2019] [Accepted: 07/08/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND The gram-negative bacteria secreted endotoxin, Lipopolysaccharide (LPS), plays important roles in the formation and recurrence of hepatolithiasis and chronic biliary inflammation in patients of Southeast Asia. We aimed to elucidate the anti-inflammatory effect and mechanism of local antibiotics irrigation on chronic proliferative cholangitis (CPC) and hepatolithiasis. METHODS Escherichia coli was injected into rabbit bile ducts to induce CPC. Rabbits were divided into sham operation (SO), povidone-iodine, Metronidazole plus chlorhexidine, ofloxacin, furacillin, Neosporin® G.U., and CPC groups. Local irrigation was performed for 28 days after CPC was established. Residual E. coli and LPS, and the expression of MCP-1, CD14, COX-2, VEGF, IL-6, NF-κB, TNF-α, Fas, TGF-β1, α-SMA, Collagen-I, β-glucuronidase, PKC, C-myc, and Mucin 5AC were assessed in bile duct tissues. RESULTS The residual E. coli and LPS, and expression of MCP-1, CD14, COX-2, IL-6, NF-κB, TNF-α, Fas, TGF-β1, α-SMA, β-glucuronidase, PKC, C-myc, and Mucin 5AC in the SO, povidone-iodine, Metronidazole plus chlorhexidine, ofloxacin, and Neosporin® G.U. groups were significantly lower than those in the furacillin and CPC groups (P<0.05). VEGF and Collagen-I levels in the SO, povidone-iodine, metronidazole plus chlorhexidine, and ofloxacin groups were significantly lower than those in the furacillin, Neosporin® G.U., and CPC groups (P<0.05). CONCLUSIONS LPS affects the pathophysiology of E. coli caused chronic proliferative cholangitis and hepatolithiasis recurrence. Local antibiotics irrigation could prevent chronic proliferative cholangitis and stones formation by decreasing LPS-induced proinflammatory and profibrotic cytokines release. Povidone iodine, metronidazole plus chlorhexidine, and ofloxacin were more effective than Neosporin® G.U. and furacillin.
Collapse
|
15
|
Isoprenylcysteine Carboxyl Methyltransferase and Its Substrate Ras Are Critical Players Regulating TLR-Mediated Inflammatory Responses. Cells 2020; 9:cells9051216. [PMID: 32422978 PMCID: PMC7291029 DOI: 10.3390/cells9051216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/03/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated the functional role of isoprenylcysteine carboxyl methyltransferase (ICMT) and its methylatable substrate Ras in Toll-like receptor (TLR)-activated macrophages and in mouse inflammatory disease conditions. ICMT and RAS expressions were strongly increased in macrophages under the activation conditions of TLRs by lipopolysaccharide (LPS, a TLR4 ligand), pam3CSK (TLR2), or poly(I:C) (TLR3) and in the colons, stomachs, and livers of mice with colitis, gastritis, and hepatitis. The inhibition and activation of ICMT and Ras through genetic and pharmacological approaches significantly affected the activation of interleukin-1 receptor-associated kinase (IRAK)s, tumor necrosis factor receptor associated factor 6 (TRAF6), transforming growth factor-β-activated kinase 1 (TAK1), mitogen-activated protein kinase (MAPK), and MAPK kinases (MAPKKs); translocation of the AP-1 family; and the expressions of inflammation-related genes that depend on both MyD88 and TRIF. Interestingly, the Ras/ICMT-mediated inflammatory reaction critically depends on the TIR domains of myeloid differentiation primary response 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF). Taken together, these results suggest that ICMT and its methylated Ras play important roles in the regulation of inflammatory responses through cooperation with the TIR domain of adaptor molecules.
Collapse
|
16
|
Erlotinib Protects LPS-Induced Acute Lung Injury in Mice by Inhibiting EGFR/TLR4 Signaling Pathway. Shock 2020; 51:131-138. [PMID: 29438224 DOI: 10.1097/shk.0000000000001124] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epidermal growth factor receptor (EGFR) has been reported to initiate the inflammatory response, but its activation in lipopolysaccharide (LPS)-induced murine model of acute lung injury (ALI) remains unclear. In this study, we investigated the role of EGFR in the LPS-induced murine model of ALI and explored whether its inhibitor erlotinib could affect the progression of lung injury. We first detected the phosphorylated EGFR (p-EGFR)/EGFR ratio at different time points after LPS stimulation, and then different concentrations of erlotinib were used to treat mice at 1 h before LPS stimulation and collected samples at the time point of the highest p-EGFR/EGFR ratio. Lung injury indicators were detected and compared among groups. EGFR and toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signal transduction factors, including p-EGFR, p-AKT, p-ERK1/2, p-p65, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), were measured with western blot. We found that the mice challenged with LPS suffered from the most serious lung injury at 24 h after LPS stimulation when the p-EGFR/EGFR ratio was relatively the highest. Erlotinib significantly diminished LPS-induced exudation of total cells, neutrophils, and proteins in BALF. Both the ELISA and western blot results showed that erlotinib attenuated the expression of TNF-α and IL-1β in LPS-induced ALI in mice. Inhibition of EGFR by erlotinib downregulated the expression of p-p65 protein level as well as blocked the activation of AKT and ERK1/2 signaling pathway. Taken together, erlotinib alleviated the LPS-induced ALI in a dose-dependent manner by suppressing EGFR activation and downregulating the NF-κB-mediated secretion of proinflammatory cytokines.
