1
|
Li CY, Cao HY, Payet RD, Todd JD, Zhang YZ. Dimethylsulfoniopropionate (DMSP): From Biochemistry to Global Ecological Significance. Annu Rev Microbiol 2024; 78:513-532. [PMID: 39231449 DOI: 10.1146/annurev-micro-041222-024055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Dimethylsulfoniopropionate (DMSP) is one of Earth's most abundant organosulfur compounds with important roles in stress tolerance, chemotaxis, global carbon and sulfur cycling, and climate-active gas production. Diverse marine prokaryotes and eukaryotes produce DMSP via three known pathways (methylation, transamination, and decarboxylation) and metabolize DMSP via three further pathways (demethylation, cleavage, and oxidation). Over 20 key enzymes from these pathways have been identified that demonstrate the biodiversity and importance of DMSP cycling. The last dozen years have seen significant changes in our understanding of the enzymology and molecular mechanisms of these DMSP cycling enzymes through the application of biochemistry and structural biology. This has yielded more than 10 crystal structures and, in many cases, detailed explanations as to how and why organisms synthesis and metabolize DMSP. In this review, we describe recent progress in biochemical and mechanistic understandings of DMSP synthesis and metabolism, highlighting the important knowledge gleaned and current challenges that warrant further exploration.
Collapse
Affiliation(s)
- Chun-Yang Li
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
| | - Hai-Yan Cao
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
| | - Rocky D Payet
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China;
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
2
|
Liu X, Wang XR, Zhou F, Xue YR, Yu XY, Liu CH. Novel insights into dimethylsulfoniopropionate cleavage by deep subseafloor fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173057. [PMID: 38729372 DOI: 10.1016/j.scitotenv.2024.173057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Dimethylsulfoniopropionate (DMSP), a key organic sulfur compound in marine and subseafloor sediments, is degraded by phytoplankton and bacteria, resulting in the release of the climate-active volatile gas dimethylsulfide (DMS). However, it remains unclear if dominant eukaryotic fungi in subseafloor sediments possess specific abilities and metabolic mechanisms for DMSP degradation and DMS formation. Our study provides the first evidence that fungi from coal-bearing sediments ∼2 km below the seafloor, such as Aspergillus spp., Chaetomium globosum, Cladosporium sphaerospermum, and Penicillium funiculosum, can degrade DMSP and produce DMS. In Aspergillus sydowii 29R-4-F02, which exhibited the highest DMSP-dependent DMS production rate (16.95 pmol/μg protein/min), two DMSP lyase genes, dddP and dddW, were identified. Remarkably, the dddW gene, previously observed only in bacteria, was found to be crucial for fungal DMSP cleavage. These findings not only extend the list of fungi capable of degrading DMSP, but also enhance our understanding of DMSP lyase diversity and the role of fungi in DMSP decomposition in subseafloor sedimentary ecosystems.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xin-Ran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ya-Rong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiang-Yang Yu
- Jiangsu Key Laboratory for Food Quality, Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Carrión O, Li CY, Peng M, Wang J, Pohnert G, Azizah M, Zhu XY, Curson ARJ, Wang Q, Walsham KS, Zhang XH, Monaco S, Harvey JM, Chen XL, Gao C, Wang N, Wang XJ, Wang P, Giovanonni SJ, Lee CP, Suffridge CP, Zhang Y, Luo Z, Wang D, Todd JD, Zhang YZ. DMSOP-cleaving enzymes are diverse and widely distributed in marine microorganisms. Nat Microbiol 2023; 8:2326-2337. [PMID: 38030907 PMCID: PMC10686828 DOI: 10.1038/s41564-023-01526-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Dimethylsulfoxonium propionate (DMSOP) is a recently identified and abundant marine organosulfur compound with roles in oxidative stress protection, global carbon and sulfur cycling and, as shown here, potentially in osmotolerance. Microbial DMSOP cleavage yields dimethyl sulfoxide, a ubiquitous marine metabolite, and acrylate, but the enzymes responsible, and their environmental importance, were unknown. Here we report DMSOP cleavage mechanisms in diverse heterotrophic bacteria, fungi and phototrophic algae not previously known to have this activity, and highlight the unappreciated importance of this process in marine sediment environments. These diverse organisms, including Roseobacter, SAR11 bacteria and Emiliania huxleyi, utilized their dimethylsulfoniopropionate lyase 'Ddd' or 'Alma' enzymes to cleave DMSOP via similar catalytic mechanisms to those for dimethylsulfoniopropionate. Given the annual teragram predictions for DMSOP production and its prevalence in marine sediments, our results highlight that DMSOP cleavage is likely a globally significant process influencing carbon and sulfur fluxes and ecological interactions.
