1
|
Hu Q, Zhang W, Wei F, Huang M, Shu M, Song D, Wen J, Wang J, Nian Q, Ma X, Zeng J, Zhao Y. Human diet-derived polyphenolic compounds and hepatic diseases: From therapeutic mechanisms to clinical utilization. Phytother Res 2024; 38:280-304. [PMID: 37871899 DOI: 10.1002/ptr.8043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
This review focuses on the potential ameliorative effects of polyphenolic compounds derived from human diet on hepatic diseases. It discusses the molecular mechanisms and recent advancements in clinical applications. Edible polyphenols have been found to play a therapeutic role, particularly in liver injury, liver fibrosis, NAFLD/NASH, and HCC. In the regulation of liver injury, polyphenols exhibit anti-inflammatory and antioxidant effects, primarily targeting the TGF-β, NF-κB/TLR4, PI3K/AKT, and Nrf2/HO-1 signaling pathways. In the regulation of liver fibrosis, polyphenolic compounds effectively reverse the fibrotic process by inhibiting the activation of hepatic stellate cells (HSC). Furthermore, polyphenolic compounds show efficacy against NAFLD/NASH by inhibiting lipid oxidation and accumulation, mediated through the AMPK, SIRT, and PPARγ pathways. Moreover, several polyphenolic compounds exhibit anti-HCC activity by suppressing tumor cell proliferation and metastasis. This inhibition primarily involves blocking Akt and Wnt signaling, as well as inhibiting the epithelial-mesenchymal transition (EMT). Additionally, clinical trials and nutritional evidence support the notion that certain polyphenols can improve liver disease and associated metabolic disorders. However, further fundamental research and clinical trials are warranted to validate the efficacy of dietary polyphenols.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meilan Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyao Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Witte K, Wolk K, Witte-Händel E, Krause T, Kokolakis G, Sabat R. Targeting Metabolic Syndrome in Hidradenitis Suppurativa by Phytochemicals as a Potential Complementary Therapeutic Strategy. Nutrients 2023; 15:3797. [PMID: 37686829 PMCID: PMC10490062 DOI: 10.3390/nu15173797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by the appearance of painful inflamed nodules, abscesses, and pus-draining sinus tracts in the intertriginous skin of the groins, buttocks, and perianal and axillary regions. Despite its high prevalence of ~0.4-1%, therapeutic options for HS are still limited. Over the past 10 years, it has become clear that HS is a systemic disease, associated with various comorbidities, including metabolic syndrome (MetS) and its sequelae. Accordingly, the life expectancy of HS patients is significantly reduced. MetS, in particular, obesity, can support sustained inflammation and thereby exacerbate skin manifestations and the chronification of HS. However, MetS actually lacks necessary attention in HS therapy, underlining the high medical need for novel therapeutic options. This review directs attention towards the relevance of MetS in HS and evaluates the potential of phytomedical drug candidates to alleviate its components. It starts by describing key facts about HS, the specifics of metabolic alterations in HS patients, and mechanisms by which obesity may exacerbate HS skin alterations. Then, the results from the preclinical studies with phytochemicals on MetS parameters are evaluated and the outcomes of respective randomized controlled clinical trials in healthy people and patients without HS are presented.
Collapse
Affiliation(s)
- Katrin Witte
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Ellen Witte-Händel
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Torben Krause
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
3
|
Abstract
Liver fibrosis has a high incidence worldwide and is the common pathological basis of many chronic liver diseases. Liver fibrosis is caused by the excessive deposition of extracellular matrix and concomitant collagen accumulation in livers and can lead to the development of liver cirrhosis and even liver cancer. A large number of studies have provided evidence that liver fibrosis can be blocked or even reversed by appropriate medical interventions. However, the antifibrosis drugs with ideal clinical efficacy are still insufficient. The edible plant-derived natural compounds have been reported to exert effective antifibrotic effects with few side-effects, representing a kind of promising source for the treatment of liver fibrosis. In this article, we reviewed the current progress of the natural compounds derived from dietary plants in the treatment of liver fibrosis, including phenolic compounds (capsaicin, chlorogenic acid, curcumin, ellagic acid, epigallocatechin-3-gallate, resveratrol, sinapic acid, syringic acid, vanillic acid and vitamin E), flavonoid compounds (genistein, hesperidin, hesperetin, naringenin, naringin and quercetin), sulfur-containing compounds (S-allylcysteine, ergothioneine, lipoic acid and sulforaphane) and other compounds (betaine, caffeine, cucurbitacin B, lycopene, α-mangostin, γ-mangostin, ursolic acid, vitamin C and yangonin). The pharmacological effects and related mechanisms of these compounds in in-vivo and in-vitro models of liver fibrosis are focused.
Collapse
|
4
|
Godugu C, Khurana A, Saifi MA. Rare earth cerium oxide nanoparticles attenuated liver fibrosis in bile duct ligation mice model. J Trace Elem Med Biol 2023; 75:127102. [PMID: 36423438 DOI: 10.1016/j.jtemb.2022.127102] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 10/09/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Liver fibrosis is one of the major liver complications which eventually progresses to liver cirrhosis and liver failure. Cerium oxide nanoparticles, also known as nanoceria (NC) are nanoparticles with potential antioxidant and anti-inflammatory activities. Herein, we evaluated the hepatoprotective and anti-fibrotic effects of nanoceria (NC) against bile duct ligation (BDL) induced liver injury. NC were administered i.p. for 12 days (0.5 and 2 mg/kg) to C57BL/6J mice. The biochemical markers of liver injury, oxidative and nitrosative stress markers, inflammatory cytokines were evaluated. Fibrosis assessment and mechanistic studies were conducted to assess the hepatoprotective effects of NC. Administration of NC proved to significantly ameliorate liver injury as evident by reduction in SGOT, SGPT, ALP and bilirubin levels in the treated animals. NC treatment significantly reduced the hydroxyproline levels and expression of fibrotic markers. In summary, our findings establish the hepatoprotective and anti-fibrotic effects of NC against BDL induced liver injury and liver fibrosis. These protective effects were majorly ascribed to their potential ROS inhibition and antioxidant activities through catalase, superoxide dismutase (SOD)-mimetic properties and auto-regenerating capabilities.
Collapse
Affiliation(s)
- Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Najibi A, Rezaei H, Manthari RK, Niknahad H, Jamshidzadeh A, Farshad O, Yan F, Ma Y, Xu D, Tang Z, Ommati MM, Heidari R. Cellular and mitochondrial taurine depletion in bile duct ligated rats: a justification for taurine supplementation in cholestasis/cirrhosis. Clin Exp Hepatol 2022; 8:195-210. [PMID: 36685263 PMCID: PMC9850306 DOI: 10.5114/ceh.2022.119216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
Taurine (TAU) is a free amino acid abundant in the human body. Various physiological roles have been attributed to TAU. At the subcellular level, mitochondria are the primary targets for TAU function. Meanwhile, it has been found that TAU depletion is associated with severe pathologies. Cholestasis is a severe clinical complication that can progress to liver fibrosis, cirrhosis, and hepatic failure. Bile duct ligation (BDL) is a reliable model for assessing cholestasis/cirrhosis and related complications. The current study was designed to investigate the effects of cholestasis/cirrhosis on tissue and mitochondrial TAU reservoirs. Cholestatic rats were monitored (14 and 42 days after BDL surgery), and TAU levels were assessed in various tissues and isolated mitochondria. There was a significant decrease in TAU in the brain, heart, liver, kidney, skeletal muscle, intestine, lung, testis, and ovary of the BDL animals (14 and 42 days after surgery). Mitochondrial levels of TAU were also significantly depleted in BDL animals. Tissue and mitochondrial TAU levels in cirrhotic animals (42 days after the BDL operation) were substantially lower than those in the cholestatic rats (14 days after BDL surgery). These data indicate an essential role for tissue and mitochondrial TAU in preventing organ injury induced by cholestasis/cirrhosis and could justify TAU supplementation for therapeutic purposes.