Collapse
|
17
|
Elbadawy M, Yamanaka M, Goto Y, Hayashi K, Tsunedomi R, Hazama S, Nagano H, Yoshida T, Shibutani M, Ichikawa R, Nakahara J, Omatsu T, Mizutani T, Katayama Y, Shinohara Y, Abugomaa A, Kaneda M, Yamawaki H, Usui T, Sasaki K. Efficacy of primary liver organoid culture from different stages of non-alcoholic steatohepatitis (NASH) mouse model. Biomaterials 2020; 237:119823. [PMID: 32044522 DOI: 10.1016/j.biomaterials.2020.119823] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with liver fibrosis and cirrhosis, which eventually leads to hepatocellular carcinoma. Although several animal models were developed to understand the mechanisms of NASH pathogenesis and progression, it remains obscure. A 3D organoid culture system can recapitulate organ structures and maintain gene expression profiles of original tissues. We therefore tried to generate liver organoids from different degrees [defined as mild (NASH A), moderate (NASH B) and severe (NASH C)] of methionine- and choline-deficient diet-induced NASH model mice and analyzed the difference of their architecture, cell components, organoid-forming efficacy, and gene expression profiles. Organoids from each stage of NASH model mice were successfully generated. Interestingly, epithelial-mesenchymal transition was observed in NASH C organoids. Expression of Collagen I and an activated hepatic stellite cell marker, α-sma was upregulated in the liver organoids from NASH B and C mice. The analysis of RNA sequencing revealed that several novel genes were upregulated in all NASH liver organoids. These results suggest that our generated liver organoids from different stages of NASH diseased mice might become a useful tool for in vitro studies of the molecular mechanism of NASH development and also for identifying novel biomarkers for early diagnosis of NASH disease.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Elqaliobiya, Egypt
| | - Megumi Yamanaka
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yuta Goto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kimika Hayashi
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan; Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Ryo Ichikawa
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Junta Nakahara
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yuta Shinohara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan; Pet Health & Food Division, Iskara Industry CO., LTD, 1-14-2, Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 Ban-cho, Towada, Aomori, 034-8628, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
18
|
O'Hara SP, Splinter PL, Trussoni CE, Guicciardi ME, Splinter NP, Al Suraih MS, Nasser-Ghodsi N, Stollenwerk D, Gores GJ, LaRusso NF. The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. J Biol Chem 2019; 294:18698-18713. [PMID: 31659122 PMCID: PMC6901313 DOI: 10.1074/jbc.ra119.010176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is an idiopathic, progressive cholangiopathy. Cholangiocyte senescence is important in PSC pathogenesis, and we have previously reported that senescence is regulated by the transcription factor ETS proto-oncogene 1 (ETS1) and associated with overexpression of BCL2 like 1 (BCL2L1 or BCL-xL), an anti-apoptotic BCL2-family member. Here, we further explored the mechanisms regulating BCL-xL-mediated, apoptosis resistance in senescent cholangiocytes and uncovered that ETS1 and the histone acetyltransferase E1A-binding protein P300 (EP300 or p300) both promote BCL-xL transcription. Using immunofluorescence, we found that BCL-xL protein expression is increased both in cholangiocytes of livers from individuals with PSC and a mouse model of PSC. Using an in vitro model of lipopolysaccharide-induced senescence in normal human cholangiocytes (NHCs), we found increased BCL-xL mRNA and protein levels, and ChIP-PCRs indicated increased occupancy of ETS1, p300, and histone 3 Lys-27 acetylation (H3K27Ac) at the BCL-xL promoter. Using co-immunoprecipitation and proximity ligation assays, we further demonstrate that ETS1 and p300 physically interact in senescent but not control NHCs. Additionally, mutagenesis of predicted ETS1-binding sites within the BCL-xL promoter blocked luciferase reporter activity, and CRISPR/Cas9-mediated genetic deletion of ETS1 reduced senescence-associated BCL-xL expression. In senescent NHCs, TRAIL-mediated apoptosis was reduced ∼70%, and ETS1 deletion or RNAi-mediated BCL-xL suppression increased apoptosis. Overall, our results suggest that ETS1 and p300 promote senescent cholangiocyte resistance to apoptosis by modifying chromatin and inducing BCL-xL expression. These findings reveal ETS1 as a central regulator of both cholangiocyte senescence and the associated apoptosis-resistant phenotype.
Collapse
Affiliation(s)
- Steven P O'Hara
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905.
| | - Patrick L Splinter
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Christy E Trussoni
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Noah P Splinter
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Mohammed S Al Suraih
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Navine Nasser-Ghodsi
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Deborah Stollenwerk
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
19
|
Wang Y, Xu X, Hu P, Jia N, Ji S, Yuan H. Effect of Toll-Like Receptor 4/Myeloid Differentiation Factor 88 Inhibition by Salvianolic Acid B on Neuropathic Pain After Spinal Cord Injury in Mice. World Neurosurg 2019; 132:e529-e534. [PMID: 31449993 DOI: 10.1016/j.wneu.2019.08.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Yufeng Wang
- Department of Radiology, Nantong Hospital of Traditional Chinese Medicine, Jiangsu, China
| | - Xiaoqing Xu
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Jiangsu, China
| | - Peipei Hu
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Jiangsu, China
| | - Ning Jia
- Department of Acupuncture, Qidong People's Hospital, Jiangsu, China
| | - Shiliang Ji
- Department of Pharmacy, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Hongjie Yuan
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Jiangsu, China.
| |
Collapse
|
20
|
Suri J, Patwardhan V, Bonder A. Pharmacologic management of primary sclerosing cholangitis: what's in the pipeline? Expert Rev Gastroenterol Hepatol 2019; 13:723-729. [PMID: 31257956 DOI: 10.1080/17474124.2019.1636647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease characterized by biliary inflammation, fibrosis, and stricturing. Although considered progressive, its course is difficult to predict, and there is currently no definitive therapy shown to alter disease course and prevent death or the need for liver transplantation. Areas covered: There are multiple agents in the pipeline targeting various pathways hypothesized to lead to and drive this disease. Some are already used for other treatment indications, including antibiotics such as oral vancomycin, metronidazole, and minocycline. Other agents including obeticholic acid, nor-ursodeoxycholic acid, and monoclonal antibodies are also under investigation. This narrative review focuses on the most recent published clinical trials available for discussion. We attempt to summarize the data on current and future treatment options. Expert opinion: The rarity of this condition and poor understanding of its pathophysiology have created a void for safe and effective treatment options to alter mortality or transplant free survival. Nevertheless, some agents currently being tested have demonstrated therapeutic potential. We await validation and prospective data on these agents in hopes of modifying the disease course for patients in the future.
