1
|
Rana SVS. Mechanistic paradigms of immunotoxicity, triggered by nanoparticles - a review. Toxicol Mech Methods 2024:1-17. [PMID: 39585654 DOI: 10.1080/15376516.2024.2431687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Nanoparticles (NPs) possess the ability to penetrate cells and elicit a rapid and targeted immune response, influenced by their distinct physicochemical properties. These particles can engage with both micro and macromolecules, thereby impacting various downstream signaling pathways that may lead to cell death. This review provides a comprehensive overview of the primary mechanisms contributing to the immunotoxicity of both organic and inorganic nanoparticles. The effects of carbon-based nanomaterials (CNMs), including single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, and metal oxide nanoparticles, on various immune cell types such as macrophages, neutrophils, monocytes, dendritic cells (DCs), antigen-presenting cells (APCs), and RAW 264.7 cells are examined. The immune responses discussed encompass inflammation, oxidative stress, autophagy, and apoptosis. Additionally, the roles of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and IFN-γ, along with JAK/STAT signaling pathways, are highlighted. The interaction of NPs with oxidative stress pathways, including MAPK signaling and Nrf2/ARE signaling, is also explored. Furthermore, the mechanisms by which nanoparticles induce damage to organelles such as lysosomes, the endoplasmic reticulum, exosomes, and Golgi bodies within the immune system are addressed. The review also emphasizes the genotoxic and epigenetic mechanisms associated with the immunotoxicity of NPs. Recent advancements regarding the immunotherapeutic potential of engineered NPs are reported. The roles of autophagy and apoptosis in the immunotoxicity of NPs merit further investigation. In conclusion, understanding how engineered nanoparticles modulate immune responses may facilitate the prevention and treatment of human diseases, including cancer and autoimmune disorders.
Collapse
Affiliation(s)
- S V S Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
2
|
Shen Q, Cao M, Yu C, Tang J, Song L, Ding Y, Ju L, Wei JF, Li L, Huang W. Biodegradable Mesoporous Organosilica-Based Nanostabilizer Targeting Mast Cells for Long-Term Treatment of Allergic Diseases. ACS NANO 2024; 18:16934-16946. [PMID: 38907988 DOI: 10.1021/acsnano.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Allergic diseases are immune system dysfunctions mediated by mast cell (MC) activation stimulated by specific allergens. However, current small molecular MC stabilizers for allergic disease prevention often require multiple doses over a long period of time and are associated with serious side effects. Herein, we develop a diselenide-bridged mesoporous silica nanostabilizer, proving that it could specifically target sensitized MCs via the recognition of IgE aptamer and IgE. Meantime, the IgE aptamer can also mitigate allergic reactions by preventing re-exposure of allergens from the surface of sensitized MCs. Furthermore, the diselenide-bridged scaffold can be reduced by the intracellular excessive ROS, subsequently achieving redox homeostasis via ROS depletion. Finally, the precise release of small molecular MC stabilizers along with the biodegradation of nanocarrier can stabilize the membranes of MCs. In vivo assays in passive cutaneous anaphylactic (PCA) and allergic rhinitis (AR) mice indicated that our current strategy further endowed it with a high efficacy, long-term therapeutic time window, as well as negligible inflammatory side effects for allergic diseases, offering a promising therapeutic strategy for the clinical generalization of allergic diseases.
Collapse
Affiliation(s)
- Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Mengda Cao
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210044, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jian Tang
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Lebin Song
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yanan Ding
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Linjie Ju
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- The Institute of Flexible Electronics, Xiamen University, Xiamen 361005, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- The Institute of Flexible Electronics, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Mehta NJ, Mehta SN. Nanotechnology in Retinal Disease: Current Concepts and Future Directions. J Ocul Pharmacol Ther 2024; 40:3-12. [PMID: 38052063 PMCID: PMC10890960 DOI: 10.1089/jop.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
The retina is one of the most complex and extraordinary human organs affected by genetic, metabolic, and degenerative diseases, resulting in blindness for ∼1.3 million people in the United States and over 40 million people worldwide. This translates into a huge loss of productivity, especially among younger patients with inherited retinal diseases (IRDs) and diabetic retinopathy. Age-related macular degeneration accounts for 90% of all blindness cases worldwide. The prevalence of this condition is projected to reach over 5 million individuals over the next 3 decades. There are also >20 IRD phenotypes, affecting >2 million people worldwide. Nanobiotechnology uses nanotechnology for biological applications, making use of biological materials either conceptually or directly in the fabrication of new materials. Bionanotechnology, on the other hand, uses molecular biology for the purpose of creating nanostructures (ie, structures with at least 1 dimension <100 nm). Retinal applications of these technologies are developing at a rapid pace. This review includes the most current nanotechnological applications in retinal diagnostics, theranostics, drug delivery, and targeting, including the potential for nonviral vehicles such as liposomes, micelles, and dendrimers, which pose advantages over viral vectors in retinal drug delivery. Furthermore, we discuss current and future applications as surgical adjuncts and in regenerative medicine as they pertain to retinal disease. Structure and function of nanoparticles such as carbon nanotubules, quantum dots, and magnetic nanoparticles, as well as diagnostic technologies such as next-generation DNA sequencing and single-molecule bionanosensing, will also be discussed.
Collapse
|
4
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
5
|
Oladipo AO, Lebelo SL, Msagati TAM. Nanocarrier design–function relationship: The prodigious role of properties in regulating biocompatibility for drug delivery applications. Chem Biol Interact 2023; 377:110466. [PMID: 37004951 DOI: 10.1016/j.cbi.2023.110466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The concept of drug delivery systems as a magic bullet for the delivery of bioactive compounds has emerged as a promising approach in the treatment of different diseases with significant advantages over the limitations of traditional methods. While nanocarrier-based drug delivery systems are the main advocates of drug uptake because they offer several advantages including reduced non-specific biodistribution, improved accumulation, and enhanced therapeutic efficiency; their safety and biocompatibility within cellular/tissue systems are therefore important for achieving the desired effect. The underlying power of "design-interplay chemistry" in modulating the properties and biocompatibility at the nanoscale level will direct the interaction with their immediate surrounding. Apart from improving the existing nanoparticle physicochemical properties, the balancing of the hosts' blood components interaction holds the prospect of conferring newer functions altogether. So far, this concept has been remarkable in achieving many fascinating feats in addressing many challenges in nanomedicine such as immune responses, inflammation, biospecific targeting and treatment, and so on. This review, therefore, provides a diverse account of the recent advances in the fabrication of biocompatible nano-drug delivery platforms for chemotherapeutic applications, as well as combination therapy, theragnostic, and other diseases that are of interest to scientists in the pharmaceutical industries. Thus, careful consideration of the "property of choice" would be an ideal way to realize specific functions from a set of delivery platforms. Looking ahead, there is an enormous prospect for nanoparticle properties in regulating biocompatibility.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa.