Collapse
Affiliation(s)
- Ornella Carrión
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Ming Peng
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jinyan Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Jena, Germany
| | - Muhaiminatul Azizah
- Institute of Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Jena, Germany
| | - Xiao-Yu Zhu
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Qing Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Keanu S Walsham
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - James M Harvey
- Department of Chemistry, King's College London, London, UK
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Juan Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | - Chih-Ping Lee
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | | | - Yu Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ziqi Luo
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jonathan D Todd
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao, China.
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China.
| |
Collapse
|
4
|
Wang S, Zhang N, Teng Z, Wang X, Todd JD, Zhang Y, Cao H, Li C. A new dimethylsulfoniopropionate lyase of the cupin superfamily in marine bacteria. Environ Microbiol 2023; 25:1238-1249. [PMID: 36808192 PMCID: PMC11497337 DOI: 10.1111/1462-2920.16355] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is a marine organosulfur compound with important roles in stress protection, marine biogeochemical cycling, chemical signalling and atmospheric chemistry. Diverse marine microorganisms catabolize DMSP via DMSP lyases to generate the climate-cooling gas and info-chemical dimethyl sulphide. Abundant marine heterotrophs of the Roseobacter group (MRG) are well known for their ability to catabolize DMSP via diverse DMSP lyases. Here, a new DMSP lyase DddU within the MRG strain Amylibacter cionae H-12 and other related bacteria was identified. DddU is a cupin superfamily DMSP lyase like DddL, DddQ, DddW, DddK and DddY, but shares <15% amino acid sequence identity with these enzymes. Moreover, DddU proteins forms a distinct clade from these other cupin-containing DMSP lyases. Structural prediction and mutational analyses suggested that a conserved tyrosine residue is the key catalytic amino acid residue in DddU. Bioinformatic analysis indicated that the dddU gene, mainly from Alphaproteobacteria, is widely distributed in the Atlantic, Pacific, Indian and polar oceans. For reference, dddU is less abundant than dddP, dddQ and dddK, but much more frequent than dddW, dddY and dddL in marine environments. This study broadens our knowledge on the diversity of DMSP lyases, and enhances our understanding of marine DMSP biotransformation.
Collapse
Affiliation(s)
- Shu‐Yan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Nan Zhang
- School of BioengineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Zhao‐Jie Teng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
| | - Xiao‐Di Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | | | - Yu‐Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Hai‐Yan Cao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
| | - Chun‐Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
5
|
Chhalodia AK, Dickschat JS. Discovery of dimethylsulfoxonium propionate lyases - a missing enzyme relevant to the global sulfur cycle. Org Biomol Chem 2023; 21:3083-3089. [PMID: 36943339 DOI: 10.1039/d2ob02288e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Six dimethylsulfoniopropionate (DMSP) lyases have been shown to cleave the marine sulfur metabolite dimethylsulfoxonium propionate (DMSOP) into DMSO and acrylate. This discovery characterises a missing enzyme relevant to the global sulfur cycle.
Collapse
Affiliation(s)
- Anuj K Chhalodia
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
6
|
Nandi S, Dey M. Identification of residues involved in allosteric signal transmission from amino acid binding site of pyruvate kinase muscle isoform 2. PLoS One 2023; 18:e0282508. [PMID: 36897854 PMCID: PMC10004559 DOI: 10.1371/journal.pone.0282508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
PKM2 is a rate-limiting enzyme in the glycolytic process and is involved in regulating tumor proliferation. Several amino acids (AAs) such as Asn, Asp, Val, and Cys have been shown to bind to the AA binding pocket of PKM2 and modulate its oligomeric state, substrate binding affinity, and activity. Although previous studies have attributed that the main chain and side chain of bound AAs are responsible for initiating signal to regulate PKM2, the signal transduction pathway remains elusive. To identify the residues involved in signal transfer process, N70 and N75 located at two ends of a β strand connecting the active site and AA binding pocket were altered. Biochemical studies of these variants with various AA ligands (Asn, Asp, Val, and Cys), illustrate that N70 and N75, along with β1 connecting these residues are part of the signal transduction pathway between the AA binding pocket and the active site. The results demonstrate that mutation of N70 to D prevents the transfer of the inhibitory signal mediated by Val and Cys, whereas N75 to L alteration blocks the activating signal initiated by Asn and Asp. Taken together, this study confirms that N70 is one of the residues responsible for transmitting the inhibitory signal and N75 is involved in the activation signal flow.