Collapse
Affiliation(s)
- Jaspreet Suri
- a Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Vilas Patwardhan
- a Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Alan Bonder
- a Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
21
|
Won J, Cho Y, Lee D, Jeon BY, Ju JW, Chung S, Pak JH. Clonorchis sinensis excretory-secretory products increase malignant characteristics of cholangiocarcinoma cells in three-dimensional co-culture with biliary ductal plates. PLoS Pathog 2019; 15:e1007818. [PMID: 31121000 PMCID: PMC6550432 DOI: 10.1371/journal.ppat.1007818] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/05/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Clonorchis sinensis is a carcinogenic human liver fluke, prolonged infection which provokes chronic inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma (CCA). These effects are driven by direct physical damage caused by the worms, as well as chemical irritation from their excretory-secretory products (ESPs) in the bile duct and surrounding liver tissues. We investigated the C. sinensis ESP-mediated malignant features of CCA cells (HuCCT1) in a three-dimensional microfluidic culture model that mimics an in vitro tumor microenvironment. This system consisted of a type I collagen extracellular matrix, applied ESPs, GFP-labeled HuCCT1 cells and quiescent biliary ductal plates formed by normal cholangiocytes (H69 cells). HuCCT1 cells were attracted by a gradient of ESPs in a concentration-dependent manner and migrated in the direction of the ESPs. Meanwhile, single cell invasion by HuCCT1 cells increased independently of the direction of the ESP gradient. ESP treatment resulted in elevated secretion of interleukin-6 (IL-6) and transforming growth factor-beta1 (TGF-β1) by H69 cells and a cadherin switch (decrease in E-cadherin/increase in N-cadherin expression) in HuCCT1 cells, indicating an increase in epithelial-mesenchymal transition-like changes by HuCCT1 cells. Our findings suggest that C. sinensis ESPs promote the progression of CCA in a tumor microenvironment via the interaction between normal cholangiocytes and CCA cells. These observations broaden our understanding of the progression of CCA caused by liver fluke infection and suggest a new approach for the development of chemotherapeutic for this infectious cancer. The oriental liver fluke, Clonorchis sinensis, is a biological carcinogen of humans and is the cause of death of infectious cancer patients in China and Korea. Its chronic infection promotes cholangiocarcinogenesis due to direct contact of host tissues with the worms and their excretory-secretory products (ESPs); however, the specific mechanisms underlying this pathology remain unclear. To assess its contribution to the progression of cholangiocarcinoma (CCA), we developed a 3-dimensional (3D) in vitro culture model that consists of CCA cells (HuCCT1) in direct contact with normal cholangiocytes (H69), which are subsequently exposed to C. sinensis ESPs; therefore, this model represents a C. sinensis-associated CCA microenvironment. Co-cultured HuCCT1 cells exhibited increased motility in response to C. sinensis ESPs, suggesting that this model may recapitulate some aspects of tumor microenvironment complexity. Proinflammatory cytokines such as IL-6 and TGF-β1 secreted by H69 cells exhibited a crosstalk effect regarding the epithelial-mesenchymal transition of HuCCT1 cells, thus, promoting an increase in the metastatic characteristics of CCA cells. Our findings enable an understanding of the mechanisms underlying the etiology of C. sinensis-associated CCA, and, therefore, this approach will contribute to the development of new strategies for the reduction of its high mortality rate.
Collapse
Affiliation(s)
- Jihee Won
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Youngkyu Cho
- Department of IT Convergence, Korea University, Seoul, Republic of Korea
| | - Dahyun Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Bo Young Jeon
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jung-Won Ju
- Division of Vectors & Parasitic Diseases, Korean Centers for Disease Control and Prevention, Osong, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- Department of IT Convergence, Korea University, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- * E-mail: (SC); (JHP)
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- * E-mail: (SC); (JHP)
| |
Collapse
|
22
|
Primary Sclerosing Cholangitis: A Concise Review of Diagnosis and Management. Dig Dis Sci 2019; 64:632-642. [PMID: 30725292 DOI: 10.1007/s10620-019-05484-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/19/2019] [Indexed: 02/08/2023]
Abstract
Primary sclerosing cholangitis is a rare, chronic cholestatic liver disease characterized by progressive idiopathic stricturing of the biliary system, typically leading to cirrhosis, end-stage liver disease, and colonic or hepatobiliary malignancy. Its presentation is often that of asymptomatic alkaline phosphatase elevation. When symptoms are present, they typically include fatigue, pruritus, or jaundice. The diagnosis can be confirmed via cholangiography, either magnetic resonance cholangiography (MRCP) or endoscopic retrograde cholangiography if the former is inconclusive. The clinical course is marked by progressive liver disease leading to cirrhosis with its attendant complications of portal hypertension, often including recurrent episodes of cholangitis. Greater elevation in alkaline phosphatase or liver stiffness is associated with worse clinical outcomes. Management includes endoscopic treatment of symptomatic biliary strictures and evaluation of dominant strictures as no adequate medical treatment is available. Multiple medical therapies are under evaluation. Ultimately, liver transplantation may be necessary for management of decompensated cirrhosis or disabling symptoms. There is also a markedly increased risk of cancer, notably including cholangiocarcinoma and gallbladder and colorectal cancers (particularly in patients with colitis). Cancer screening can be done with semi-annual liver imaging (MRCP or ultrasound) and colonoscopy every 1-2 years in those with colitis.
Collapse
|
23
|
Tang YM, Yu HY. Progress in research of mechanism of biliary epithelial cell injury in primary biliary cholangitis. Shijie Huaren Xiaohua Zazhi 2019; 27:36-42. [DOI: 10.11569/wcjd.v27.i1.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by chronic biliary cholestasis and progressive intrahepatic and small bile duct non- suppurative inflammation with early infiltration of inflammatory cells around biliary epithelial cells (BECs). BECs lining the bile duct express multiple receptors for pathogen-associated molecular patterns and can activate intracellular signaling pathways and participate in immune regulation. The etiology and pathogenesis of PBC are not fully understood yet, but the key step found in its pathogenesis is the targeted destruction of biliary cells. Since bile duct epithelial cells participate in a series of intrahepatic immune regulation processes, bile duct epithelial cell injury is an important mechanism involved in the development of intrahepatic inflammation in PBC. Therefore, understanding the mechanism of BEC injury can help us find some new targets for the treatment of PBC. This article briefly reviews the progress in the research of mechanism of biliary epithelial cell injury in PBC.
Collapse
Affiliation(s)
- Ying-Mei Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Hai-Yan Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| |
Collapse
|
24
|
Tietz-Bogert PS, Kim M, Cheung A, Tabibian JH, Heimbach JK, Rosen CB, Nandakumar M, Lazaridis KN, LaRusso NF, Sung J, O'Hara SP. Metabolomic Profiling of Portal Blood and Bile Reveals Metabolic Signatures of Primary Sclerosing Cholangitis. Int J Mol Sci 2018; 19:ijms19103188. [PMID: 30332763 PMCID: PMC6214107 DOI: 10.3390/ijms19103188] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 02/08/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a pathogenically complex, chronic, fibroinflammatory disorder of the bile ducts without known etiology or effective pharmacotherapy. Emerging in vitro and in vivo evidence support fundamental pathophysiologic mechanisms in PSC centered on enterohepatic circulation. To date, no studies have specifically interrogated the chemical footprint of enterohepatic circulation in PSC. Herein, we evaluated the metabolome and lipidome of portal venous blood and bile obtained at the time of liver transplantation in patients with PSC (n = 7) as compared to individuals with noncholestatic, end-stage liver disease (viral, metabolic, etc. (disease control, DC, n = 19)) and to nondisease controls (NC, living donors, n = 12). Global metabolomic and lipidomic profiling was performed on serum derived from portal venous blood (portal serum) and bile using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and differential mobility spectroscopy-mass spectroscopy (DMS-MS; complex lipid platform). The Mann–Whitney U test was used to identify metabolites that significantly differed between groups. Principal-component analysis (PCA) showed significant separation of both PSC and DC from NC for both portal serum and bile. Metabolite set enrichment analysis of portal serum and bile demonstrated that the liver-disease cohorts (PSC and DC) exhibited similar enrichment in several metabolite categories compared to NC. Interestingly, the bile in PSC was uniquely enriched for dipeptide and polyamine metabolites. Finally, analysis of patient-matched portal serum and biliary metabolome revealed that these biological fluids were more homogeneous in PSC than in DC or NC, suggesting aberrant bile formation and enterohepatic circulation. In summary, PSC and DC patients exhibited alterations in several metabolites in portal serum and bile, while PSC patients exhibited a unique bile metabolome. These specific alterations in PSC are amenable to hypothesis testing and, potentially, therapeutic pharmacologic manipulation.