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering, and Technology, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| |
Collapse
|
6
|
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int J Mol Sci 2022; 23:ijms23168889. [PMID: 36012161 PMCID: PMC9408998 DOI: 10.3390/ijms23168889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| | - Drahomira Holmannova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Ren L, Jing Z, Xia F, Zhang JZ, Li Y. Toxic Effect of Fullerene and Its Derivatives upon the Transmembrane β2-Adrenergic Receptors. Molecules 2022; 27:molecules27144562. [PMID: 35889435 PMCID: PMC9323646 DOI: 10.3390/molecules27144562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 07/10/2022] [Indexed: 12/04/2022] Open
Abstract
Numerous experiments have revealed that fullerene (C60) and its derivatives can bind to proteins and affect their biological functions. In this study, we explored the interaction between fullerine and the β2-adrenergic receptor (β2AR). The MD simulation results show that fullerene binds with the extracellular loop 2 (ECL2) and intracellular loop 2 (ICL2) of β2AR through hydrophobic interactions and π–π stacking interactions. In the C60_in1 trajectory, due to the π–π stacking interactions of fullerene molecules with PHE and PRO residues on ICL2, ICL2 completely flipped towards the fullerene direction and the fullerene moved slowly into the lipid membrane. When five fullerene molecules were placed on the extracellular side, they preferred to stack into a stable fullerene cluster (a deformed tetrahedral aggregate), and had almost no effect on the structure of β2AR. The hydroxyl groups of fullerene derivatives (C60(OH)X, X represents the number of hydroxyl groups, X = 4, 8) can form strong hydrogen bonds with the ECL2, helix6, and helix7 of β2AR. The hydroxyl groups firmly grasp the β2AR receptor like several claws, blocking the binding entry of ligands. The simulation results show that fullerene and fullerene derivatives may have a significant effect on the local structure of β2AR, especially the distortion of helix4, but bring about no great changes within the overall structure. It was found that C60 did not compete with ligands for binding sites, but blocked the ligands’ entry into the pocket channel. All the above observations suggest that fullerene and its derivatives exhibit certain cytotoxicity.
Collapse
Affiliation(s)
- Longlong Ren
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai’an 271018, China; (L.R.); (Z.J.)
| | - Zhenxiang Jing
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai’an 271018, China; (L.R.); (Z.J.)
| | - Fei Xia
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (F.X.); (J.Z.Z.)
| | - John Zenghui Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (F.X.); (J.Z.Z.)
| | - Yang Li
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
8
|
Fereydouni M, Motaghed M, Ahani E, Kafri T, Dellinger K, Metcalfe DD, Kepley CL. Harnessing the Anti-Tumor Mediators in Mast Cells as a New Strategy for Adoptive Cell Transfer for Cancer. Front Oncol 2022; 12:830199. [PMID: 35433433 PMCID: PMC9009255 DOI: 10.3389/fonc.2022.830199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of cancer immunotherapies utilizing adoptive cell transfer (ACT) continues to be one of the most promising strategies for cancer treatment. Mast cells (MCs) which occur throughout vascularized tissues, are most commonly associated with Type I hypersensitivity, bind immunoglobin E (IgE) with high affinity, produce anti-cancer mediators such as tumor necrosis factor alpha (TNF-α) and granulocyte macrophage colony-stimulating factor (GM-CSF), and generally populate the tumor microenvironments. Yet, the role of MCs in cancer pathologies remains controversial with evidence for both anti-tumor and pro-tumor effects. Here, we review the studies examining the role of MCs in multiple forms of cancer, provide an alternative, MC-based hypothesis underlying the mechanism of therapeutic tumor IgE efficacy in clinical trials, and propose a novel strategy for using tumor-targeted, IgE-sensitized MCs as a platform for developing new cellular cancer immunotherapies. This autologous MC cancer immunotherapy could have several advantages over current cell-based cancer immunotherapies and provide new mechanistic strategies for cancer therapeutics alone or in combination with current approaches.
Collapse
Affiliation(s)
- Mohammad Fereydouni
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro (UNCG), Greensboro, NC, United States
| | - Mona Motaghed
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Elnaz Ahani
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christopher L. Kepley
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- *Correspondence: Christopher L. Kepley,
| |
Collapse
|
9
|
Manousiouthakis E, Park J, Hardy JG, Lee JY, Schmidt CE. Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomater 2022; 139:22-42. [PMID: 34339871 DOI: 10.1016/j.actbio.2021.07.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Carbon-based conductive and electroactive materials (e.g., derivatives of graphene, fullerenes, polypyrrole, polythiophene, polyaniline) have been studied since the 1970s for use in a broad range of applications. These materials have electrical properties comparable to those of commonly used metals, while providing other benefits such as flexibility in processing and modification with biologics (e.g., cells, biomolecules), to yield electroactive materials with biomimetic mechanical and chemical properties. In this review, we focus on the uses of these electroconductive materials in the context of the central and peripheral nervous system, specifically recent studies in the peripheral nerve, spinal cord, brain, eye, and ear. We also highlight in vivo studies and clinical trials, as well as a snapshot of emerging classes of electroconductive materials (e.g., biodegradable materials). We believe such specialized electrically conductive biomaterials will clinically impact the field of tissue regeneration in the foreseeable future. STATEMENT OF SIGNIFICANCE: This review addresses the use of conductive and electroactive materials for neural tissue regeneration, which is of significant interest to a broad readership, and of particular relevance to the growing community of scientists, engineers and clinicians in academia and industry who develop novel medical devices for tissue engineering and regenerative medicine. The review covers the materials that may be employed (primarily focusing on derivatives of fullerenes, graphene and conjugated polymers) and techniques used to analyze materials composed thereof, followed by sections on the application of these materials to nervous tissues (i.e., peripheral nerve, spinal cord, brain, optical, and auditory tissues) throughout the body.
