1
|
Ito T, Saito A, Kamikawa Y, Nakazawa N, Imaizumi K. AIbZIP/CREB3L4 Promotes Cell Proliferation via the SKP2-p27 Axis in Luminal Androgen Receptor Subtype Triple-Negative Breast Cancer. Mol Cancer Res 2024; 22:373-385. [PMID: 38236913 PMCID: PMC10985479 DOI: 10.1158/1541-7786.mcr-23-0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer ranks first in incidence and fifth in cancer-related deaths among all types of cancer globally. Among breast cancer, triple-negative breast cancer (TNBC) has few known therapeutic targets and a poor prognosis. Therefore, new therapeutic targets and strategies against TNBC are required. We found that androgen-induced basic leucine zipper (AIbZIP), also known as cyclic AMP-responsive element-binding protein 3-like protein 4 (CREB3L4), which is encoded by Creb3l4, is highly upregulated in a particular subtype of TNBC, luminal androgen receptor (LAR) subtype. We analyzed the function of AIbZIP through depletion of AIbZIP by siRNA knockdown in LAR subtype TNBC cell lines, MFM223 and MDAMB453. In AIbZIP-depleted cells, the proliferation ratios of cells were greatly suppressed. Moreover, G1-S transition was inhibited in AIbZIP-depleted cells. We comprehensively analyzed the expression levels of proteins that regulate G1-S transition and found that p27 was specifically upregulated in AIbZIP-depleted cells. Furthermore, we identified that this p27 downregulation was caused by protein degradation modulated by the ubiquitin-proteasome system via F-box protein S-phase kinase-associated protein 2 (SKP2) upregulation. Our findings demonstrate that AIbZIP is a novel p27-SKP2 pathway-regulating factor and a potential molecule that contributes to LAR subtype TNBC progression. IMPLICATIONS This research shows a new mechanism for the proliferation of LAR subtype TNBC regulated by AIbZIP, that may provide novel insight into the LAR subtype TNBC progression and the molecular mechanisms involved in cell proliferation.
Collapse
Affiliation(s)
- Taichi Ito
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nayuta Nakazawa
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Yuxiong W, Faping L, Bin L, Yanghe Z, Yao L, Yunkuo L, Yishu W, Honglan Z. Regulatory mechanisms of the cAMP-responsive element binding protein 3 (CREB3) family in cancers. Biomed Pharmacother 2023; 166:115335. [PMID: 37595431 DOI: 10.1016/j.biopha.2023.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
The CREB3 family of proteins, encompassing CREB3 and its four homologs (CREB3L1, CREB3L2, CREB3L3, and CREB3L4), exerts pivotal control over cellular protein metabolism in response to unfolded protein reactions. Under conditions of endoplasmic reticulum stress, activation of the CREB3 family occurs through regulated intramembrane proteolysis within the endoplasmic reticulum membrane. Perturbations in the function and expression of the CREB3 family have been closely associated with the development of diverse diseases, with a particular emphasis on cancer. Recent investigations have shed light on the indispensable role played by CREB3 family members in modulating the onset and progression of various human cancers. This comprehensive review endeavors to provide an in-depth examination of the involvement of CREB3 family members in distinct human cancer types, accentuating their significance in the pathogenesis of cancer and the manifestation of malignant phenotypes.
Collapse
Affiliation(s)
- Wang Yuxiong
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Li Faping
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Liu Bin
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Zhang Yanghe
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China
| | - Li Yao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China
| | - Li Yunkuo
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Wang Yishu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China.
| | - Zhou Honglan
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China,.