Collapse
Affiliation(s)
- Pamela S Tietz-Bogert
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Minsuk Kim
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | - Angela Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - James H Tabibian
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA 91342, USA.
| | - Julie K Heimbach
- Division of Transplant Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Charles B Rosen
- Division of Transplant Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | - Konstantinos N Lazaridis
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
25
|
Chen F, Yang W, Huang X, Cao AT, Bilotta AJ, Xiao Y, Sun M, Chen L, Ma C, Liu X, Liu CG, Yao S, Dann SM, Liu Z, Cong Y. Neutrophils Promote Amphiregulin Production in Intestinal Epithelial Cells through TGF-β and Contribute to Intestinal Homeostasis. THE JOURNAL OF IMMUNOLOGY 2018; 201:2492-2501. [PMID: 30171165 DOI: 10.4049/jimmunol.1800003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
Neutrophils are the first responders to sites of inflammation when the intestinal epithelial barrier is breached and the gut microbiota invade. Despite current efforts in understanding the role of neutrophils in intestinal homeostasis, the complex interactions between neutrophils and intestinal epithelial cells (IECs) is still not well characterized. In this study, we demonstrated that neutrophils enhanced production of amphiregulin (AREG), a member of the EGFR ligand family, by IECs, which promoted IEC barrier function and tissue repair. Depletion of neutrophils resulted in more severe colitis in mice because of decreased AREG production by IECs upon dextran sodium sulfate (DSS) insult. Administration of AREG restored epithelial barrier function and ameliorated colitis. Furthermore, neutrophil-derived TGF-β promoted AREG production by IECs. Mechanistically, TGF-β activated MEK1/2 signaling, and inhibition of MEK1/2 abrogated TGF-β-induced AREG production by IECs. Collectively, these findings reveal that neutrophils play an important role in the maintenance of IEC barrier function and homeostasis.
Collapse
Affiliation(s)
- Feidi Chen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiangsheng Huang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Anthony T Cao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Yi Xiao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Mingming Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Liang Chen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Chunyan Ma
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Xiuping Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX 77230
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX 77230
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Sara M Dann
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yingzi Cong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; .,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
26
|
Tabibian JH, Ali AH, Lindor KD. Primary Sclerosing Cholangitis, Part 1: Epidemiology, Etiopathogenesis, Clinical Features, and Treatment. Gastroenterol Hepatol (N Y) 2018; 14:293-304. [PMID: 29991937 PMCID: PMC6034608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic, idiopathic cholangiopathy that can progress to cirrhosis, end-stage liver disease, hepatobiliary cancer, and/or colorectal cancer. The course of PSC is often complicated by portal hypertension, symptoms of cholestasis, and recurrent bacterial cholangitis, among other conditions, with a consequent decrease in survival (median, approximately 20 years) and quality of life. The etiopathogenesis of PSC remains poorly understood, and, as such, pharmacotherapy has yet to be definitively established. Despite its rarity, PSC is the fifth leading indication for liver transplantation (LT) in the United States. Although the only intervention known to extend survival of patients with PSC, LT is costly and invasive, and recurrent PSC affects approximately 30% of LT recipients. Over the past several years, owing in part to progress in the understanding of PSC, novel pharmacotherapeutics have been developed, some of which are currently in the PSC clinical trial pipeline. Here, in the first of a 2-part series, we provide a review and update of the epidemiology, etiopathogenesis, clinical features, and treatment of PSC. The second part of the series will focus on cancer risk, prevention, and surveillance of PSC.
Collapse
Affiliation(s)
- James H Tabibian
- Dr Tabibian is an associate professor in the Geffen School of Medicine at UCLA in Los Angeles, California and director of endoscopy in the Department of Medicine at Olive View-UCLA Medical Center in Sylmar, California. Dr Ali is a research fellow in the Division of Gastroenterology and Hepatology at Mayo Clinic in Phoenix, Arizona. Dr Lindor is a professor of medicine in the Division of Gastroenterology and Hepatology at Mayo Clinic and senior advisor to the provost at Arizona State University in Phoenix, Arizona
| | - Ahmad H Ali
- Dr Tabibian is an associate professor in the Geffen School of Medicine at UCLA in Los Angeles, California and director of endoscopy in the Department of Medicine at Olive View-UCLA Medical Center in Sylmar, California. Dr Ali is a research fellow in the Division of Gastroenterology and Hepatology at Mayo Clinic in Phoenix, Arizona. Dr Lindor is a professor of medicine in the Division of Gastroenterology and Hepatology at Mayo Clinic and senior advisor to the provost at Arizona State University in Phoenix, Arizona
| | - Keith D Lindor
- Dr Tabibian is an associate professor in the Geffen School of Medicine at UCLA in Los Angeles, California and director of endoscopy in the Department of Medicine at Olive View-UCLA Medical Center in Sylmar, California. Dr Ali is a research fellow in the Division of Gastroenterology and Hepatology at Mayo Clinic in Phoenix, Arizona. Dr Lindor is a professor of medicine in the Division of Gastroenterology and Hepatology at Mayo Clinic and senior advisor to the provost at Arizona State University in Phoenix, Arizona
| |
Collapse
|
27
|
Cheung AC, Lorenzo Pisarello MJ, LaRusso NF. Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1220-1231. [PMID: 28716705 PMCID: PMC5777905 DOI: 10.1016/j.bbadis.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic biliary tree. They serve predominantly to mediate the content of luminal biliary fluid, which is controlled via numerous signaling pathways influenced by endogenous (e.g., bile acids, nucleotides, hormones, neurotransmitters) and exogenous (e.g., microbes/microbial products, drugs etc.) molecules. When injured, cholangiocytes undergo apoptosis/lysis, repair and proliferation. They also become senescent, a form of cell cycle arrest, which may prevent propagation of injury and/or malignant transformation. Senescent cholangiocytes can undergo further transformation to a senescence-associated secretory phenotype (SASP), where they begin secreting pro-inflammatory and pro-fibrotic signals that may contribute to disease initiation and progression. These and other concepts related to cholangiocyte pathobiology will be reviewed herein. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Angela C Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Maria J Lorenzo Pisarello
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
28
|
Pellat A, Vaquero J, Fouassier L. Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology. Hepatology 2018; 67:762-773. [PMID: 28671339 DOI: 10.1002/hep.29350] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/18/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022]
Abstract
The ErbB/HER family comprises four distinct tyrosine kinase receptors, EGFR/ErbB1/HER1, ErbB2/HER2, ErbB3/HER3, and ErbB4/HER4, which trigger intracellular signals at the origin of essential cellular functions, including differentiation, proliferation, survival, and migration. Epithelial cells, named cholangiocytes, that line intrahepatic and extrahepatic bile ducts, contribute substantially to biliary secretory functions and bile transport. Although ErbB receptors have been widely studied in cholangiocarcinoma (CCA), a malignancy of the biliary tract, knowledge of these receptors in biliary epithelium physiology and in non-malignant cholangiopathies is far from complete. Current knowledge suggests a role for epidermal growth factor receptor (EGFR) in cholangiocyte specification and proliferation, and in hepatocyte transdifferentiation into cholangiocytes during liver regeneration to restore biliary epithelium integrity. High expression and activation of EGFR and/or ErbB2 were recently demonstrated in biliary lithiasis and primary sclerosing cholangitis, two cholangiopathies regarded as risk factors for CCA. In CCA, ErbB receptors are frequently overexpressed, leading to tumor progression and low prognosis. Anti-ErbB therapies were efficient only in preclinical trials and have suggested the existence of resistance mechanisms with the need to identify predictive factors of therapy response. This review aims to compile the current knowledge on the functions of ErbB receptors in physiology and physiopathology of the biliary epithelium. (Hepatology 2018;67:762-773).