Collapse
Affiliation(s)
- Eleana Manousiouthakis
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Christine E Schmidt
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States.
| |
Collapse
|
10
|
Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The most symmetric molecule, Buckminster fullerene C60, due to its unique properties, has been intensively studied for various medical and technological advances. Minimally invasive and minimally toxic treatments hold great promise for future applications. With this in mind, this research exploited the physical properties of fullerene molecules for potential therapeutic effects. Pristine fullerenes have peak absorbance in the 380–500 nm range, making them an attractive violet-blue light filter. Since spectral quality of light can affect behavior, this research used resting state functional magnetic resonance imaging (rs fMRI) and behavioral testing to directly evaluate the effects of fullerene-filtered light on brain processing and behavior in mice. The same method was used to study if hydroxyl fullerene water complexes (3HFWC), with or without fullerene-filtered light, modulated brain processing. A month-long, daily exposure to fullerene-filtered light led to decreased activation of the brain area involved in emotional processing (amygdala). Water supplemented with 3HFWC resulted in an activation of brain areas involved in pain modulation and processing (periaqueductal gray), and decreased latency to first reaction when tested with a hot plate. The combination of fullerene-filtered light with 3HFWC in drinking water led to restored sensitivity to a hot plate and activation of brain areas involved in cognitive functions (prelimbic, anterior cingulate and retrosplenial cortex). These results uncovered the potential of fullerene-filtered light to impact emotional processing and modulate pain perception, indicating its further use in stress and pain management.
Collapse
|
11
|
Wang L, Pan H, Gu D, Li P, Su Y, Pan W. A composite System Combining Self-Targeted Carbon Dots and Thermosensitive Hydrogels for Challenging Ocular Drug Delivery. J Pharm Sci 2021; 111:1391-1400. [PMID: 34563534 DOI: 10.1016/j.xphs.2021.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/24/2023]
Abstract
We developed a composite system combining self-targeted carbon dots and thermosensitive in situ hydrogels for ocular drug delivery of diclofenac sodium (DS). DS-CDC-HP nanoparticles were prepared by loading DS on the surface of CDC-HP via electrostatic interactions. An orthogonal experimental design was selected to screen the optimal thermosensitive hydrogel matrices and then DS-CDC-HP nanoparticles were embedded to form the composite system. The physicochemical properties and release behavior of this system were characterized, and in vivo fluorescence imaging was carried out. Corneal penetrability and in vitro cellular studies (cytotoxicity, cell imaging and cell uptake) were performed to test the feasibility and potential of this ocular delivery system. Finally, the optimal gel matrix consisting of Poloxamer 407: Poloxamer 188: HPMC E50 was 21:1:1 (w/v %), and the gelation temperature before adding artificial tear fluid was 26.67°C and 34.29°C, respectively. This system has the characteristics of biphasic drug release. In addition, the corneal penetrability and in vivo fluorescence study indicated that corneal transmittance was enhanced and drug retention time was extended. Cellular studies revealed that the DS-CDC-HP-Gel has good cytocompatibility and CD44 targeting. In summary, this composite system combines carbon dots with hydrogels, offering new potential for ocular drug delivery.
Collapse
Affiliation(s)
- Lijie Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Pan
- Liaoning University, Shenyang 110036, China
| | - Donghao Gu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pingfei Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yupei Su
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weisan Pan
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
12
|
Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M, Pandey S. DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers (Basel) 2021; 13:3396. [PMID: 34298610 PMCID: PMC8307033 DOI: 10.3390/cancers13143396] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid development of multidrug co-delivery and nano-medicines has made spontaneous progress in tumor treatment and diagnosis. DNA is a unique biological molecule that can be tailored and molded into various nanostructures. The addition of ligands or stimuli-responsive elements enables DNA nanostructures to mediate highly targeted drug delivery to the cancer cells. Smart DNA nanostructures, owing to their various shapes, sizes, geometry, sequences, and characteristics, have various modes of cellular internalization and final disposition. On the other hand, functionalized DNA nanocarriers have specific receptor-mediated uptake, and most of these ligand anchored nanostructures able to escape lysosomal degradation. DNA-based and stimuli responsive nano-carrier systems are the latest advancement in cancer targeting. The data exploration from various studies demonstrated that the DNA nanostructure and stimuli responsive drug delivery systems are perfect tools to overcome the problems existing in the cancer treatment including toxicity and compromised drug efficacy. In this light, the review summarized the insights about various types of DNA nanostructures and stimuli responsive nanocarrier systems applications for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Fakhara Sabir
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
13
|
Lin P, Cao M, Xia F, Liao H, Sun H, Wang Q, Lee J, Zhou Y, Guan Y, Zhang C, Xu Z, Li F, Wei J, Ling D. A Phosphatase-Mimetic Nano-Stabilizer of Mast Cells for Long-Term Prevention of Allergic Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004115. [PMID: 33898190 PMCID: PMC8061383 DOI: 10.1002/advs.202004115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Allergic diseases are pathological immune responses with significant morbidity, which are closely associated with allergic mediators as released by allergen-stimulated mast cells (MCs). Prophylactic stabilization of MCs is regarded as a practical approach to prevent allergic diseases. However, most of the existing small molecular MC stabilizers exhibit a narrow therapeutic time window, failing to provide long-term prevention of allergic diseases. Herein, ceria nanoparticle (CeNP-) based phosphatase-mimetic nano-stabilizers (PMNSs) with a long-term therapeutic time window are developed for allergic disease prevention. By virtue of the regenerable catalytic hotspots of oxygen vacancies on the surface of CeNPs, PMNSs exhibit sustainable phosphatase-mimetic activity to dephosphorylate phosphoproteins in allergen-stimulated MCs. Consequently, PMNSs constantly modulate intracellular phospho-signaling cascades of MCs to inhibit the degranulation of allergic mediators, which prevents the initiation of allergic mediator-associated pathological responses, eventually providing protection against allergic diseases with a long-term therapeutic time window.