Collapse
Affiliation(s)
- Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, Andhra Pradesh, India
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Feng Yan
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Yanqin Ma
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Dongmei Xu
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Zhongwei Tang
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Mousavi K, Niknahad H, Li H, Jia Z, Manthari RK, Zhao Y, Shi X, Chen Y, Ahmadi A, Azarpira N, Khalvati B, Ommati MM, Heidari R. The activation of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling blunts cholestasis-induced liver and kidney injury. Toxicol Res (Camb) 2021; 10:911-927. [PMID: 34484683 PMCID: PMC8403611 DOI: 10.1093/toxres/tfab073] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022] Open
Abstract
Cholestasis is a severe clinical complication that severely damages the liver. Kidneys are also the most affected extrahepatic organs in cholestasis. The pivotal role of oxidative stress has been mentioned in the pathogenesis of cholestasis-induced organ injury. The activation of the nuclear factor-E2-related factor 2 (Nrf2) pathway is involved in response to oxidative stress. The current study was designed to evaluate the potential role of Nrf2 signaling activation in preventing bile acids-induced toxicity in the liver and kidney. Dimethyl fumarate was used as a robust activator of Nrf2 signaling. Rats underwent bile duct ligation surgery and were treated with dimethyl fumarate (10 and 40 mg/kg). Severe oxidative stress was evident in the liver and kidney of cholestatic animals (P < 0.05). On the other hand, the expression and activity of Nrf2 and downstream genes were time-dependently decreased (P < 0.05). Moreover, significant mitochondrial depolarization, decreased ATP levels, and mitochondrial permeabilization were detected in bile duct-ligated rats (P < 0.05). Histopathological alterations included liver necrosis, fibrosis, inflammation and kidney interstitial inflammation, and cast formation. It was found that dimethyl fumarate significantly decreased hepatic and renal injury in cholestatic animals (P < 0.05). Based on these data, the activation of the cellular antioxidant response could serve as an efficient therapeutic option for managing cholestasis-induced organ injury.
Collapse
Affiliation(s)
- Khadijeh Mousavi
- Department of Bio-informatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Hossein Niknahad
- Department of Bio-informatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Huifeng Li
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhipeng Jia
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Visakhapatnam, Gandhi Institute of Technology and Management, Andhra Pradesh 530045, India
| | - Yangfei Zhao
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiong Shi
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuanyu Chen
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Asrin Ahmadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj 75919-51176, Iran
| | - Mohammad Mehdi Ommati
- Department of Bio-informatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
7
|
Wild Bitter Melon Extract Regulates LPS-Induced Hepatic Stellate Cell Activation, Inflammation, Endoplasmic Reticulum Stress, and Ferroptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6671129. [PMID: 34239589 PMCID: PMC8241502 DOI: 10.1155/2021/6671129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is a key component of liver fibrosis. Two antifibrosis pathways have been identified, the reversion to quiescent-type HSCs and the clearance of HSCs through apoptosis. Lipopolysaccharide- (LPS-) induced HSCs activation and proliferation have been associated with the development of liver fibrosis. We determined the pharmacological effects of wild bitter melon (WM) on HSC activation following LPS treatment and investigated whether WM treatment affected cell death pathways under LPS-treated conditions, including ferroptosis. WM treatment caused cell death, both with and without LPS treatment. WM treatment caused reactive oxygen species (ROS) accumulation without LPS treatment and reversed the decrease in lipid ROS production in HSCs after LPS treatment. We examined the effects of WM treatment on fibrosis, endoplasmic reticulum (ER) stress, inflammation, and ferroptosis in LPS-activated HSCs. The western blotting analysis revealed that the WM treatment of LPS-activated HSCs induced the downregulation of the connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), integrin-β1, phospho-JNK (p-JNK), glutathione peroxidase 4 (GPX4), and cystine/glutamate transporter (SLC7A11) and the upregulation of CCAAT enhancer-binding protein homologous protein (CHOP). These results support WM as an antifibrotic agent that may represent a potential therapeutic solution for the management of liver fibrosis.
Collapse
|
8
|
do Valle IF, Roweth HG, Malloy MW, Moco S, Barron D, Battinelli E, Loscalzo J, Barabási AL. Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols. NATURE FOOD 2021; 2:143-155. [PMID: 37117448 DOI: 10.1038/s43016-021-00243-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/16/2021] [Indexed: 04/30/2023]
Abstract
Polyphenols, natural products present in plant-based foods, play a protective role against several complex diseases through their antioxidant activity and by diverse molecular mechanisms. Here we develop a network medicine framework to uncover mechanisms for the effects of polyphenols on health by considering the molecular interactions between polyphenol protein targets and proteins associated with diseases. We find that the protein targets of polyphenols cluster in specific neighbourhoods of the human interactome, whose network proximity to disease proteins is predictive of the molecule's known therapeutic effects. The methodology recovers known associations, such as the effect of epigallocatechin-3-O-gallate on type 2 diabetes, and predicts that rosmarinic acid has a direct impact on platelet function, representing a novel mechanism through which it could affect cardiovascular health. We experimentally confirm that rosmarinic acid inhibits platelet aggregation and α-granule secretion through inhibition of protein tyrosine phosphorylation, offering direct support for the predicted molecular mechanism. Our framework represents a starting point for mechanistic interpretation of the health effects underlying food-related compounds, allowing us to integrate into a predictive framework knowledge on food metabolism, bioavailability and drug interaction.
Collapse
Affiliation(s)
- Italo F do Valle
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
| | - Harvey G Roweth
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael W Malloy
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sofia Moco
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Denis Barron
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Elisabeth Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Network and Data Science, Central European University, Budapest, Hungary.
| |
Collapse
|
9
|
A Comprehensive Review of Natural Products against Liver Fibrosis: Flavonoids, Quinones, Lignans, Phenols, and Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7171498. [PMID: 33082829 PMCID: PMC7556091 DOI: 10.1155/2020/7171498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Liver fibrosis resulting from continuous long-term hepatic damage represents a heavy burden worldwide. Liver fibrosis is recognized as a complicated pathogenic mechanism with extracellular matrix (ECM) accumulation and hepatic stellate cell (HSC) activation. A series of drugs demonstrate significant antifibrotic activity in vitro and in vivo. No specific agents with ideally clinical efficacy for liver fibrosis treatment have been developed. In this review, we summarized the antifibrotic effects and molecular mechanisms of 29 kinds of common natural products. The mechanism of these compounds is correlated with anti-inflammatory, antiapoptotic, and antifibrotic activities. Moreover, parenchymal hepatic cell survival, HSC deactivation, and ECM degradation by interfering with multiple targets and signaling pathways are also involved in the antifibrotic effects of these compounds. However, there remain two bottlenecks for clinical breakthroughs. The low bioavailability of natural products should be improved, and the combined application of two or more compounds should be investigated for more prominent pharmacological effects. In summary, exploration on natural products against liver fibrosis is becoming increasingly extensive. Therefore, natural products are potential resources for the development of agents to treat liver fibrosis.