Collapse
Affiliation(s)
- Suparno Nandi
- Department of Chemistry, The University of Iowa, Iowa City, IA, United States of America
| | - Mishtu Dey
- Department of Chemistry, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
7
|
Wang Y, Chen SL. Reaction mechanism of the PuDddK dimethylsulfoniopropionate lyase and cofactor effects of various transition metal ions. Dalton Trans 2022; 51:14664-14672. [PMID: 36098064 DOI: 10.1039/d2dt02133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The microbial cleavage of dimethylsulfoniopropionate (DMSP) produces volatile dimethyl sulfide (DMS) via the lyase pathway, playing a crucial role in the global sulfur cycle. Herein, the DMSP decomposition catalyzed by PuDddK (a DMSP lyase) devised with various transition metal ion cofactors are investigated using density functional calculations. The PuDddK reaction has been demonstrated to employ a concerted β-elimination mechanism, where the substrate α-proton abstraction by the deprotonated Tyr64 occurs simultaneously with the Cβ-S bond cleavage and Cα = Cβ double bond formation. The PuDddK enzymes with diverse divalent metal ions (Ni2+, Mn2+, Fe2+, Co2+, Zn2+, and Cu2+) incorporated prefer DMSP as a monodentate ligand. The cases of Ni2+, Mn2+, Fe2+, Co2+, and Zn2+ with the same 3His-1Glu ligands have close reaction energy barriers, indicating that the lyase activity may be hardly affected by the divalent transition metal type with the same ligand type and number. The coordination loss of one histidine in Cu2+, forming a 2His-1Glu architecture, leads to a lower activity, revealing that the 3His-1Glu ligand set used by DddK appears to be a scaffold capable of more efficiently catalyzing the DMSP decomposition. Further analysis reveals that the inactivation of Fe3+-dependent PuDddK is derived from an electron transfer from the Tyr64 phenolate to Fe3+, with the implication that the PuDddK activity may be primarily affected by the redox effects induced by a strongly oxidizing transition metal ion (like Fe3+).
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
8
|
Shaw DK, Sekar J, Ramalingam PV. Recent insights into oceanic dimethylsulfoniopropionate biosynthesis and catabolism. Environ Microbiol 2022; 24:2669-2700. [PMID: 35611751 DOI: 10.1111/1462-2920.16045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination 'pathway-' in some marine bacteria and algae, a Met-methylation 'pathway-' in angiosperms and bacteria and a decarboxylation 'pathway-' in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.
Collapse
Affiliation(s)
- Deepak Kumar Shaw
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Jegan Sekar
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Prabavathy Vaiyapuri Ramalingam
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| |
Collapse
|
9
|
Tümay SO, Irani-Nezhad MH, Khataee A. Development of dipodal fluorescence sensor of iron for real samples based on pyrene modified anthracene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120017. [PMID: 34098476 DOI: 10.1016/j.saa.2021.120017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
A novel pyrene modified anthracene dipodal sensor was prepared by a simple synthetic method for the sensitive determination of iron ions in real samples. The chemical characterization analyses including nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were carried out to characterize the target fluorescent sensor. Photophysical and electrochemical behaviors of the sensor were studied by the absorption, excitation-emission matrix analysis, steady-state fluorescence, three-dimensional fluorescence, and cyclic and square wave voltammetry, respectively. The fluorescent sensor properties were evaluated via Ultraviolet-visible and fluorescence spectroscopies. According to obtained results, the fluorescence signal of the sensor was selectively quenched with interaction with Fe3+ ions. The spectrofluorimetric determination of iron, in real water and medicine samples were successfully carried out under optimized experimental conditions. A detection limit and linear working range were calculated as 0.265 μM and 0.275-55.000 μM, respectively which demonstrated the ability of the simple and sensitive sensor for slight amounts of iron. The obtained detection limit for iron determination with the presented novel fluorescent sensor was less than nearly 20 times the tolerance limit (5.40 µM) in drinking water that was determined by the United States Environmental Protection Agency. The accuracy of the newly developed method was evaluated by Inductively coupled plasma optical emission spectroscopy and spike/recovery test which demonstrated that the developed fluorescent sensor has high accuracy for fast, easy and accessible determination of iron at 95% confidence level.