Collapse
Affiliation(s)
- Peihua Lin
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Mengda Cao
- Research Division of Clinical PharmacologyThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Fan Xia
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
- Hangzhou Institute of Innovative MedicineZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Hongwei Liao
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Heng Sun
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Qiyue Wang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jiyoung Lee
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yan Zhou
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yunan Guan
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Cheng Zhang
- Women & Children Central LaboratoryThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210036P. R. China
| | - Zhiqiang Xu
- Research Division of Clinical PharmacologyThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Fangyuan Li
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
- Hangzhou Institute of Innovative MedicineZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ji‐Fu Wei
- Research Division of Clinical PharmacologyThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Daishun Ling
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
- Hangzhou Institute of Innovative MedicineZhejiang UniversityHangzhouZhejiang310058P. R. China
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
14
|
Lyu Q, Peng L, Hong X, Fan T, Li J, Cui Y, Zhang H, Zhao J. Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. Biomaterials 2021; 270:120682. [PMID: 33529961 DOI: 10.1016/j.biomaterials.2021.120682] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Smart nano-micro platforms have been extensively applied for diverse biomedical applications, mostly focusing on cancer therapy. In comparison with conventional nanotechnology, the smart nano-micro matrix can exhibit specific response to exogenous or endogenous triggers, and thus can achieve multiple functions e.g. site-specific drug delivery, bio-imaging and detection of bio-molecules. These intriguing techniques have expanded into ophthalmology in recent years, yet few works have been summarized in this field. In this work, we provide the state-of-the-art of diverse nano-micro platforms based on both the conventional materials (e.g. natural or synthetic polymers, lipid nanomaterials, metal and metal oxide nanoparticles) and emerging nanomaterials (e.g. up-conversion nanoparticles, quantum dots and carbon materials) in ophthalmology, with some smart nano/micro platformers highlighted. The common ocular diseases studied in the field of nano-micro systems are firstly introduced, and their therapeutic method and the related drawback in clinic treatment are presented. The recent progress of different materials for diverse ocular applications is then demonstrated, with the representative nano- and micro-systems highlighted in detail. At last, an in-depth discussion on the clinical translation challenges faced in this field and the future direction are provided. This review would allow the researchers to design more smart nanomedicines in a more rational manner for specific ophthalmology applications.
Collapse
Affiliation(s)
- Qinghua Lyu
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ling Peng
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Jingying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Zhao
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China.
| |
Collapse
|
15
|
Duguay BA, Lu L, Arizmendi N, Unsworth LD, Kulka M. The Possible Uses and Challenges of Nanomaterials in Mast Cell Research. THE JOURNAL OF IMMUNOLOGY 2020; 204:2021-2032. [PMID: 32253270 DOI: 10.4049/jimmunol.1800658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/19/2019] [Indexed: 11/19/2022]
Abstract
Mast cells are tissue-resident immune cells that are involved in inflammation and fibrosis but also serve beneficial roles, including tissue maintenance, angiogenesis, pathogen clearance, and immunoregulation. Their multifaceted response and the ability of their mediators to target multiple organs and tissues means that mast cells play important roles in numerous conditions, including asthma, atopic dermatitis, drug sensitivities, ischemic heart disease, Alzheimer disease, arthritis, irritable bowel syndrome, infections (parasites, bacteria and viruses), and cancer. As a result, mast cells have become an important target for drug discovery and diagnostic research. Recent work has focused on applying novel nanotechnologies to explore cell biology. In this brief review, we will highlight the use of nanomaterials to modify mast cell functions and will discuss the potential of these technologies as research tools for understanding mast cell biology.
Collapse
Affiliation(s)
- Brett A Duguay
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Lei Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Narcy Arizmendi
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; and
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
16
|
Ehrich M, Hinckley J, Werre SR, Zhou Z. Effects of polyhydroxyfullerenes on organophosphate-induced toxicity in mice. Toxicology 2020; 445:152586. [PMID: 32949634 DOI: 10.1016/j.tox.2020.152586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
Two polyhydroxyfullerenes, which decrease organophosphate (OP)-induced acetylcholinesterase (AChE) inhibition in vitro, were administered by the intraperitoneal (ip) route or applied topically at doses of 0.9-24 mg/kg to protect adult male mice from enzyme-inhibiting and behavioral effects indicative of OP toxicity resulting from exposure to 1.7 - 2 mg/kg diphosphorofluoridate (DFP) ip or 2.3 - 2.7 mg paraoxon topical. Dosing paradigms included OP-fullerene simultaneous administration by the ip route, and 20 min post-OP polyhydroxyfullerene treatment topically. Benefits of OP sequestration by the polyhydroxyfullerene were noted and were dependent on the OP compound as well as timing and route of the polyhydroxyfullerene treatment.
Collapse
Affiliation(s)
- Marion Ehrich
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA, United States.
| | - Jonathan Hinckley
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA, United States
| | - Stephen R Werre
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA, United States
| | | |
Collapse
|
17
|
Soltani R, Guo S, Bianco A, Ménard‐Moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rym Soltani
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Cécilia Ménard‐Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| |
Collapse
|
18
|
Wang S, Lv J, Meng S, Tang J, Nie L. Recent Advances in Nanotheranostics for Treat-to-Target of Rheumatoid Arthritis. Adv Healthc Mater 2020; 9:e1901541. [PMID: 32031759 DOI: 10.1002/adhm.201901541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Indexed: 12/16/2022]
Abstract
Early diagnosis, standardized treatment, and regular monitoring are the clinical treatment principle of rheumatoid arthritis (RA). The overarching principles and recommendations of treat-to-target (T2T) in RA advocate remission as the optimum aim, especially for patients with very early disease who are initiating therapy with anti-RA medications. However, traditional anti-RA drugs cannot selectively target the inflammatory areas and may cause serious side effects due to its short biological half-life and poor bioavailability. These limitations have significantly driven the research and application of nanomaterial-based drugs in theranostics of RA. Nanomedicines have appropriate sizes and easily modified surfaces which can enhance their biological compatibility and prolong circulation time of drug-loading systems in vivo. Traditional T2T regimens cannot evaluate the efficacy of drugs in real time, while clinical drug nanosizing can realize the integration of diagnosis and treatment of RA. This review bridges clinically proposed T2T concepts and nanomedicine in an integrated system for RA early-stage diagnosis and treatment. The most advanced progress in various nanodrug delivery systems for theranostics of RA is summarized, establishing a clear path and a new perspective for further optimization of T2T. Finally, the key facing challenges are discussed and prospects are addressed.