Collapse
|
10
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
11
|
Vilella R, Sgarbi G, Naponelli V, Savi M, Bocchi L, Liuzzi F, Righetti R, Quaini F, Frati C, Bettuzzi S, Solaini G, Stilli D, Rizzi F, Baracca A. Effects of Standardized Green Tea Extract and Its Main Component, EGCG, on Mitochondrial Function and Contractile Performance of Healthy Rat Cardiomyocytes. Nutrients 2020; 12:nu12102949. [PMID: 32993022 PMCID: PMC7600665 DOI: 10.3390/nu12102949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
We recently showed that the long-term in vivo administration of green tea catechin extract (GTE) resulted in hyperdynamic cardiomyocyte contractility. The present study investigates the mechanisms underlying GTE action in comparison to its major component, epigallocatechin-3-gallate (EGCG), given at the equivalent amount that would be in the entirety of GTE. Twenty-six male Wistar rats were given 40 mL/day of a tap water solution with either standardized GTE or pure EGCG for 4 weeks. Cardiomyocytes were then isolated for the study. Cellular bioenergetics was found to be significantly improved in both GTE- and EGCG-fed rats compared to that in controls as shown by measuring the maximal mitochondrial respiration rate and the cellular ATP level. Notably, the improvement of mitochondrial function was associated with increased levels of oxidative phosphorylation complexes, whereas the cellular mitochondrial mass was unchanged. However, only the GTE supplement improved cardiomyocyte mechanics and intracellular calcium dynamics, by lowering the expression of total phospholamban (PLB), which led to an increase of both the phosphorylated-PLB/PLB and the sarco-endoplasmic reticulum calcium ATPase/PLB ratios. Our findings suggest that GTE might be a valuable adjuvant tool for counteracting the occurrence and/or the progression of cardiomyopathies in which mitochondrial dysfunction and alteration of intracellular calcium dynamics constitute early pathogenic factors.
Collapse
Affiliation(s)
- Rocchina Vilella
- Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, 43124 Parma, Italy; (R.V.); (M.S.); (L.B.); (D.S.)
| | - Gianluca Sgarbi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, 40126 Bologna, Italy; (G.S.); (F.L.); (G.S.)
| | - Valeria Naponelli
- Department of Medicine and Surgery (DIMEC), University of Parma, 43125 Parma, Italy; (V.N.); (F.Q.); (C.F.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, 43124 Parma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, 43124 Parma, Italy; (R.V.); (M.S.); (L.B.); (D.S.)
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, 43124 Parma, Italy; (R.V.); (M.S.); (L.B.); (D.S.)
| | - Francesca Liuzzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, 40126 Bologna, Italy; (G.S.); (F.L.); (G.S.)
| | - Riccardo Righetti
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza” Unit of Bologna, 40136 Bologna, Italy;
| | - Federico Quaini
- Department of Medicine and Surgery (DIMEC), University of Parma, 43125 Parma, Italy; (V.N.); (F.Q.); (C.F.); (S.B.)
| | - Caterina Frati
- Department of Medicine and Surgery (DIMEC), University of Parma, 43125 Parma, Italy; (V.N.); (F.Q.); (C.F.); (S.B.)
| | - Saverio Bettuzzi
- Department of Medicine and Surgery (DIMEC), University of Parma, 43125 Parma, Italy; (V.N.); (F.Q.); (C.F.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, 43124 Parma, Italy
| | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, 40126 Bologna, Italy; (G.S.); (F.L.); (G.S.)
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, 43124 Parma, Italy; (R.V.); (M.S.); (L.B.); (D.S.)
| | - Federica Rizzi
- Department of Medicine and Surgery (DIMEC), University of Parma, 43125 Parma, Italy; (V.N.); (F.Q.); (C.F.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, 43124 Parma, Italy
- Correspondence: (F.R.); (A.B.); Tel.: +39-0521-033816 (F.R.); +39-051-2091244 (A.B.); Fax: +39-0521-033802 (F.R.); +39-051-2091224 (A.B.)
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, 40126 Bologna, Italy; (G.S.); (F.L.); (G.S.)
- Correspondence: (F.R.); (A.B.); Tel.: +39-0521-033816 (F.R.); +39-051-2091244 (A.B.); Fax: +39-0521-033802 (F.R.); +39-051-2091224 (A.B.)
| |
Collapse
|
12
|
Antifibrotic effect of curcumin, N-acetyl cysteine and propolis extract against bisphenol A-induced hepatotoxicity in rats: Prophylaxis versus co-treatment. Life Sci 2020; 260:118245. [PMID: 32791144 DOI: 10.1016/j.lfs.2020.118245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
AIMS Bisphenol A (BPA) has been shown to induce liver fibrosis in rodents. Therefore, this study examined the protective effect of a triple combination of curcumin (Cur), N-acetyl cysteine (NAC) and propolis (Prp) extract against BPA-induced hepatic fibrosis. METHODS 100 Wistar male rats were equally assigned into 10 groups; one group was designated as control. 10 rats were gavaged with BPA (50 mg/kg/day) for 8 wk and left un-treated (BPA group). The remaining 80 rats were divided into 8 groups, distributed in 2 models. Protective model: rats were daily co-treated with BPA and Cur (100 mg/kg, p.o) or NAC (150 mg/kg, p.o) or Prp (200 mg/kg, p.o) or their combination for 8 wk. Preventive model: rats were daily treated with Cur or NAC or Prp or their combination for 4 wk before BPA administration and then in the same manner as protective model. KEY FINDINGS Current treatment interventions significantly alleviated BPA-induced hepatic damage and fibrosis. They also restored pro-oxidant/antioxidant balance, shifted cytokine balance towards the anti-inflammatory side, decreasing interleukin-1β/interleukin-10 ratio. Moreover, these compounds seem to exert anti-apoptotic effects by increasing the immunoexpression of B-cell lymphoma 2 in hepatocytes and decreasing hepatic caspase-3 content. Finally, they ameliorated extracellular matrix turn over through down-regulation of matrix metalloproteinase-9 and up-regulation of tissue inhibitor of matrix metalloproteinase-2 genetic expression. SIGNIFICANCE Current treatments guarded against BPA-induced hepatic fibrosis due to their antioxidant, anti-inflammatory and anti-apoptotic properties, decreasing extracellular matrix turnover. Interestingly, the triple therapy provided hepatoprotection superior to monotherapy. Besides, prophylactic and concurrent treatments seem to be more effective than concurrent treatments.