Collapse
Affiliation(s)
- Anna Pellat
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Javier Vaquero
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,FONDATION ARC, Villejuif, France
| | - Laura Fouassier
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| |
Collapse
|
29
|
Fan X, Jiao H, Zhao J, Wang X, Lin H. Lipopolysaccharide impairs mucin secretion and stimulated mucosal immune stress response in respiratory tract of neonatal chicks. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:71-78. [PMID: 29203321 DOI: 10.1016/j.cbpc.2017.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022]
Abstract
The chicken immune system is immature at the time of hatching. The development of the respiratory immune system after hatching is vital to young chicks. The aim of this study was to investigate the effect of LPS on respiratory mucin and IgA production in chicks. In this study, we selected 7days old AA broilers of similar weigh randomly; LPS atomized at 1mg/kg body weigh dose in the confined space of 1 cubic meter. The chickens exposed for 2h. Then collect samples after 4h and 8h respectively. Compared to control, LPS inhibited mucus production in BALF, caused a rising trend of the concentration of IgA in serum and BALF, and increased the protein expression of IgA in lung tissue. And LPS treat induced a decreasing trend of the mRNA expression of IL-6 and TGF-β and significantly decreased the gene expression of TGF-α and EGFR after 4h. After 8h the LPS suppressed the TGF-β mRNA expression significantly. In addition, LPS treatment stimulated airway epithelial cilia sparse after 4h. Therefore, results proved: LPS can impair mucin expression and stimulated mucosal immune stress reaction of respiratory tract. This study suggested that LPS involved in respiratory tract mucosal immune response in chicks by regulating gene expression of cytokines and epithelial growth factors.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
30
|
Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score. PLoS One 2017; 12:e0188649. [PMID: 29261670 PMCID: PMC5736232 DOI: 10.1371/journal.pone.0188649] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
Introduction Innate lymphoid cells (ILC) have been implicated in the initiation of inflammation and fibrosis in mice. However, ILC have not been characterized in inflamed human liver tissue. Methods Human intrahepatic lymphocytes were isolated by mechanical digestion and phenotyped by flow cytometry. Conditioned medium from cultures of primary human biliary epithelial cells, stellate cells, fibroblasts and inflamed human liver tissue was used to model the effects of the inflammatory liver environment of ILC phenotype and function. Results All three ILC subsets were present in the human liver, with the ILC1 (CRTH2negCD117neg) subset constituting around 70% of intrahepatic ILCs. Both NCRpos (NKp44+) and NCRneg ILC3 (CRTH2negCD117pos) subsets were also detected. ILC2 (CRTH2pos) frequency correlated with disease severity measured by model of end stage liver disease (MELD) scoring leading us to study this subset in more detail. ILC2 displayed a tissue resident CD69+ CD161++ phenotype and expressed chemokine receptor CCR6 allowing them to respond to CCL20 secreted by cholangiocytes and stellate cells. ILC2 expressed integrins VLA-5 and VLA-6 and the IL-2 and IL-7 cytokine receptors CD25 and CD127 although IL-2 and IL-7 were barely detectable in inflamed liver tissue. Although biliary epithelial cells secrete IL-33, intrahepatic ILC2 had low expression of the ST2 receptor. Intrahepatic ILC2 secreted the immunoregulatory and repair cytokines IL-13 and amphiregulin. Conclusions Intrahepatic ILC2 express receptors allowing them to be recruited to bile ducts in inflamed portal tracts. Their frequencies increased with worsening liver function. Their secretion of IL-13 and amphiregulin suggests they may be recruited to promote resolution and repair and thereby they may contribute to ongoing fibrogenesis in liver disease.
Collapse
|
31
|
Valenty LM, Longo CM, Horzempa C, Ambesi A, McKeown-Longo PJ. TLR4 Ligands Selectively Synergize to Induce Expression of IL-8. Adv Wound Care (New Rochelle) 2017; 6:309-319. [PMID: 29062588 DOI: 10.1089/wound.2017.0735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 01/22/2023] Open
Abstract
Objective: Dysfunctional remodeling of the extracellular matrix contributes to the formation of TLR-dependent feed forward loops that drive chronic inflammation. We have previously shown that two Type III domains of Fibronectin, FnEDA and FnIII-1c, cooperate to induce the synergistic release of interleukin 8 (IL-8) from dermal fibroblasts. We now identify steps in the TLR4 pathway where synergy can be demonstrated as well as additional kinases functioning in fibronectin activation of TLR4 signaling. We also evaluate the ligand and cell-type specificity of this synergistic response. Approach: FnEDA, FnIII-1c, and lipopolysaccharide (LPS)-induced genes in fibroblasts were analyzed by a quantitative reverse transcription-polymerase chain reaction (qPCR) and protein was measured by an enzyme-linked immunosorbent assay (ELISA). Kinases functioning in gene expression were identified by using specific inhibitors. Activated TLR4-dependent effector molecules were identified by cell fractionation and Western blot and quantified by image analysis. Results: The addition of FnEDA and FnIII-1c to dermal fibroblasts resulted in a synergistic increase in the expression of IL-8, tumor necrosis factor alpha (TNF-α), and vascular cell adhesion molecule (VCAM-1). Synergy between these domains was detected at the level of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) and inhibitor of kappa B kinase (IKK) activation. Induction of IL-8 by fibronectin ligands was partially attenuated in the presence of inhibitors to either epidermal growth factor receptor or Src kinases. FnIII-1c also synergized with LPS to induce IL-8 in dermal fibroblasts, whereas the combined effect of FnEDA and LPS on IL-8 synthesis was additive. In contrast, synergistic responses to these ligands were not observed in THP-1 monocytic cells. Innovation: The data suggest that chronic inflammation may be driven by matrix- and pathogen-derived TLR4 ligands that work in synergy to promote an exuberant innate response. Conclusion: The data suggest that the molecular mechanism underlying synergistic responses to TLR4 ligands lies upstream of IKK activation, likely in the molecular composition of the TLR4 receptor complex that assembles in response to each ligand. In addition, synergistic responses to TLR4 activation may be both cell-type and ligand specific.