Collapse
Affiliation(s)
- Shasha Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Jing Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| |
Collapse
|
19
|
Xu XL, Lu KJ, Yao XQ, Ying XY, Du YZ. Stimuli-responsive Drug Delivery Systems as an Emerging Platform for Treatment of Rheumatoid Arthritis. Curr Pharm Des 2020; 25:155-165. [PMID: 30907308 DOI: 10.2174/1381612825666190321104424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022]
Abstract
Rheumatoid Arthritis (RA) is a systemic autoimmune disease accompanied by chronic inflammation. Due to the long-term infiltration in inflammatory sites, joints get steadily deteriorated, eventually resulting in functional incapacitation and disability. Despite the considerable effect, RA sufferers treated with current drug therapeutic efficacy are exposed to severe side effects. Application of Drug Delivery Systems (DDS) has improved these situations while the problem of limited drug exposure remains untackled. Stimuli-responsive DDS that are responsive to a variety of endogenous and exogenous stimuli, such as pH, redox status, and temperature, have emerged as a promising therapeutic strategy to optimize the drug release. Herein, we discussed the therapeutic regimes and serious side effects of current RA therapy, as well as focused on some of the potential stimuliresponsive DDS utilized in RA therapy. Besides, the prospective room in designing DDS for RA treatment has also been discussed.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kong-Jun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Qin Yao
- School of Medicine, Zhejiang University City College, Hangzhou 310058, China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Alsaleh NB, Brown JM. Engineered Nanomaterials and Type I Allergic Hypersensitivity Reactions. Front Immunol 2020; 11:222. [PMID: 32117324 PMCID: PMC7033602 DOI: 10.3389/fimmu.2020.00222] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Type I allergic hypersensitivity disorders (atopy) including asthma, atopic dermatitis, allergic rhinitis, and food allergy are on the rise in developed and developing countries. Engineered nanomaterials (ENMs) span a large spectrum of material compositions including carbonic, metals, polymers, lipid-based, proteins, and peptides and are being utilized in a wide range of industries including healthcare and pharmaceuticals, electronics, construction, and food industry, and yet, regulations for the use of ENMs in consumer products are largely lacking. Prior evidence has demonstrated the potential of ENMs to induce and/or aggravate type I allergic hypersensitivity responses. Furthermore, previous studies have shown that ENMs could directly interact with and activate key T-helper 2 (Th2) effector cell types (such as mast cells) and the complement system, which could result in pseudoallergic (non-IgE-mediated) hypersensitivity reactions. Nevertheless, the underlying molecular mechanisms of ENM-mediated induction and/or exacerbation of type I immune responses are poorly understood. In this review, we first highlight key examples of studies that have demonstrated inherent immunomodulatory properties of ENMs in the context of type I allergic hypersensitivity reactions, and most importantly, we attempt to put together the potential molecular mechanisms that could drive ENM-mediated stimulation and/or aggravation of type I allergic hypersensitivity responses.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
21
|
Nedzvetsky VS, Sukharenko EV, Baydas G, Andrievsky GV. Water-soluble C60 fullerene ameliorates astroglial reactivity and TNFa production in retina of diabetic rats. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The complications of both first and second types of diabetes mellitus patients are important cause of decline in quality of life and mortality worldwide. Diabetic retinopathy (DR) is a widespread complication that affects almost 60% of patients with prolonged (at least 10–15 years) diabetes. The critical role of glial cells has been shown in retinopathy initiation in the last decades. Furthermore, glial reactivity and inflammation could be key players in early pathogenesis of DR. Despite the large amount of research data, the approaches of effective DR therapy remain unclear. The progress of DR is accompanied by pro-inflammatory and pro-oxidative changes in retinal cells including astrocytes and Muller cells. Glial reactivity is a key pathogenetic factor of various disorders in neural tissue. Fullerene C60 nanoparticles were confirmed for both antioxidant and anti-inflammatory capability. In the presented study glioprotective efficacy of water-soluble hydrated fullerene C60 (C60HyFn) was tested in a STZ-diabetes model during 12 weeks. Exposure of the STZ-diabetic rat group to C60HyFn ameliorated the astrocyte reactivity which was determined via S100β and PARP1 overexpression. Moreover, C60HyFn induced the decrease of TNFα production in the retina of STZ-diabetic rats. By contrast, the treatment with C60HyFn of the normal control rat group didn’t change the content of all abovementioned markers of astrogliosis and inflammation. Thus, diabetes-induced abnormalities in the retina were suppressed via the anti-oxidant, anti-inflammatory and glioprotective effects of C60HyFn at low doses. The presented results demonstrate that C60HyFn can ensure viability of retinal cells viability through glioprotective effect and could be a new therapeutic nano-strategy of DR treatment.
Collapse
|
22
|
Yasinskyi Y, O. P, O. M, V. R, Prylutskyy Y, Tauscher E, Ritter U, Kozeretska I. Reconciling the controversial data on the effects of C60 fullerene at the organismal and molecular levels using as a model Drosophila melanogaster. Toxicol Lett 2019; 310:92-98. [DOI: 10.1016/j.toxlet.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/01/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
|
23
|
Plotkin JD, Elias MG, Fereydouni M, Daniels-Wells TR, Dellinger AL, Penichet ML, Kepley CL. Human Mast Cells From Adipose Tissue Target and Induce Apoptosis of Breast Cancer Cells. Front Immunol 2019; 10:138. [PMID: 30833944 PMCID: PMC6387946 DOI: 10.3389/fimmu.2019.00138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023] Open
Abstract
Mast cells (MC) are important immune sentinels found in most tissue and widely recognized for their role as mediators of Type I hypersensitivity. However, they also secrete anti-cancer mediators such as tumor necrosis factor alpha (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The purpose of this study was to investigate adipose tissue as a new source of MC in quantities that could be used to study MC biology focusing on their ability to bind to and kill breast cancer cells. We tested several cell culture media previously demonstrated to induce MC differentiation. We report here the generation of functional human MC from adipose tissue. The adipose-derived mast cells (ADMC) are phenotypically and functionally similar to connective tissue expressing tryptase, chymase, c-kit, and FcεRI and capable of degranulating after cross-linking of FcεRI. The ADMC, sensitized with anti-HER2/neu IgE antibodies with human constant regions (trastuzumab IgE and/or C6MH3-B1 IgE), bound to and released MC mediators when incubated with HER2/neu-positive human breast cancer cells (SK-BR-3 and BT-474). Importantly, the HER2/neu IgE-sensitized ADMC induced breast cancer cell (SK-BR-3) death through apoptosis. Breast cancer cell apoptosis was observed after the addition of cell-free supernatants containing mediators released from FcεRI-challenged ADMC. Apoptosis was significantly reduced when TNF-α blocking antibodies were added to the media. Adipose tissue represents a source MC that could be used for multiple research purposes and potentially as a cell-mediated cancer immunotherapy through the expansion of autologous (or allogeneic) MC that can be targeted to tumors through IgE antibodies recognizing tumor specific antigens.