Collapse
|
13
|
Aldose Reductase Differential Inhibitors in Green Tea. Biomolecules 2020; 10:biom10071003. [PMID: 32640594 PMCID: PMC7407822 DOI: 10.3390/biom10071003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Aldose reductase (AKR1B1), the first enzyme in the polyol pathway, is likely involved in the onset of diabetic complications. Differential inhibition of AKR1B1 has been proposed to counteract the damaging effects linked to the activity of the enzyme while preserving its detoxifying ability. Here, we show that epigallocatechin gallate (EGCG), one of the most representative catechins present in green tea, acts as a differential inhibitor of human recombinant AKR1B1. A kinetic analysis of EGCG, and of its components, gallic acid (GA) and epigallocatechin (EGC) as inhibitors of the reduction of L-idose, 4-hydroxy2,3-nonenal (HNE), and 3-glutathionyl l-4-dihydroxynonanal (GSHNE) revealed for the compounds a different model of inhibition toward the different substrates. While EGCG preferentially inhibited L-idose and GSHNE reduction with respect to HNE, gallic acid, which was still active in inhibiting the reduction of the sugar, was less active in inhibiting HNE and GSHNE reduction. EGC was found to be less efficient as an inhibitor of AKR1B1 and devoid of any differential inhibitory action. A computational study defined different interactive modes for the three substrates on the AKR1B1 active site and suggested a rationale for the observed differential inhibition. A chromatographic fractionation of an alcoholic green tea extract revealed that, besides EGCG and GA, other components may exhibit the differential inhibition of AKR1B1.
Collapse
|
14
|
Sojoodi M, Wei L, Erstad DJ, Yamada S, Fujii T, Hirschfield H, Kim RS, Lauwers GY, Lanuti M, Hoshida Y, Tanabe KK, Fuchs BC. Epigallocatechin Gallate Induces Hepatic Stellate Cell Senescence and Attenuates Development of Hepatocellular Carcinoma. Cancer Prev Res (Phila) 2020; 13:497-508. [PMID: 32253266 DOI: 10.1158/1940-6207.capr-19-0383] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly morbid condition with lack of effective treatment options. HCC arises from chronically inflamed and damaged liver tissue; therefore, chemoprevention may be a useful strategy to reduce HCC incidence. Several reports suggest that epigallocatechin gallate (EGCG), extracted from green tea, can suppress liver inflammation and fibrosis in animal models, but its role in HCC chemoprevention is not well established. In this study, male Wistar rats were injected with diethylnitrosamine at 50 mg/kg for 18 weeks to induce cirrhosis and HCC, and EGCG was given in drinking water at a concentration of 0.02%. Clinically achievable dosing of EGCG was well-tolerated in diethylnitrosamine-injured rats and was associated with improved serum liver markers including alanine transaminase, aspartate transaminase, and total bilirubin, and reduced HCC tumor formation. Transcriptomic analysis of diethylnitrosamine-injured hepatic tissue was notable for increased expression of genes associated with the Hoshida high risk HCC gene signature, which was prevented with EGCG treatment. EGCG treatment also inhibited fibrosis progression, which was associated with inactivation of hepatic stellate cells and induction of the senescence-associated secretory phenotype. In conclusion, EGCG administered at clinically safe doses exhibited both chemopreventive and antifibrotic effects in a rat diethylnitrosamine liver injury model.
Collapse
Affiliation(s)
- Mozhdeh Sojoodi
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.
| | - Lan Wei
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Derek J Erstad
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Suguru Yamada
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Tsutomu Fujii
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Hadassa Hirschfield
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rosa S Kim
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gregory Y Lauwers
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth K Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
15
|
Ramakrishnan P, Loh WM, Gopinath SC, Bonam SR, Fareez IM, Mac Guad R, Sim MS, Wu YS. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm Sin B 2020; 10:399-413. [PMID: 32140388 PMCID: PMC7049637 DOI: 10.1016/j.apsb.2019.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Activated pancreatic stellate cells (PSCs) have been widely accepted as a key precursor of excessive pancreatic fibrosis, which is a crucial hallmark of chronic pancreatitis (CP) and its formidable associated disease, pancreatic cancer (PC). Hence, anti-fibrotic therapy has been identified as a novel therapeutic strategy for treating CP and PC by targeting PSCs. Most of the anti-fibrotic agents have been limited to phase I/II clinical trials involving vitamin analogs, which are abundant in medicinal plants and have proved to be promising for clinical application. The use of phytomedicines, as new anti-fibrotic agents, has been applied to a variety of complementary and alternative approaches. The aim of this review was to present a focused update on the selective new potential anti-fibrotic agents, including curcumin, resveratrol, rhein, emodin, green tea catechin derivatives, metformin, eruberin A, and ellagic acid, in combating PSC in CP and PC models. It aimed to describe the mechanism(s) of the phytochemicals used, either alone or in combination, and the associated molecular targets. Most of them were tested in PC models with similar mechanism of actions, and curcumin was tested intensively. Future research may explore the issues of bioavailability, drug design, and nano-formulation, in order to achieve successful clinical outcomes with promising activity and tolerability.
Collapse
Affiliation(s)
- Puvanesswaray Ramakrishnan
- Ageing and Age-Associated Disorders Research Group, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Wei Mee Loh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Subash C.B. Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Srinivasa Reddy Bonam
- UMR 7242, CNRS-University of Strasbourg, Biotechnology and Cell Signaling/Laboratory of Excellence Medalis, Illkirch 67400, France
| | - Ismail M. Fareez
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
- Corresponding authors. Tel./fax: +60 3 51022709 (Yuan Seng Wu); +60 3 79675749 (Maw Shin Sim).
| | - Yuan Seng Wu
- Department of Biochemistry, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor 42610, Malaysia
- Corresponding authors. Tel./fax: +60 3 51022709 (Yuan Seng Wu); +60 3 79675749 (Maw Shin Sim).