Collapse
Affiliation(s)
- Lauren M. Valenty
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Christine M. Longo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Carol Horzempa
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Anthony Ambesi
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Paula J. McKeown-Longo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| |
Collapse
|
32
|
McKeown-Longo PJ, Higgins PJ. Integration of Canonical and Noncanonical Pathways in TLR4 Signaling: Complex Regulation of the Wound Repair Program. Adv Wound Care (New Rochelle) 2017; 6:320-329. [PMID: 29062589 DOI: 10.1089/wound.2017.0736] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Significance: Chronic inflammation and maladaptive repair contribute to the development of fibrosis that negatively impacts quality of life and organ function. The toll-like receptor (TLR) system is a critical node in the tissue response to both exogenous (pathogen-associated) and endogenous (damage-associated) molecular pattern factors (PAMPs and DAMPs, respectively). The development of novel TLR ligand-, pathway-, and/or target gene-specific therapeutics may have clinical utility in the management of the exuberant inflammatory/fibrotic tissue response to injury without compromising the host defense to pathogens. Recent Advances: DAMP ligands, released upon wounding, and microbial-derived PAMPs interact with several TLRs, and their various coreceptor partners, engaging downstream pathways that include Src family kinases, the epidermal growth factor receptor, integrins and the tumor suppressor phosphatase and tensin homolog (PTEN). Toll-like receptor 4 (TLR4) activation enhances cellular responses to the potent profibrotic cytokine transforming growth factor-β1 (TGF-β1) by attenuating the expression of receptors that inhibit TGF-β1 signaling. Critical Issues: Common as well as unique pathways may be activated by PAMP and DAMP ligands that bind to the repertoire of TLRs on various cell types. Dissecting mechanisms underlying ligand-dependent engagement of this complex, highly interactive, network will provide for adaptation of new and focused therapies directed to the regulation of pathologically significant profibrotic genes. Inherent in this diversity are therapeutic opportunities to modulate the pathophysiologic consequences of persistent TLR signaling. The recently identified involvement of receptor and nonreceptor kinase pathways in TLR signaling may present novel opportunities for pharmacologic intervention. Future Directions: Clarifying the identity and function of DAMP-activated TLR complexes or ligand-binding partners, as well as their engaged downstream effectors and target genes, are key factors in the eventual design of pathway-specific treatment modalities. Such approaches may be tailored to address the spectrum of TLR-initiated pathologies (including localized and persistent inflammation, maladaptive repair/fibrosis) and, perhaps, even titrated to achieve patient-unique beneficial clinical outcomes.
Collapse
Affiliation(s)
- Paula J. McKeown-Longo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| |
Collapse
|
33
|
Bhattacharyya S, Varga J. Endogenous ligands of TLR4 promote unresolving tissue fibrosis: Implications for systemic sclerosis and its targeted therapy. Immunol Lett 2017; 195:9-17. [PMID: 28964818 DOI: 10.1016/j.imlet.2017.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Fibrosis, the hallmark of scleroderma or systemic sclerosis (SSc), is a complex, dynamic and generally irreversible pathophysiological process that leads to tissue disruption, and lacks effective therapy. While early-stage fibrosis resembles normal wound healing, in SSc fibrosis fails to resolve. Innate immune signaling via toll-like receptors (TLRs) has recently emerged as a key driver of persistent fibrotic response in SSc. Recurrent injury in genetically predisposed individual causes generation of "damage-associated molecular patterns" (DAMPs) such as fibronectin-EDA and tenascin-C. Sensing of these danger signals by TLR4 on resident cells elicits potent stimulatory effects on fibrotic gene expression and myofibroblast differentiation, and appears to sensitize fibroblasts to the profibrotic stimulatory effect of TGF-β. Thus, DAMPs induce TLR4-mediated innate immune signaling on resident mesenchymal cells which drives the emergence and persistence of fibrotic cells in tissues, and underlies the switch from a self-limited repair response to non-resolving pathological fibrosis characteristic of SSc. In this review, we present current views of the DAMP-TLR4 axis in driving sustained fibroblasts activation and its pathogenic roles in fibrosis progression in SSc, and potential anti-fibrotic approaches for selective therapeutic targeting of TLR4 signaling.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States.
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
34
|
Chung BK, Karlsen TH, Folseraas T. Cholangiocytes in the pathogenesis of primary sclerosing cholangitis and development of cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1390-1400. [PMID: 28844951 DOI: 10.1016/j.bbadis.2017.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022]
Abstract
Primary sclerosing cholangitis (PSC) is an idiopathic cholangiopathy strongly associated with inflammatory bowel disease (IBD) and characterized by cholestasis, chronic immune infiltration and progressive fibrosis of the intrahepatic and extrahepatic bile ducts. PSC confers a high risk of cholangiocarcinoma (CCA) with PSC-CCA representing the leading cause of PSC-associated mortality. PSC-CCA is derived from cholangiocytes and associated progenitor cells - a heterogeneous group of dynamic epithelial cells lining the biliary tree that modulate the composition and volume of bile production by the liver. Infection, inflammation and cholestasis can trigger cholangiocyte activation leading to an increased expression of adhesion and antigen-presenting molecules as well as the release of various inflammatory and fibrogenic mediators. As a result, activated cholangiocytes engage in a myriad of cellular processes, including hepatocellular proliferation, apoptosis, angiogenesis and fibrosis. Cholangiocytes can also regulate the recruitment of immune cells, mesenchymal cells, and endothelial cells that participate in tissue repair and destruction in settings of persistent inflammation. In PSC, the role of cholangiocytes and the mechanisms governing their transformation to PSC-CCA are unclear however localization of disease suggests that cholangiocytes are a key target and potential regulator of hepatobiliary immunity, fibrogenesis and tumorigenesis. Herein, we summarize mechanisms of cholangiocyte activation in PSC and highlight new insights into disease pathways that may contribute to the development of PSC-CCA. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Brian K Chung
- Centre for Liver Research and NIHR Birmingham Inflammation Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | - Tom Hemming Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
Slomiany BL, Slomiany A. Role of LPS-elicited signaling in triggering gastric mucosal inflammatory responses to H. pylori: modulatory effect of ghrelin. Inflammopharmacology 2017; 25:415-429. [PMID: 28516374 DOI: 10.1007/s10787-017-0360-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
Infection with Helicobacter pylori is a primary culprit in the etiology of gastric disease, and its cell-wall lipopolysaccharide (LPS) is recognized as a potent endotoxin responsible for triggering a pattern of the mucosal inflammatory responses. The engagement by the LPS of gastric mucosal Toll-like receptor 4 (TLR4) leads to initiation of signal transduction events characterized by the activation of mitogen-activated protein kinase (MAPK) cascade, induction of phosphoinositide-specific phospholipase C (PLC)/protein kinase C (PKC)/phosphatidylinositol 3-kinase (PI3K) pathway, and up-regulation in Src/Akt. These signaling events in turn exert their influence over H. pylori-elicited excessive generation of NO and PGE2 caused by the disturbances in nitric oxide synthase and cyclooxygenase isozyme systems, increase in epidermal growth factor receptor transactivation, and the induction in matrix metalloproteinase-9 (MMP-9) release. Interestingly, the extent of gastric mucosal inflammatory response to H. pylori is influenced by a peptide hormone, ghrelin, the action of which relays on the growth hormone secretagogue receptor type 1a (GHS-R1a)-mediated mobilization of G-protein dependent transduction pathways. Yet, the signals triggered by TLR-4 activation as well as those arising through GHS-R1a stimulation converge at MAPK and PLC/PKC/PI3K pathways that form a key integration node for proinflammatory signals generated by H. pylori LPS as well as for those involved in modulation of inflammation by ghrelin. Hence, therapeutic targeting these signals' convergence and integration node could provide a novel and attractive opportunities for developing more effective treatments of H. pylori-related gastric disease.