| |
Collapse
|
3
|
Hypoxia-Inducible Factor-2-Altered Urothelial Carcinoma: Clinical and Genomic Features. Curr Oncol 2022; 29:8638-8649. [PMID: 36421334 PMCID: PMC9689673 DOI: 10.3390/curroncol29110681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Hypoxia is recognized as a key feature of cancer growth and is involved in various cellular processes, including proliferation, angiogenesis, and immune surveillance. Besides hypoxia-inducible factor 1-alpha (HIF-1α), which is the main mediator of hypoxia effects and can also be activated under normoxic conditions, little is known about its counterpart, HIF-2. This study focused on investigating the clinical and molecular landscape of HIF-2-altered urothelial carcinoma (UC). Methods: Publicly available next-generation sequencing (NGS) data from muscle-invasive UC cell lines and patient tumor samples from the MSK/TCGA 2020 cohort (n = 476) were interrogated for the level of expression (mRNA, protein) and presence of mutations, copy number variations, structural variants in the EPAS1 gene encoding HIF-2, and findings among various clinical (stage, grade, progression-free and overall survival) and molecular (tumor mutational burden, enriched gene expression) parameters were compared between altered and unaltered tumors. Results: 19% (7/37) of UC cell lines and 7% (27/380) of patients with muscle-invasive UC display high EPAS1 mRNA and protein expression or/and EPAS1 alterations. EPAS1-altered tumors are associated with higher stage, grade, and lymph node metastasis as well as with shorter PFS (14 vs. 51 months, q = 0.01) and OS (15 vs. 55 months, q = 0.01). EPAS1 mRNA expression is directly correlated with that of its target-genes, including VEGF, FLT1, KDR, DLL4, CDH5, ANGPT1 (q < 0.001). While there is a slightly higher tumor mutational burden in EPAS1-altered tumors (9.9 vs. 4.9 mut/Mb), they are enriched in and associated with genes promoting immune evasion, including ARID5B, SPINT1, AAK1, CLIC3, SORT1, SASH1, and FGFR3, respectively (q < 0.001). Conclusions: HIF-2-altered UC has an aggressive clinical and a distinct genomic and immunogenomic profile enriched in angiogenesis- and immune evasion-promoting genes.
Collapse
|
4
|
Wang H, Lai Q, Wang D, Pei J, Tian B, Gao Y, Gao Z, Xu X. Hedgehog signaling regulates the development and treatment of glioblastoma. Oncol Lett 2022; 24:294. [PMID: 35949611 PMCID: PMC9353242 DOI: 10.3892/ol.2022.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal malignant tumor type of the central nervous system. GBM affects public health and it is important to identify biomarkers to improve diagnosis, reduce drug resistance and improve prognosis (e.g., personalized targeted therapies). Hedgehog (HH) signaling has an important role in embryonic development, tissue regeneration and stem cell renewal. A large amount of evidence indicates that both normative and non-normative HH signals have an important role in GBM. The present study reviewed the role of the HH signaling pathway in the occurrence and progression of GBM. Furthermore, the effectiveness of drugs that target different components of the HH pathway was also examined. The HH pathway has an important role in reversing drug resistance after GBM conventional treatment. The present review highlighted the relevance of HH signaling in GBM and outlined that this pathway has a key role in the occurrence, development and treatment of GBM.
Collapse
Affiliation(s)
- Hongping Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dayong Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Baogang Tian
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Yunhe Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Zhaoguo Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
5
|
Single-cell analysis reveals androgen receptor regulates the ER-to-Golgi trafficking pathway with CREB3L2 to drive prostate cancer progression. Oncogene 2021; 40:6479-6493. [PMID: 34611310 DOI: 10.1038/s41388-021-02026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023]
Abstract
Androgen receptor (AR) plays a central role in driving prostate cancer (PCa) progression. How AR promotes this process is still not completely clear. Herein, we used single-cell transcriptome analysis to reconstruct the transcriptional network of AR in PCa. Our work shows AR directly regulates a set of signature genes in the ER-to-Golgi protein vesicle-mediated transport pathway. The expression of these genes is required for maximum androgen-dependent ER-to-Golgi trafficking, cell growth, and survival. Our analyses also reveal the signature genes are associated with PCa progression and prognosis. Moreover, we find inhibition of the ER-to-Golgi transport process with a small molecule enhanced antiandrogen-mediated tumor suppression of hormone-sensitive and insensitive PCa. Finally, we demonstrate AR collaborates with CREB3L2 in mediating ER-to-Golgi trafficking in PCa. In summary, our findings uncover a critical role for dysregulation of ER-to-Golgi trafficking expression and function in PCa progression, provide detailed mechanistic insights for how AR tightly controls this process, and highlight the prospect of targeting the ER-to-Golgi pathway as a therapeutic strategy for advanced PCa.