| |
Collapse
|
16
|
Ma X, Jiang Y, Zhang W, Wang J, Wang R, Wang L, Wei S, Wen J, Li H, Zhao Y. Natural products for the prevention and treatment of cholestasis: A review. Phytother Res 2020; 34:1291-1309. [PMID: 32026542 DOI: 10.1002/ptr.6621] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Cholestasis is a common manifestation of decreased bile flow in various liver diseases. It results in fibrosis and even cirrhosis without proper treatment. It is believed that a wide range of factors, including transporter dysfunction, oxidative stress, inflammatory damage, and immune disruption, can cause cholestasis. In recent years, natural products have drawn much attention for specific multiple-target activities in diseases. Many attempts have been made to investigate the anticholestatic effects of natural products with advanced technology. This review summarizes recent studies on the biological activities and mechanisms of recognized compounds for cholestasis treatment. Natural products, including various flavonoids, phenols, acids, quinones, saponins, alkaloids, glycosides, and so on, function as comprehensive regulators via ameliorating oxidative stress, inflammation, and apoptosis, restoring bile acid balance with hepatic transporters, and adjusting immune disruption. Moreover, in this progress, nuclear factor erythroid 2-related factor 2, reactive oxygen species production, heme oxygenase-1, NF-κB, cholesterol 7 alpha-hydroxylase, and farnesoid X receptors are thought as main targets for the activity of natural products. Therefore, this review presents the detailed mechanisms that include multiple targets and diverse signalling pathways. Natural products are the valuable when seeking novel therapeutic agents to treat cholestatic liver diseases.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lifu Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski MR, Karkucinska-Wieckowska A, Oliveira PJ. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr Med Chem 2019; 26:3376-3406. [PMID: 28554320 DOI: 10.2174/0929867324666170529101810] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are cytoplasmic double-membraned organelles that are involved in a myriad of key cellular regulatory processes. The loss of mitochondrial function is related to the pathogenesis of several human diseases. Over the last decades, an increasing number of studies have shown that dietary polyphenols can regulate mitochondrial redox status, and in some cases, prevent or delay disease progression. This paper aims to review the role of four dietary polyphenols - resveratrol, curcumin, epigallocatechin-3-gallate nd quercetin - in molecular pathways regulated by mitochondria and their potential impact on human health. Cumulative evidence showed that the aforementioned polyphenols improve mitochondrial functions in different in vitro and in vivo experiments. The mechanisms underlying the polyphenols' beneficial effects include, among others, the attenuation of oxidative stress, the regulation of mitochondrial metabolism and biogenesis and the modulation of cell-death signaling cascades, among other mitochondrial-independent effects. The understanding of the chemicalbiological interactions of dietary polyphenols, namely with mitochondria, may have a huge impact on the treatment of mitochondrial dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal.,CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| |
Collapse
|
18
|
Epigallocatechin-3-Gallate (EGCG), An Active Constituent of Green Tea: Implications in the Prevention of Liver Injury Induced by Diethylnitrosamine (DEN) in Rats. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver diseases are one of the most detrimental conditions that may cause inflammation, leading to tissue damage and perturbations in functions. Several drugs are conventionally available for the treatment of such diseases, but the emergence of resistance and drug-induced liver injury remains pervasive. Hence, alternative therapeutic strategies have to be looked upon. Epigallocatechin-3-gallate (EGCG) is a naturally occurring polyphenol in green tea that has been known for its disease-curing properties. In this study, we aimed to evaluate its anti-oxidative potential and protective role against diethylnitrosamine (DEN)-induced liver injury. Four different groups of rats were used for this study. The first group received normal saline and served as the control group. The second group received DEN (50 mg/kg body wt) alone and third group received DEN plus EGCG (40 mg/kg body wt) only. The fourth group were treated with EGCG only. The liver protective effect of EGCG against DEN toxicity through monitoring the alterations in aspartate transaminase (AST), and alanine transaminase (ALT) and alkaline phosphatase (ALP) activities, serum level of pro-inflammatory mediators and anti-oxidant enzymes, histopathological alterations, measurement of cellular apoptosis, and cell cycle analysis was examined. The rats that were given DEN only had a highly significantly elevated levels of liver enzymes and pro-inflammatory cytokines, highly decreased anti-oxidative enzymes, and histological changes. In addition, a significant elevation in the percentage of apoptotic nuclei and cell cycle arrest in the sub- G1 phase was detected. EGCG acts as a hepatoprotectant on DENs by reducing the serum levels of liver functional enzymes, increasing total anti-oxidative capacity, reducing pathological changes and apoptosis, as well as causing the movement of cells from the sub G1 to S or G2/M phase of the cell cycle. In conclusion, EGCG displayed a powerful hepatoprotective additive as it considerably mitigates the liver toxicity and apoptosis induced by DEN.
Collapse
|
19
|
Chen TT, Peng S, Wang Y, Hu Y, Shen Y, Xu Y, Yin J, Liu C, Cao J. Improvement of Mitochondrial Activity and Fibrosis by Resveratrol Treatment in Mice with Schistosoma japonicum Infection. Biomolecules 2019; 9:biom9110658. [PMID: 31717714 PMCID: PMC6920829 DOI: 10.3390/biom9110658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023] Open
Abstract
Schistosomiasis caused by Schistosoma japonicum is a major parasitic disease in the People's Republic of China. Liver fibrosis is the main pathological mechanism of schistosomiasis, and it is also the major lesion. The common drug used for its treatment, praziquantel (PZQ), does not have a marked effect on liver fibrosis. Resveratrol (RSV), which is an antioxidant, improves mitochondrial function and also attenuates liver fibrosis. The combination of PZQ and RSV has been found to have a synergistic antischistosomal effect on Schistosoma mansoni; additionally, the activity of PZQ is enhanced in the presence of RSV. Here, we examine the therapeutic effects of RSV on the S. japonicum infection in a mouse model, and we investigate RSV as a novel therapeutic agent for mitochondrial function and schistosomiasis-associated liver fibrosis (SSLF). Mitochondrial membrane potential was examined using flow cytometry analysis. The expression of the mitochondrial biogenesis genes PGC-α and fibrosis-associated genes collagen I, collagen III and α-SMA were examined using western blot analysis. Fibrosis-associated histological changes were examined using Masson trichrome staining. Additionally, the effects of RSV on S. japonicum adult worms were examined using scanning electron microscopy and transmission electron microscopy. RSV treatment improved mitochondrial function by increasing membrane potential and increasing PGC-α expression (mitochondrial biogenesis). Further, RSV attenuated liver injury, including liver scarring, by decreasing collagen deposition and the extent of fibrosis, based on the decrease in expression of the fibrosis-related genes. RSV also decreased the adult worm count and caused considerable physical damage to the worm. These results indicate that RSV upregulates mitochondrial biogenesis and inhibits fibrosis. RSV may have potential as a therapeutic target for the treatment of fibrosis in schistosomiasis.
Collapse
Affiliation(s)
- Tina Tuwen Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shihyi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yanjuan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yuxin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Congshan Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
20
|
Shenqi Fuzheng Injection impairs bile duct ligation-induced cholestatic liver injury in vivo. Biosci Rep 2019; 39:BSR20180787. [PMID: 30610157 PMCID: PMC6350043 DOI: 10.1042/bsr20180787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background and aim: The aim of the present study sought to determine the protective function of Shenqi Fuzheng Injection (SFI) in cholestatic liver injury. Methods: Cholestatic liver injury was induced in a 7-day bile duct-ligated (BDL) rat model. Rats were divided into three groups that were comprised of: (1) Sham; (2) BDL model; and (3) SFI treatment. The sham and BDL groups were treated with an appropriate volume of 0.9% sodium chloride as the vehicle, and the SFI group was administered SFI at a dose of 20 ml/kg/day, via tail vein injection. Results: SFI significantly (all at P<0.01) decreased the levels of serum aspartate aminotransferase and alanine aminotransferase as compared with the BDL group, which was associated with reduced severity of inflammatory cell infiltration and hepatic damage. Moreover, SFI significantly decreased the levels of hepatic interleukin-6 (P<0.01), tumor necrosis factor-α (P=0.041), and malondialdehyde (P=0.026), and significantly increased the levels of total superoxide dismutase (P<0.01), and the GSH/GSSG ratio (P=0.041) in the liver. Western blot analysis showed that SFI increased PPAR-γ expression; however, SFI treatment decreased cyclooxygenase-2 (COX-2) expression and the phosphorylation of NF-κBp65. Conclusions: These data demonstrated that SFI attenuated both inflammation and oxidative stress, and disrupted cholestatic liver injury. The involved mechanism was dependent, at least in part, on regulating PPAR-γ, COX-2, and NF-κBp65 expression.
Collapse
|
21
|
Hsieh YP, Wu KJ, Chen HM, Deng YT. Arecoline activates latent transforming growth factor β1 via mitochondrial reactive oxygen species in buccal fibroblasts: Suppression by epigallocatechin-3-gallate. J Formos Med Assoc 2018; 117:527-534. [DOI: 10.1016/j.jfma.2017.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/29/2023] Open
|
22
|
The critical role of epigallocatechin gallate in regulating mitochondrial metabolism. Future Med Chem 2018. [DOI: 10.4155/fmc-2017-0204
expr 946749968 + 822201775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Epigallocatechin gallate (EGCG), one of polyphenols isolated from green tea, exhibits biology-benefiting effects with minimum severe adverse. EGCG is known to be a mitochondrion-targeting medicinal agent, regulating mitochondrial metabolism, including mitochondrial biogenesis, mitochondrial bioenergetics, and mitochondria-mediated cell cycle and apoptosis. EGCG might exhibit either antioxidative activity to prevent against oxidative stress or pro-oxidative activity to counteract cancer cells, which depends on the cellular stress situations, cell types and the concentration of EGCG. Recent research has gained positive and promising data. This review will discuss the interaction between EGCG and mitochondrion.