Collapse
Affiliation(s)
- B L Slomiany
- Research Center, C855, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA
| | - A Slomiany
- Research Center, C855, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA.
| |
Collapse
|
36
|
O'Hara SP, Splinter PL, Trussoni CE, Pisarello MJL, Loarca L, Splinter NS, Schutte BF, LaRusso NF. ETS Proto-oncogene 1 Transcriptionally Up-regulates the Cholangiocyte Senescence-associated Protein Cyclin-dependent Kinase Inhibitor 2A. J Biol Chem 2017; 292:4833-4846. [PMID: 28184004 PMCID: PMC5377799 DOI: 10.1074/jbc.m117.777409] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a chronic, fibroinflammatory cholangiopathy (disease of the bile ducts) of unknown pathogenesis. We reported that cholangiocyte senescence features prominently in PSC and that neuroblastoma RAS viral oncogene homolog (NRAS) is activated in PSC cholangiocytes. Additionally, persistent microbial insult (e.g. LPSs) induces cyclin-dependent kinase inhibitor 2A (CDKN2A/p16INK4a) expression and senescence in cultured cholangiocytes in an NRAS-dependent manner. However, the molecular mechanisms involved in LPS-induced cholangiocyte senescence and NRAS-dependent regulation of CDKN2A remain unclear. Using our in vitro senescence model, we found that LPS-induced CDKN2A expression coincided with a 4.5-fold increase in ETS1 (ETS proto-oncogene 1) mRNA, suggesting that ETS1 is involved in regulating CDKN2A This idea was confirmed by RNAi-mediated suppression or genetic deletion of ETS1, which blocked CDKN2A expression and reduced cholangiocyte senescence. Furthermore, site-directed mutagenesis of a predicted ETS-binding site within the CDKN2A promoter abolished luciferase reporter activity. Pharmacological inhibition of RAS/MAPK reduced ETS1 and CDKN2A protein expression and CDKN2A promoter-driven luciferase activity by ∼50%. In contrast, constitutively active NRAS expression induced ETS1 and CDKN2A protein expression, whereas ETS1 RNAi blocked this increase. Chromatin immunoprecipitation-PCR detected increased ETS1 and histone 3 lysine 4 trimethylation (H3K4Me3) at the CDKN2A promoter following LPS-induced senescence. Additionally, phospho-ETS1 expression was increased in cholangiocytes of human PSC livers and in the Abcb4 (Mdr2)-/- mouse model of PSC. These data pinpoint ETS1 and H3K4Me3 as key transcriptional regulators in NRAS-induced expression of CDKN2A, and this regulatory axis may therefore represent a potential therapeutic target for PSC treatment.
Collapse
Affiliation(s)
- Steven P O'Hara
- From the Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Patrick L Splinter
- From the Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Christy E Trussoni
- From the Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Maria J Lorenzo Pisarello
- From the Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Lorena Loarca
- From the Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Noah S Splinter
- From the Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Bryce F Schutte
- From the Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Nicholas F LaRusso
- From the Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
37
|
Nlrp3 Activation Induces Il-18 Synthesis and Affects the Epithelial Barrier Function in Reactive Cholangiocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:366-376. [PMID: 27912077 DOI: 10.1016/j.ajpath.2016.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 12/22/2022]
Abstract
Microbial products are thought to influence the progression of cholangiopathies, in particular primary sclerosing cholangitis (PSC). Inflammasomes are molecular platforms that respond to microbial products through the synthesis of proinflammatory cytokines. We investigated the role of inflammasome activation in cholangiocyte response to injury. Nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing protein 3 (Nlrp3) expression was tested in cholangiocytes of normal and cholestatic livers. Effects of Nlrp3 activation induced by incubation with lipopolysaccharide and ATP was studied in vitro in normal and siRNA-Nlrp3 knocked-down cholangiocytes. Wild-type and Nlrp3 knockout (Nlrp3-/-) mice were fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC; a model of sclerosing cholangitis) for 4 weeks. Nlrp3 and its components were overexpressed in cholangiocytes of mice subjected to DDC and in patients affected by PSC. In vitro, Nlrp3 activation stimulated expression of Il-18 but not of Il-1β and Il-6. Nlrp3 activation had no effect on cholangiocyte proliferation but significantly decreased the expression of Zonulin-1 and E-cadherin, whereas Nlrp3 knockdown increased the permeability of cholangiocyte monolayers. In vivo, the DDC-stimulated number of cytokeratin-19-positive cells in the liver of wild-type animals was slightly reduced in Nlrp3-/- mice, and expression of E-cadherin was reestablished. In conclusion, Nlrp3 is expressed in reactive cholangiocytes, in both murine models and patients with PSC. Activation of Nlrp3 leads to synthesis of proinflammatory cytokines and influences epithelial integrity of cholangiocytes.