Collapse
|
6
|
Shen ZQ, Wang J, Tan WF, Huang TM. Berberine inhibits colorectal tumor growth by suppressing SHH secretion. Acta Pharmacol Sin 2021; 42:1190-1194. [PMID: 32958873 PMCID: PMC8209003 DOI: 10.1038/s41401-020-00514-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023] Open
Abstract
Hedgehog plays an important role in a wide range of physiological and pathological conditions. Paracrine activation of Hedgehog pathway in stromal cells increases the expression of VEGF, which promotes neovascularization in colorectal cancer and ultimately the growth of colorectal cancer. Berberine (BBR) has anticancer activity. In this study we investigated whether BBR inhibited the growth of colon cancer through suppressing the paracrine sonic hedgehog (SHH) signaling in vitro and in vivo. We showed that BBR (1-10 μM) dose-dependently inhibited the secretion and expression of SHH protein in HT-29 and SW480 cells. BBR did not influence the transcription of SHH, but promoted the degradation of SHH mRNA, thus decreased the SHH mRNA expression in the colorectal cancer cells. In nude mice bearing HT-29 xenograft, oral administration of BBR (100 mg · kg-1 · d-1) or a positive control drug GDC-0449 (100 mg · kg-1 · d-1) for 4 weeks markedly suppressed the growth of HT-29 tumor with BBR exhibiting a better antitumor efficacy. The tumor growth inhibition caused by BBR or GDC-0449 was comparable to their respective inhibitory effect on the mouse-specific Gli mRNA expression in the tumor. However, BBR (20 μM) did not affect the expression of human transcription factor Gli1 mRNA in HT-29 and SW480 cells. In conclusion, BBR promotes the degradation of SHH mRNA in colorectal cancer cells, interrupting the paracrine Hedgehog signaling pathway activity thus suppresses the colorectal cancer growth. This study reveals a novel molecular mechanism underlying the anticancer action of BBR.
Collapse
Affiliation(s)
- Zhu-Qing Shen
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wen-Fu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Tao-Min Huang
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
7
|
Matsuhisa K, Cai L, Saito A, Sakaue F, Kamikawa Y, Fujiwara S, Asada R, Kudo Y, Imaizumi K. Toxic effects of endoplasmic reticulum stress transducer BBF2H7-derived small peptide fragments on neuronal cells. Brain Res 2020; 1749:147139. [PMID: 33010207 DOI: 10.1016/j.brainres.2020.147139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/26/2020] [Indexed: 11/24/2022]
Abstract
Aggregation, fibril formation, and deposition of amyloid β (Aβ) protein are believed to be the central pathogeneses of Alzheimer's disease (AD). Numerous studies have shown that fibril formation is promoted by preformed seeds at the beginning of the aggregation process. Therefore, aggregated molecules that promote fibrillization of Aβ protein as seeds could affect the pathology. We recently found that approximately 40 amino acid hydrophobic peptides, BBF2H7-derived small peptide (BSP) fragments, are generated via intramembranous cleavage under endoplasmic reticulum (ER) stress conditions. Interestingly, similar to Aβ protein, the fragments exhibit a high aggregation propensity and form fibril structures. It has been noted that ER stress is involved in the pathogenesis of AD. In this study, we examined the effect of BSP fragments on aggregation and cytotoxicity of Aβ1-40 protein, which is generated as a major species of Aβ protein, but has a lower aggregative property than Aβ1-42 protein. We demonstrated that BSP fragments promote aggregation of Aβ1-40 protein. Aggregates of Aβ1-40 protein mediated by BSP fragments also exhibited potent neurotoxicity. Our findings suggest the possibility that BSP fragments affect accumulation of Aβ proteins and are involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Longjie Cai
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Fumika Sakaue
- Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yasunao Kamikawa
- Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Sachiko Fujiwara
- Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Rie Asada
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yukitsuka Kudo
- Department of Gerontology and Geriatrics, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
8
|
Matsuhisa K, Saito A, Cai L, Kaneko M, Okamoto T, Sakaue F, Asada R, Urano F, Yanagida K, Okochi M, Kudo Y, Matsumoto M, Nakayama KI, Imaizumi K. Production of BBF2H7‐derived small peptide fragments via endoplasmic reticulum stress‐dependent regulated intramembrane proteolysis. FASEB J 2019; 34:865-880. [DOI: 10.1096/fj.201901748r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Koji Matsuhisa
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Department of Stress Protein Processing Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Atsushi Saito
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Department of Stress Protein Processing Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Longjie Cai
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Masayuki Kaneko
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Takumi Okamoto
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Fumika Sakaue
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Department of Stress Protein Processing Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Rie Asada
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Department of Medicine Division of Endocrinology Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Fumihiko Urano
- Department of Medicine Division of Endocrinology Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Kanta Yanagida
- Neuropsychiatry Department of Integrated Medicine Division of Internal Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Masayasu Okochi
- Neuropsychiatry Department of Integrated Medicine Division of Internal Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Yukitsuka Kudo
- Department of Gerontology and Geriatrics Institute of Development, Aging and Cancer Tohoku University Sendai Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Kazunori Imaizumi
- Department of Biochemistry Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| |
Collapse
|