Collapse
Affiliation(s)
- Jesse D Plotkin
- Department of Nanoscience, Nanobiology, Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, NC, United States
| | - Michael G Elias
- Department of Nanoscience, Nanobiology, Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, NC, United States
| | - Mohammad Fereydouni
- Department of Nanoscience, Nanobiology, Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, NC, United States
| | - Tracy R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anthony L Dellinger
- Department of Nanoscience, Nanobiology, Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, NC, United States
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States.,The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.,AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States.,The California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher L Kepley
- Department of Nanoscience, Nanobiology, Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, NC, United States
| |
Collapse
|
24
|
Gu W, Chen K, Zhao X, Geng H, Li J, Qin Y, Bai X, Chang YN, Xia S, Zhang J, Ma S, Wu Z, Xing G, Xing G. Highly Dispersed Fullerenols Hamper Osteoclast Ruffled Border Formation by Perturbing Ca 2+ Bundles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802549. [PMID: 30334332 DOI: 10.1002/smll.201802549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Osteoporosis, a common and serious bone disorder affecting aged people and postmenopausal women, is characterized by osteoclast overactivity. One therapeutic strategy is suppressing the bone resorption function of hyperactive osteoclasts, but there is no effective drug in clinical practice so far. Herein, it is demonstrated that fullerenols suppress the bone resorption of osteoclasts by inhibiting ruffled borders (RBs) formation. The RBs formation, which is supported by well-aligned actin bundles (B-actins), is a critical event for osteoclast bone resorption. To facilitate this function, osteoclast RBs dynamics is regulated by variable microenvironments to bundle F-actins, protrude cell membrane, and so on. B-actin perturbation by fullerenols is determined here, offering an opportunity to regulate osteoclast function by destroying RBs. In vivo, the therapeutic effect of fullerenols on overactive osteoclasts is confirmed in a mouse model of lipopolysaccharide-induced bone erosion. Collectively, the findings suggest that fullerenols adhere to F-actin surfaces and inhibit RBs formation in osteoclasts, mainly through hampering Ca2+ from bundling F-actins, and this is likely due to the stereo-hindrance effect caused by adherent fullerenols.
Collapse
Affiliation(s)
- Weihong Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyi Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Huan Geng
- Department of Orthopedics, General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxia Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shibo Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sihan Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhonghua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Gengyan Xing
- Department of Orthopedics, General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Liu L, Guo W, Liang XJ. Move to Nano-Arthrology: Targeted Stimuli-Responsive Nanomedicines Combat Adaptive Treatment Tolerance (ATT) of Rheumatoid Arthritis. Biotechnol J 2018; 14:e1800024. [DOI: 10.1002/biot.201800024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Lu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease; The Second Affiliated Hospital; Guangzhou Medical University; Guangzhou 510260 P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
26
|
Schubert N, Lisenko K, Auerbach C, Weitzmann A, Ghouse SM, Muhandes L, Haase C, Häring T, Schulze L, Voehringer D, Gunzer F, Müller W, Feyerabend TB, Rodewald HR, Dudeck A, Roers A. Unimpaired Responses to Vaccination With Protein Antigen Plus Adjuvant in Mice With Kit-Independent Mast Cell Deficiency. Front Immunol 2018; 9:1870. [PMID: 30210490 PMCID: PMC6123530 DOI: 10.3389/fimmu.2018.01870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022] Open
Abstract
Innate inflammatory responses are crucial for induction and regulation of T cell and antibody responses. Mast cell (MC)-deficient Kit mutant mice showed impaired adaptive immunity, suggesting that MCs provide essential adjuvant activities, and pharmacological MC activation was proposed as a new adjuvant principle. However, the Kit mutations result in complex alterations of the immune system in addition to MC deficiency. We revisited the role of MCs in vaccination responses using Mcpt5-Cre R26DTA/DTA and Cpa3Cre/+ mice that lack connective tissue MCs or all MCs, respectively, but feature an otherwise normal immune system. These animals showed no impairment of T and B cell responses to intradermal vaccination with protein antigen plus complete Freund’s adjuvant. Moreover, we demonstrate that the adjuvant effects of the MC secretagogue c48/80 in intradermal or mucosal immunization are independent of the presence of MCs. We hence find no evidence for a regulation by MCs of adaptive immune responses to protein antigens. The finding that immunological MC functions differ from those suggested by experiments in Kit mutants, emphasizes the importance of rigorous tests in Kit-independent MC-deficiency models.
Collapse
Affiliation(s)
- Nadja Schubert
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Katharina Lisenko
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Christian Auerbach
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, University of Technology Dresden, Dresden, Germany
| | - Anke Weitzmann
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Shanawaz Mohammed Ghouse
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Lina Muhandes
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Christa Haase
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Tobias Häring
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Livia Schulze
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Florian Gunzer
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, University of Technology Dresden, Dresden, Germany
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Anne Dudeck
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany.,Medical Faculty, Institute for Molecular and Clinical Immunology, Otto von Guericke University, Magdeburg, Germany
| | - Axel Roers
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| |
Collapse
|
27
|
Liu Q, Wang X, Xia T. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials. Anal Bioanal Chem 2018; 410:6097-6111. [PMID: 30066194 DOI: 10.1007/s00216-018-1289-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/15/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
Abstract
With the rapid development and numerous applications of engineered nanomaterials (ENMs) in science and technology, their impact on environmental health and safety should be considered carefully. This requires an effective platform to investigate the potential adverse effects and hazardous biological outcomes of numerous nanomaterials and their formulations. We consider predictive toxicology a rational approach for this effort, which utilizes mechanism-based in vitro high-throughput screening (HTS) to make predictions on ENMs' adverse outcomes in vivo. Moreover, this approach is able to link the physicochemical properties of ENMs to toxicity that allows the development of structure-activity relationships (SARs). To build this predictive platform, extensive analytical and bioanalytical techniques and tools are required. In this review, we described the predictive toxicology approach and the accompanying analytical and bioanalytical techniques. In addition, we elaborated several successful examples as a result of using the predictive approach.