Collapse
|
38
|
Ali AH, Tabibian JH, Carey EJ, Lindor KD. Emerging drugs for the treatment of Primary Biliary Cholangitis. Expert Opin Emerg Drugs 2016; 21:39-56. [PMID: 26901615 DOI: 10.1517/14728214.2016.1150999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Primary biliary cholangitis (PBC) is an autoimmune chronic disease of the liver that can progress to cirrhosis and hepatocellular carcinoma. It affects approximately 1 in 4,000 with a 10:1 female to male ratio. The diagnosis of PBC can be made based on serum antimitochondrial antibodies (AMA) in a patient with abnormally high serum alkaline phosphatase after ruling out other causes of cholestasis and biliary obstruction. Genome-wide association studies have revealed several human leukocyte antigen (HLA) and non-HLA risk loci in PBC, and complex environmental-host immunogenetic interactions are believed to underlie the etiopathogenesis of the disease. Fatigue and pruritus are the most common and often problematic symptoms; although often mild, these can be severe and life-alternating in a subset of patients. Ursodeoxycholic acid (UDCA) is the only drug approved by the United States Food and Drug Administration for the treatment of PBC. Clinical trials have shown that UDCA significantly improves transplant-free survival. However, nearly 40% of PBC patients do not respond adequately to PBC and are at higher risk for serious complications when compared to PBC patients with complete response to UDCA. AREAS COVERED Here we provide a detailed discussion regarding novel therapeutic agents and potential areas for further investigation in PBC-related research. EXPERT OPINION Results of ongoing clinical trials and emerging treatment paradigms for PBC will likely further improve medical management of this disorder in the near future.
Collapse
|
39
|
Roy A, Srivastava M, Saqib U, Liu D, Faisal SM, Sugathan S, Bishnoi S, Baig MS. Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int Immunopharmacol 2016; 40:79-89. [PMID: 27584057 DOI: 10.1016/j.intimp.2016.08.026] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
Abstract
Inflammation is set off when innate immune cells detect infection or tissue injury. Tight control of the severity, duration, and location of inflammation is an absolute requirement for an appropriate balance between clearance of injured tissue and pathogens versus damage to host cells. Impeding the risk associated with the imbalance in the inflammatory response requires precise identification of potential therapeutic targets involved in provoking the inflammation. Toll-like receptors (TLRs) primarily known for the pathogen recognition and subsequent immune responses are being investigated for their pathogenic role in various chronic diseases. A mammalian homologue of Drosophila Toll receptor 4 (TLR4) was shown to induce the expression of genes involved in inflammatory responses. Signaling pathways via TLR4 activate various transcription factors like Nuclear factor kappa-light-chain-enhancer (NF-κB), activator protein 1 (AP1), Signal Transducers and Activators of Transcription family of transcription factors (STAT1) and Interferon regulatory factors (IRF's), which are the key players regulating the inflammatory response. Inhibition of these targets and their upstream signaling molecules provides a potential therapeutic approach to treat inflammatory diseases. Here we review the therapeutic targets involved in TLR-4 signaling pathways that are critical for suppressing chronic inflammatory disorders.
Collapse
Affiliation(s)
- Anjali Roy
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Mansi Srivastava
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Uzma Saqib
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore (IITI), Indore, MP, India
| | - Dongfang Liu
- Center for Inflammation & Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Syed M Faisal
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Subi Sugathan
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Suman Bishnoi
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Mirza S Baig
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India.
| |
Collapse
|
40
|
Tabibian JH, Varghese C, LaRusso NF, O'Hara SP. The enteric microbiome in hepatobiliary health and disease. Liver Int 2016; 36:480-7. [PMID: 26561779 PMCID: PMC4825184 DOI: 10.1111/liv.13009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022]
Abstract
Increasing evidence points to the contribution of the intestinal microbiome as a potentially key determinant in the initiation and/or progression of hepatobiliary disease. While current understanding of this dynamic is incomplete, exciting insights are continually being made and more are expected given the developments in molecular and high-throughput omics techniques. In this brief review, we provide a practical and updated synopsis of the interaction of the intestinal microbiome with the liver and its downstream impact on the initiation, progression and complications of hepatobiliary disease.
Collapse
Affiliation(s)
- James H. Tabibian
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Cyril Varghese
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Steven P. O'Hara
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
Slomiany BL, Slomiany A. Helicobacter pylori-induced gastric mucosal TGF-α ectodomain shedding and EGFR transactivation involves Rac1/p38 MAPK-dependent TACE activation. Inflammopharmacology 2015; 24:23-31. [PMID: 26658844 DOI: 10.1007/s10787-015-0254-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/11/2015] [Indexed: 01/26/2023]
Abstract
Infection of gastric mucosa by H. pylori triggers a pattern of inflammatory responses characterized by the rise in proinflammatory cytokine production, up-regulation in mitogen-activated protein kinase (MAPK) cascade, and the induction in epidermal growth factor receptor (EGFR) activation. In this study, we report on the role of MAPK/p38 and Rac1 in the regulation of H. pylori LPS-induced TGF-α ectodomain shedding and EGFR transactivation. We show that stimulation of gastric mucosal cells with the LPS, reflected in p38 phosphorylation, guanine nucleotide exchange factor Dock180 activation and the rise in Rac1-GTP level, is accompanied by the activation of membrane-associated metalloprotease, (TACE) also known as ADAM17, responsible for soluble TGF-α release. Further, we reveal that the LPS-induced TGF-α shedding and EGFR transactivation involves the TACE activation through phosphorylation by p38 that requires Rac1 participation. Moreover, we demonstrate that up-regulation in H. pylori LPS-elicited Rac1-GTP membrane translocation plays a pivotal role in recruitment of the activated p38 to the membrane for TACE activation through phosphorylation on Thr(735). Taken together, our findings provide strong evidence as to the essential function of Rac1 in TACE activation, TGF-α ectodomain shedding, and the EGFR transactivation.
Collapse
Affiliation(s)
- B L Slomiany
- Research Center, C875, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103 2400, USA.
| | - A Slomiany
- Research Center, C875, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103 2400, USA
| |
Collapse
|
42
|
Erlotinib protects against LPS-induced endotoxicity because TLR4 needs EGFR to signal. Proc Natl Acad Sci U S A 2015. [PMID: 26195767 DOI: 10.1073/pnas.1511794112] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Several components of the canonical pathway of response to lipopolysaccharide (LPS) are required for the EGF-dependent activation of NFκB. Conversely, the ability of Toll-like Receptor 4 (TLR4) to activate NFκB in response to LPS is impaired by down regulating EGF receptor (EGFR) expression or by using the EGFR inhibitor erlotinib. The LYN proto-oncogene (LYN) is required for signaling in both directions. LYN binds to the EGFR upon LPS stimulation, and erlotinib impairs this association. In mice, erlotinib blocks the LPS-induced expression of tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) and ameliorates LPS-induced endotoxity, revealing that EGFR is essential for LPS-induced signaling in vivo.
Collapse
|