Collapse
|
23
|
The critical role of epigallocatechin gallate in regulating mitochondrial metabolism. Future Med Chem 2018; 10:795-809. [DOI: 10.4155/fmc-2017-0204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epigallocatechin gallate (EGCG), one of polyphenols isolated from green tea, exhibits biology-benefiting effects with minimum severe adverse. EGCG is known to be a mitochondrion-targeting medicinal agent, regulating mitochondrial metabolism, including mitochondrial biogenesis, mitochondrial bioenergetics, and mitochondria-mediated cell cycle and apoptosis. EGCG might exhibit either antioxidative activity to prevent against oxidative stress or pro-oxidative activity to counteract cancer cells, which depends on the cellular stress situations, cell types and the concentration of EGCG. Recent research has gained positive and promising data. This review will discuss the interaction between EGCG and mitochondrion.
Collapse
|
24
|
Kosuru RY, Roy A, Das SK, Bera S. Gallic Acid and Gallates in Human Health and Disease: Do Mitochondria Hold the Key to Success? Mol Nutr Food Res 2017; 62. [PMID: 29178387 DOI: 10.1002/mnfr.201700699] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/15/2017] [Indexed: 12/17/2022]
Abstract
Gallic acid and gallate esters are widely used as dietary supplements or additives with clinical significances. Over the last few decades, a large number of publications have been reported stating the antioxidative, antiapoptotic, cardioprotective, neuroprotective, and anticancer properties of gallic acid and gallates, and mostly demonstrated their antioxidative or prooxidative properties influencing the reactive oxygen species (ROS) signaling networks. However, very little focus has been paid to clinical trials, and this restricted their use as a prescribed preventative supplement. Since mitochondria are the principal organelles responsible for ROS generation, we reviewed the existing literature of mitochondria-specific effects of gallates including ROS production, respiration, mitochondrial biogenesis, apoptosis, and the physico-chemical parameters affecting the outcome of gallate supplementation to various health scenarios such as cardiovascular diseases, neurodegeneration, hepatic ailments, or cancers. The major signaling pathways and the molecules targeted by gallic acid and its derivatives have also been discussed with emphasis on mitochondria as the target site. This review provides a better understanding of the effect of gallic acid and gallate esters on mitochondrial functions and in designing effective preventative measures against the onset of various diseases.
Collapse
Affiliation(s)
- Rekha Yamini Kosuru
- School of Life Sciences, B. S. Abdur Rahman University, Vandalur, Chennai, 600048, India
| | - Amrita Roy
- School of Life Sciences, B. S. Abdur Rahman University, Vandalur, Chennai, 600048, India
| | - Sujoy K Das
- Bioproducts Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, 600020, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Soumen Bera
- School of Life Sciences, B. S. Abdur Rahman University, Vandalur, Chennai, 600048, India
| |
Collapse
|
25
|
Shearn CT, Orlicky DJ, Petersen DR. Dysregulation of antioxidant responses in patients diagnosed with concomitant Primary Sclerosing Cholangitis/Inflammatory Bowel Disease. Exp Mol Pathol 2017; 104:1-8. [PMID: 29180269 DOI: 10.1016/j.yexmp.2017.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Primary Sclerosing Cholangitis (PSC) is a chronic cholestatic liver disease that is characterized by severe peri-biliary tract inflammation and fibrosis, elevated oxidative stress and hepatocellular injury. A hallmark of PSC patients is the concurrent diagnosis of Inflammatory Bowel Disease occurring in approximately 70%-80% of PSC patients (PSC/IBD). The objective of this study was to determine the impact of end stage PSC/IBD on cellular antioxidant responses and the formation of protein carbonylation. METHODS Using hepatic tissue and whole cell extracts isolated from age-matched healthy humans and patients diagnosed with end stage PSC/IBD, overall inflammation, oxidative stress, and protein carbonylation were assessed by Western blotting, and immunohistochemistry. RESULTS Increased immunohistochemical staining for CD3+ (lymphocyte), CD68 (Kupffer cell) and myeloperoxidase (neutrophil) colocalized with the extensive Picrosirius red stained fibrosis confirming the inflammatory aspect of PSC. Importantly, the increased inflammation also colocalized with elevated periportal post-translational modification by the reactive aldehydes 4-HNE, MDA and acrolein. 4-HNE, MDA and acrolein IHC all displayed a significant component in hepatocytes adjacent to fibrotic regions. Furthermore, acrolein was also elevated within the nuclei of periportal inflammatory cells whereas MDA staining was increased in hepatocytes across the lobule. Prussian Blue staining, when compared to the positive controls (ALD, NASH), did not display any evidence of iron accumulation in PSC/IBD livers. Western analysis of PSC/IBD anti-oxidant responses revealed elevated expression of SOD2, GSTπ as well as upregulation of Akt Ser473 phosphorylation. In contrast, expression of GSTμ, GSTA4, catalase, Gpx1 and Hsp70 were suppressed. These data were further supported by a significant decrease in measured GST activity. Dysregulation of anti-oxidant responses in the periportal region of the liver was supported by elevated SOD2 and GSTπ IHC signals in periportal hepatocytes and cholangiocytes. Expression of the Nrf2-regulated proteins HO-1, NAD(P)H quinone reductase (NQO1) and Gpx1 was primarily localized to macrophages. In contrast, catalase staining decreased within periportal hepatocytes and was not evident within cholangiocytes. CONCLUSIONS Results herein provide additional evidence that cholestasis induces significant increases in periportal oxidative stress and suggest that there are significant differences in the cellular and subcellular generation of reactive aldehydes formed during cholestatic liver injury. Furthermore, these data suggest that anti-oxidant responses are dysregulated during end-stage PSC/IBD supporting pathological data. This work was funded by NIH5R37AA009300-22 D.R.P.
Collapse
Affiliation(s)
- Colin T Shearn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
26
|
Shen K, Feng X, Pan H, Zhang F, Xie H, Zheng S. Baicalin Ameliorates Experimental Liver Cholestasis in Mice by Modulation of Oxidative Stress, Inflammation, and NRF2 Transcription Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6169128. [PMID: 28757911 PMCID: PMC5516718 DOI: 10.1155/2017/6169128] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/18/2017] [Accepted: 05/28/2017] [Indexed: 12/21/2022]
Abstract
Experimental cholestatic liver fibrosis was performed by bile duct ligation (BDL) in mice, and significant liver injury was observed in 15 days. Administration of baicalin in mice significantly ameliorates liver fibrosis. Experimental cholestatic liver fibrosis was associated with induced gene expression of fibrotic markers such as collagen I, fibronectin, alpha smooth muscle actin (SMA), and connective tissue growth factor (CTGF); increased inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2); increased oxidative stress and reactive oxygen species- (ROS-) inducing enzymes (NOX2 and iNOS); dysfunctional mitochondrial electron chain complexes; and apoptotic/necrotic cell death markers (DNA fragmentation, caspase 3 activity, and PARP activity). Baicalin administration on alternate day reduced fibrosis along with profibrotic gene expression, proinflammatory cytokines, oxidative stress, and cell death whereas improving the function of mitochondrial electron transport chain. We observed baicalin enhanced NRF2 activation by nuclear translocation and induced its target genes HO-1 and GCLM, thus enhancing antioxidant defense. Interplay of oxidative stress/inflammation and NRF2 were key players for baicalin-mediated protection. Stellate cell activation is crucial for initiation of fibrosis. Baicalin alleviated stellate cell activation and modulated TIMP1, SMA, collagen 1, and fibronectin in vitro. This study indicates that baicalin might be beneficial for reducing inflammation and fibrosis in liver injury models.