Collapse
Affiliation(s)
- Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA. .,Division of NanoMedicine, Department of Medicine, University of California, 570 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
28
|
Effect of C 60 fullerene nanoparticles on the diet-induced obesity in rats. Int J Obes (Lond) 2018; 42:1987-1998. [PMID: 30401827 DOI: 10.1038/s41366-018-0016-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/13/2017] [Accepted: 12/27/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Obesity is a growing global health problem. Since increased oxidative stress is one of the key pathological mechanisms underpinning overweight and strongly correlates with progression of obesity-related complications we hypothesized that C60 fullerene nanoparticles, due to their strong antioxidant capacity, could be the promising therapeutic agent in the treatment of this disease. Here we investigated whether the C60 fullerenes can alleviate diet-induced obesity (DIO) and metabolic impairments associated with it. METHODS To determine the effect of C60 fullerenes on some nutritional and metabolic parameters, rats were fed either a normal diet (6.7% fat, 15.27 kJ·g-1) or a high-fat diet (38.8% fat, 28.71 kJ·g-1) for 70 days and were simultaneously treated per os with pristine C60 fullerene aqueous solution (C60FAS; 0.3 mg·kg-1 every other day) since the 28th day from the start of the experiment. RESULTS Rats fed with high fat diet had significantly increased body mass index (BMI), levels of insulin, glucose, glycosilated hemoglobin (HbA1c) and serum pro-inflammatory cytokines compared with control rats fed with low-fat chow. C60 fullerenes normalized the metabolic parameters and partially reduced BMI in DIO animals. Pro-inflammatory cytokines (IL-1b, IL-12, INFγ) were also decreased in serum of DIO rats treated with C60 fullerenes while anti-inflammatory cytokines (IL-4, IL-10) were at the control levels. High fat diet caused the increased level of oxidative stress products, and this was accompanied by decreased activity both the superoxide dismutase and catalase, whereas the administration of C60 fullerenes markedly decreased level of oxidative stress and enhanced antioxidant enzyme activities. CONCLUSION These data indicate that water-soluble pristine C60 fullerenes reduce chronic inflammation, restore glucose homeostasis as well as positively affects on prooxidant-antioxidant homeostasis. C60 fullerenes could be represented as a promising therapeutic agent in the treatment of obesity and its related complications.
Collapse
|
29
|
Geng H, Chang YN, Bai X, Liu S, Yuan Q, Gu W, Li J, Chen K, Xing G, Xing G. Fullerenol nanoparticles suppress RANKL-induced osteoclastogenesis by inhibiting differentiation and maturation. NANOSCALE 2017; 9:12516-12523. [PMID: 28819671 DOI: 10.1039/c7nr04365a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bone health requires regulation of homeostatic equilibrium between osteoblasts and osteoclasts. The over-activation of osteoclasts can disrupt bone metabolism, resulting in osteoporosis and other bone-loss diseases. Fullerenol, a polyhydroxy derivative of fullerene, exhibits excellent biocompatibility. Here we show that fullerenol nanoparticles exert two functions: inhibition of osteoclastic differentiation and blockage of pre-osteoclast fusion to restructure osteoclast maturation and function. Experimentally, the nanoparticles reduced pre-osteoclast migration and inhibited ruffled border formation to block their maturation. In addition, fullerenol dose-dependently restricted the differentiation of bone marrow macrophage cells (BMMs) to form osteoclasts following treatment with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-κB (RANKL) to activate NF-κB and mitogen activating protein kinase (MAPK) signaling pathways. It is possible that the very small size of fullerenol allows it to directly cross the cellular membrane to access the cytoplasm and regulate osteoclastogenesis from BMMs. Our results suggest that fullerenol could be used to treat bone-loss diseases such as osteoporosis.
Collapse
Affiliation(s)
- Huan Geng
- Department of Orthopedics, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Plotkin JD, Elias MG, Dellinger AL, Kepley CL. NF-κB inhibitors that prevent foam cell formation and atherosclerotic plaque accumulation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2037-2048. [PMID: 28457935 DOI: 10.1016/j.nano.2017.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/30/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022]
Abstract
The transformation of monocyte-derived macrophages into lipid-laden foam cells is one inflammatory process underlying atherosclerotic disease. Previous studies have demonstrated that fullerene derivatives (FDs) have inflammation-blunting properties. Thus, it was hypothesized that FD could inhibit the transformation process underlying foam cell formation. Fullerene derivatives inhibited the phorbol myristic acid/oxidized low-density lipoprotein-induced differentiation of macrophages into foam cells as determined by lipid staining and morphology.Lipoprotein-induced generation of TNF-α, C5a-induced MC activation, ICAM-1 driven adhesion, and CD36 expression were significantly inhibited in FD treated cells compared to non-treated cells. Inhibition appeared to be mediated through the NF-κB pathway as FD reduced expression of NF-κB and atherosclerosis-associated genes. Compared to controls, FD dramatically inhibited plaque formation in arteries of apolipoprotein E null mice. Thus, FD may be an unrecognized therapy to prevent atherosclerotic lesions via inhibition of foam cell formation and MC stabilization.
Collapse
Affiliation(s)
- Jesse D Plotkin
- University of North Carolina Greensboro, Joint School of Nanoscience and Nanoengineering, Greensboro, NC, United States
| | - Michael G Elias
- University of North Carolina Greensboro, Joint School of Nanoscience and Nanoengineering, Greensboro, NC, United States
| | - Anthony L Dellinger
- University of North Carolina Greensboro, Joint School of Nanoscience and Nanoengineering, Greensboro, NC, United States
| | - Christopher L Kepley
- University of North Carolina Greensboro, Joint School of Nanoscience and Nanoengineering, Greensboro, NC, United States.
| |
Collapse
|
31
|
Jin L, Ding M, Oklopcic A, Aghdasi B, Xiao L, Li Z, Jevtovic-Todorovic V, Li X. Nanoparticle fullerol alleviates radiculopathy via NLRP3 inflammasome and neuropeptides. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2049-2059. [PMID: 28404518 DOI: 10.1016/j.nano.2017.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/13/2017] [Accepted: 03/25/2017] [Indexed: 01/26/2023]
Abstract
The present study aimed to evaluate the analgesic effect of the antioxidant nanoparticle fullerol in a mouse radiculopathy and a dorsal root ganglion (DRG) culture models. Intervertebral disk degeneration causes significant hyperalgesia and nerve inflammation. Pain sensitization and inflammatory reaction were counteracted by fullerol when disk material was bathed in 10 or 100μM of fullerol prior to implantation. Immunohistochemistry showed similar massive IBA1 positive macrophage infiltration surrounding implanted disk material among groups, but IL-1β and IL-6 expression was decreased in the fullerol treated group. In the DRG explant culture, after treatment with TNF-α, the expression of IL-1β, NLRP3, and caspase 1 was significantly increased but this was reversed by the addition of fullerol. In addition, fullerol also decreased the expression of substance P and CGRP in the cultured DRGs. Nanoparticle fullerol effectively counteracts pain sensitization and the inflammatory cascade caused by disk degeneration.