Collapse
Affiliation(s)
- Kezhen Shen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaowen Feng
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hao Pan
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Feng Zhang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Shusen Zheng
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
27
|
Palabiyik SS, Dincer B, Cadirci E, Cinar I, Gundogdu C, Polat B, Yayla M, Halici Z. A new update for radiocontrast-induced nephropathy aggravated with glycerol in rats: the protective potential of epigallocatechin-3-gallate. Ren Fail 2017; 39:314-322. [PMID: 28100100 PMCID: PMC6014352 DOI: 10.1080/0886022x.2016.1277245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Contrast media (CM) is known to have nephrotoxic adverse effects. Epigallocatechin-3-gallate (EGCG) is the most abundant and active catechin in green tea, and has strong antioxidant and anti-inflammatory properties. This study investigated whether EGCG can reduce contrast-induced nephrotoxicity (CIN), alone or with glycerol (GLY)-induced renal damage, and to understand its mechanisms of protection against toxicity, using models of GLY and CIN in rats. The rats were separated into eight groups (n = 6 in each), as follows: Healthy, GLY, CM, GLY + CM, CM + EGCG 50 mg/kg (po), GLY + CM + EGCG 50 mg/kg (po), CM + EGCG 100 mg/kg (po), and GLY + CM + EGCG 100 mg/kg (po). Both doses of EGCG protected against CM-induced renal dysfunction, as measured by serum creatinine and blood urea nitrogen (BUN). In addition, EGCG treatment markedly improved CIN-induced oxidative stress, and resulted in a significant down-regulatory effect on tumor necrosis factor (TNF)-α and nuclear factor (NF)-κB mRNA expression. Moreover, histopathological analysis showed that EGCG also attenuated CM-induced kidney damage. Considering the potential clinical use of CM and the numerous health benefits of EGCG, this study showed the protective role of multi-dose EGCG treatment on CIN and GLY-aggravated CIN through different mechanisms.
Collapse
Affiliation(s)
- Saziye Sezin Palabiyik
- a Faculty of Pharmacy, Pharmaceutical Toxicology Department , Ataturk University , Erzurum , Turkey
| | - Busra Dincer
- b Faculty of Medicine, Pharmacology Department , Ataturk University , Erzurum , Turkey.,c Faculty of Pharmacy, Pharmacology Department , Erzincan University , Erzincan , Turkey
| | - Elif Cadirci
- b Faculty of Medicine, Pharmacology Department , Ataturk University , Erzurum , Turkey
| | - Irfan Cinar
- b Faculty of Medicine, Pharmacology Department , Ataturk University , Erzurum , Turkey
| | - Cemal Gundogdu
- d Faculty of Medicine, Pathology Department , Ataturk University , Erzurum , Turkey
| | - Beyzagul Polat
- e Faculty of Pharmacy, Pharmacology Department , Ataturk University , Erzurum , Turkey
| | - Muhammed Yayla
- f Faculty of Medicine, Pharmacology Department , Kafkas University , Kars , Turkey
| | - Zekai Halici
- b Faculty of Medicine, Pharmacology Department , Ataturk University , Erzurum , Turkey
| |
Collapse
|
28
|
Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4234061. [PMID: 28070230 PMCID: PMC5192343 DOI: 10.1155/2016/4234061] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
The crucial roles of oxidative stress and inflammation in the development of hepatic diseases have been unraveled and emphasized for decades. From steatosis to fibrosis, cirrhosis and liver cancer, hepatic oxidative stress, and inflammation are sustained and participated in this pathological progressive process. Notably, increasing evidences showed that oxidative stress and inflammation are tightly related, which are regarded as essential partners that present simultaneously and interact with each other in various pathological conditions, creating a vicious cycle to aggravate the hepatic diseases. Clarifying the interaction of oxidative stress and inflammation is of great importance to provide new directions and targets for developing therapeutic intervention. Herein, this review is concerned with the regulation and interdependence of oxidative stress and inflammation in a variety of liver diseases. In addition to classical mediators and signaling, particular emphasis is placed upon immune suppression, a potential linkage of oxidative stress and inflammation, to provide new inspiration for the treatment of liver diseases. Furthermore, since antioxidation and anti-inflammation have been extensively attempted as the strategies for treatment of liver diseases, the application of herbal medicines and their derived compounds that protect liver from injury via regulating oxidative stress and inflammation collectively were reviewed and discussed.
Collapse
|
29
|
Elswefy SES, Abdallah FR, Atteia HH, Wahba AS, Hasan RA. Inflammation, oxidative stress and apoptosis cascade implications in bisphenol A-induced liver fibrosis in male rats. Int J Exp Pathol 2016; 97:369-379. [PMID: 27925325 DOI: 10.1111/iep.12207] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/15/2016] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A (BPA) is a key monomer in the production of plastics. It has been shown to be hepatotoxic. Inflammation and oxidative stress are closely linked with liver fibrosis, the major contributing factor to hepatic failure. Therefore, the aim of this study was to evaluate the impact of chronic exposure to BPA on the development of hepatic fibrosis in male rats and to determine the cross-talk between the hepatic cytokine network, oxidative stress and apoptosis. For this purpose, 30 male Wistar albino rats were divided into three equal groups as follows: the first group was given no treatment (normal control group); the second group was given corn oil once daily by oral gavage for 8 weeks (vehicle control group); and the third group received BPA (50 mg/kg body weight/day, p.o.) for 8 weeks. BPA administration induced liver fibrosis as reflected in an increase in serum hepatic enzymes activities, hepatic hydroxyproline content and histopathological changes particularly increased collagen fibre deposition around the portal tract. In addition, there was inflammation (as reflected in increase in interleukin-1beta 'IL-1β', decrease in interleukin-10 'IL-10' serum levels and increase in IL-1β/IL-10 ratio), oxidative stress (as reflected in increase in malondialdehyde (MDA) level, reduction in reduced glutathione (GSH) content and inhibition of catalase (CAT) activity) and apoptosis [as reflected in an increase in caspase-3 level and a decrease in numbers of B-cell lymphoma 2 (BCL2)-immunopositive hepatocytes]. Interestingly, BPA had an upregulating effect on an extracellular matrix turnover gene [as reflected in matrix metalloproteinase-9 (MMP-9)] and a downregulating effect on its inhibitor gene [as reflected in tissue inhibitor of matrix metalloproteinase-2 (TIMP-2)] expression. Thus, the mechanism by which BPA induced liver fibrosis seems to be related to stimulation of the inflammatory response, along with oxidative stress, the apoptotic pathway and activation of extracellular matrix turnover.