Collapse
Affiliation(s)
- Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Mengmeng Ding
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Azra Oklopcic
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Bayan Aghdasi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Ziyi Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA; Department of Anesthesiology, University of Colorado, Aurora, CO, USA.
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
32
|
Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj 2017; 1861:802-813. [PMID: 28115205 DOI: 10.1016/j.bbagen.2017.01.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The balance between oxidation and anti-oxidation is believed to be critical in maintaining healthy biological systems. However, our endogenous antioxidant defense systems are incomplete without exogenous antioxidants and, therefore, there is a continuous demand for exogenous antioxidants to prevent stress and ageing associated disorders. Nanotechnology has yielded enormous variety of nanomaterials (NMs) of which metallic and carbonic (mainly fullerenes) NMs, with redox property, have been found to be strong scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. SCOPE OF REVIEW Redox activity of metal based NMs and membrane translocation time of fullerene NMs seem to be the major determinants in ROS scavenging potential exhibited by these NMs. A comprehensive knowledge about the effects of ROS scavenging NMs in cellular antioxidant signalling is largely lacking. This review compiles the mechanisms of ROS scavenging as well as antioxidant signalling of the aforementioned metallic and fullerene NMs. MAJOR CONCLUSIONS Direct interaction between NMs and proteins does greatly affect the corona/adsorption formation dynamics but such interaction does not provide the explanation behind diverse biological outcomes induced by NMs. Indirect interaction, however, that could occur via NMs uptake and dissolution, NMs ROS induction and ROS scavenging property, and NMs membrane translocation time seem to work as a central mode of interaction. GENERAL SIGNIFICANCE The usage of potential antioxidant NMs in biological systems would greatly impact the field of nanomedicine. ROS scavenging NMs hold great promise in the future treatment of ROS related degenerative disorders.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia; King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Aws Alshamsan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Abstract
Schematic illustration of inflammatory microenvironment in inflamed joints and events occurring in rheumatoid arthritis.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
34
|
Hirai T, Yoshioka Y, Udaka A, Uemura E, Ohe T, Aoshima H, Gao JQ, Kokubo K, Oshima T, Nagano K, Higashisaka K, Mashino T, Tsutsumi Y. Potential Suppressive Effects of Two C 60 Fullerene Derivatives on Acquired Immunity. NANOSCALE RESEARCH LETTERS 2016; 11:449. [PMID: 27709563 PMCID: PMC5052157 DOI: 10.1186/s11671-016-1663-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 05/21/2023]
Abstract
The therapeutic effects of fullerene derivatives on many models of inflammatory disease have been demonstrated. The anti-inflammatory mechanisms of these nanoparticles remain to be elucidated, though their beneficial roles in allergy and autoimmune diseases suggest their suppressive potential in acquired immunity. Here, we evaluated the effects of C60 pyrrolidine tris-acid (C60-P) and polyhydroxylated fullerene (C60(OH)36) on the acquired immune response in vitro and in vivo. In vitro, both C60 derivatives had dose-dependent suppressive effects on T cell receptor-mediated activation of T cells and antibody production by B cells under anti-CD40/IL-4 stimulation, similar to the actions of the antioxidant N-acetylcysteine. In addition, C60-P suppressed ovalbumin-specific antibody production and ovalbumin-specific T cell responses in vivo, although T cell-independent antibodies responses were not affected by C60-P. Together, our data suggest that fullerene derivatives can suppress acquired immune responses that require T cells.
Collapse
Affiliation(s)
- Toshiro Hirai
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yasuo Yoshioka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
- BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Asako Udaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Eiichiro Uemura
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Tomoyuki Ohe
- Bioorganic and Medicinal Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 Japan
| | - Hisae Aoshima
- Vitamin C60 BioResearch Corporation, 1-3-19 Yaesu, Chuo-ku Tokyo, 103-0028 Japan
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Ken Kokubo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Takumi Oshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Kazuya Nagano
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085 Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085 Japan
| | - Tadahiko Mashino
- Bioorganic and Medicinal Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
35
|
Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine 2016; 11:1987-2007. [PMID: 27274231 PMCID: PMC4869672 DOI: 10.2147/ijn.s104701] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
36
|
Latha TS, Lomada D, Dharani PK, Muthukonda SV, Reddy MC. Ti–O based nanomaterials ameliorate experimental autoimmune encephalomyelitis and collagen-induced arthritis. RSC Adv 2016. [DOI: 10.1039/c5ra18974h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Administration of Ti–O based nanomaterials ameliorated the clinical severity of experimental autoimmune encephalomyelitis and collagen induced arthritis, thus provide novel therapeutic approach for multiple sclerosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- T. Sree Latha
- Department of Genetics and Genomics
- Yogi Vemana University
- Kadapa
- India
| | - Dakshayani Lomada
- Department of Genetics and Genomics
- Yogi Vemana University
- Kadapa
- India
| | - Praveen Kumar Dharani
- Nanocatalysis and Solar Fuels Research Laboratory
- Department of Materials Science and Nanotechnology
- Yogi Vemana University
- Kadapa
- India
| | - Shankar V. Muthukonda
- Nanocatalysis and Solar Fuels Research Laboratory
- Department of Materials Science and Nanotechnology
- Yogi Vemana University
- Kadapa
- India
| | - Madhava C. Reddy
- Department of Biotechnology and Bioinformatics
- Yogi Vemana University
- Kadapa
- India
| |
Collapse
|
37
|
|