Collapse
Affiliation(s)
- Sahar El-Sayed Elswefy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia Governorate, Egypt
| | - Fatma Rizk Abdallah
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia Governorate, Egypt
| | - Hebatallah Husseini Atteia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia Governorate, Egypt
| | - Alaa Samir Wahba
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia Governorate, Egypt
| | - Rehab Abdallah Hasan
- Department of Histology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
30
|
Tak E, Park GC, Kim SH, Jun DY, Lee J, Hwang S, Song GW, Lee SG. Epigallocatechin-3-gallate protects against hepatic ischaemia-reperfusion injury by reducing oxidative stress and apoptotic cell death. J Int Med Res 2016; 44:1248-1262. [PMID: 27807255 PMCID: PMC5536772 DOI: 10.1177/0300060516662735] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective To investigate the protective effects of epigallocatechin-3-gallate (EGCG), a major polyphenol source in green tea, against hepatic ischaemia–reperfusion injury in mice. Methods The partial hepatic ischaemia–reperfusion injury model was created by employing the hanging-weight method in C57BL/6 male mice. EGCG (50 mg/kg) was administered via an intraperitoneal injection 45 min before performing the reperfusion. A number of markers of inflammation, oxidative stress, apoptosis and liver injury were measured after the ischaemia–reperfusion injury had been induced. Results The treatment groups were: sham-operated (Sham, n = 10), hepatic ischaemia–reperfusion injury (IR, n = 10), and EGCG with ischaemia–reperfusion injury (EGCG-treated IR, n = 10). Hepatic ischaemia–reperfusion injury increased the levels of biochemical and histological markers of liver injury, increased the levels of malondialdehyde, reduced the glutathione/oxidized glutathione ratio, increased the levels of oxidative stress and lipid peroxidation markers, decreased B-cell lymphoma 2 levels, and increased the levels of Bax, cytochrome c, cleaved caspase-3, and cleaved caspase-9. Pretreatment with EGCG ameliorated all of these changes. Conclusion The antioxidant and antiapoptotic effects of EGCG protected against hepatic ischaemia–reperfusion injury in mice.
Collapse
Affiliation(s)
- Eunyoung Tak
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gil-Chun Park
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seok-Hwan Kim
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Young Jun
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jooyoung Lee
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shin Hwang
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gi-Won Song
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Gyu Lee
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
Rehman H, Liu Q, Krishnasamy Y, Shi Z, Ramshesh VK, Haque K, Schnellmann RG, Murphy MP, Lemasters JJ, Rockey DC, Zhong Z. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2016; 8:14-27. [PMID: 27186319 PMCID: PMC4859875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-β1 (TGF-β1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-β fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-β expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-β1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Hasibur Rehman
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
- Department of Biology, Faculty of Sciences, University of TabukSaudi Arabia
| | - Qinlong Liu
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
- The Second Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning Province, China
| | - Yasodha Krishnasamy
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
| | - Zengdun Shi
- Department of Medicine, Medical University of South CarolinaCharleston, SC 29425, USA
| | - Venkat K Ramshesh
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
| | - Khujista Haque
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
| | - Rick G Schnellmann
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
- Ralph H. Johnson VA Medical CenterCharleston, SC 29403, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC BuildingCambridge CB2 0XY, U.K.
| | - John J Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
- Department of Biochemistry & Molecular Biology, Medical University of South CarolinaCharleston, SC 29425, USA
- Institute of Theoretical & Experimental Biophysics, Russian Academy of SciencesPushchino, Russian Federation
| | - Don C Rockey
- Department of Medicine, Medical University of South CarolinaCharleston, SC 29425, USA
| | - Zhi Zhong
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
| |
Collapse
|
32
|
Weiskirchen R. Hepatoprotective and Anti-fibrotic Agents: It's Time to Take the Next Step. Front Pharmacol 2016; 6:303. [PMID: 26779021 PMCID: PMC4703795 DOI: 10.3389/fphar.2015.00303] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis and cirrhosis cause strong human suffering and necessitate a monetary burden worldwide. Therefore, there is an urgent need for the development of therapies. Pre-clinical animal models are indispensable in the drug discovery and development of new anti-fibrotic compounds and are immensely valuable for understanding and proofing the mode of their proposed action. In fibrosis research, inbreed mice and rats are by far the most used species for testing drug efficacy. During the last decades, several hundred or even a thousand different drugs that reproducibly evolve beneficial effects on liver health in respective disease models were identified. However, there are only a few compounds (e.g., GR-MD-02, GM-CT-01) that were translated from bench to bedside. In contrast, the large number of drugs successfully tested in animal studies is repeatedly tested over and over engender findings with similar or identical outcome. This circumstance undermines the 3R (Replacement, Refinement, Reduction) principle of Russell and Burch that was introduced to minimize the suffering of laboratory animals. This ethical framework, however, represents the basis of the new animal welfare regulations in the member states of the European Union. Consequently, the legal authorities in the different countries are halted to foreclose testing of drugs in animals that were successfully tested before. This review provides a synopsis on anti-fibrotic compounds that were tested in classical rodent models. Their mode of action, potential sources and the observed beneficial effects on liver health are discussed. This review attempts to provide a reference compilation for all those involved in the testing of drugs or in the design of new clinical trials targeting hepatic fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy, and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
33
|
Oliveira MRD, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM. Epigallocatechin gallate and mitochondria-A story of life and death. Pharmacol Res 2015; 104:70-85. [PMID: 26731017 DOI: 10.1016/j.phrs.2015.12.027] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 01/05/2023]
Abstract
Epigallocatechin gallate (EGCG) is a flavonoid belonging to the chemical class of falvan-3-ols (catechins) esterified with gallic acid. It is the main catechin found in green tea (Camellia sinensis L.) accounting for about 50% of its total polyphenols. Extensive research performed in recent years has revealed that green tea demonstrates a wide range of positive biological activities against serious chronic diseases such as cardiovascular and neurodegenerative pathologies, cancer, metabolic syndrome and type 2 diabetes. These protective properties can be traced back to the potent antioxidant and anti-inflammatory activities of EGCG. Recent studies have suggested that it may exert its beneficial effects by modulating mitochondrial functions impacting mitochondrial biogenesis, bioenergetic control (ATP production and anabolism), alteration of the cell cycle, and mitochondria-related apoptosis. This review evaluates recent evidence on the ability of EGCG to exert critical influence on the above mentioned pathways.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015; 89:209-26. [PMID: 26315960 DOI: 10.1016/j.neuint.2015.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 02/08/2023]
Abstract
Oxidative stress has for long been linked to the neuronal cell death in many neurodegenerative conditions. Conventional antioxidant therapies have been less effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Nanoparticle antioxidants constitute a new wave of antioxidant therapies for prevention and treatment of diseases involving oxidative stress. It is believed that nanoparticle antioxidants have strong and persistent interactions with biomolecules and would be more effective against free radical induced damage. Nanoantioxidants include inorganic nanoparticles possessing intrinsic antioxidant properties, nanoparticles functionalized with antioxidants or antioxidant enzymes to function as an antioxidant delivery system. Nanoparticles containing antioxidants have shown promise as high-performance therapeutic nanomedicine in attenuating oxidative stress with potential applications in treating and preventing neurodegenerative conditions. However, to realize the full potential of nanoantioxidants, negative aspects associated with the use of nanoparticles need to be overcome to validate their long term applications.
Collapse
|