Collapse
Affiliation(s)
- Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Turkey
| | - Mahsa Haddad Irani-Nezhad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| |
Collapse
|
10
|
Teng ZJ, Qin QL, Zhang W, Li J, Fu HH, Wang P, Lan M, Luo G, He J, McMinn A, Wang M, Chen XL, Zhang YZ, Chen Y, Li CY. Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans. MICROBIOME 2021; 9:207. [PMID: 34654476 PMCID: PMC8520302 DOI: 10.1186/s40168-021-01153-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Dimethyl sulfide (DMS) is the dominant volatile organic sulfur in global oceans. The predominant source of oceanic DMS is the cleavage of dimethylsulfoniopropionate (DMSP), which can be produced by marine bacteria and phytoplankton. Polar oceans, which represent about one fifth of Earth's surface, contribute significantly to the global oceanic DMS sea-air flux. However, a global overview of DMS and DMSP cycling in polar oceans is still lacking and the key genes and the microbial assemblages involved in DMSP/DMS transformation remain to be fully unveiled. RESULTS Here, we systematically investigated the biogeographic traits of 16 key microbial enzymes involved in DMS/DMSP cycling in 60 metagenomic samples from polar waters, together with 174 metagenome and 151 metatranscriptomes from non-polar Tara Ocean dataset. Our analyses suggest that intense DMS/DMSP cycling occurs in the polar oceans. DMSP demethylase (DmdA), DMSP lyases (DddD, DddP, and DddK), and trimethylamine monooxygenase (Tmm, which oxidizes DMS to dimethylsulfoxide) were the most prevalent bacterial genes involved in global DMS/DMSP cycling. Alphaproteobacteria (Pelagibacterales) and Gammaproteobacteria appear to play prominent roles in DMS/DMSP cycling in polar oceans. The phenomenon that multiple DMS/DMSP cycling genes co-occurred in the same bacterial genome was also observed in metagenome assembled genomes (MAGs) from polar oceans. The microbial assemblages from the polar oceans were significantly correlated with water depth rather than geographic distance, suggesting the differences of habitats between surface and deep waters rather than dispersal limitation are the key factors shaping microbial assemblages involved in DMS/DMSP cycling in polar oceans. CONCLUSIONS Overall, this study provides a global overview of the biogeographic traits of known bacterial genes involved in DMS/DMSP cycling from the Arctic and Antarctic oceans, laying a solid foundation for further studies of DMS/DMSP cycling in polar ocean microbiome at the enzymatic, metabolic, and processual levels. Video Abstract.
Collapse
Affiliation(s)
- Zhao-Jie Teng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
| | - Jian Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China
| | - Peng Wang
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China
| | - Musheng Lan
- The Key Laboratory for Polar Science MNR, Polar Research Institute of China, Shanghai, 200136, China
| | - Guangfu Luo
- The Key Laboratory for Polar Science MNR, Polar Research Institute of China, Shanghai, 200136, China
| | - Jianfeng He
- The Key Laboratory for Polar Science MNR, Polar Research Institute of China, Shanghai, 200136, China
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
| | - Xiu-Lan Chen
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China
| | - Yin Chen
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China.
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Chun-Yang Li
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China.
| |
Collapse
|
11
|
Nandi S, Razzaghi M, Srivastava D, Dey M. Structural basis for allosteric regulation of pyruvate kinase M2 by phosphorylation and acetylation. J Biol Chem 2021; 295:17425-17440. [PMID: 33453989 DOI: 10.1074/jbc.ra120.015800] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Pyruvate kinase muscle isoform 2 (PKM2) is a key glycolytic enzyme and transcriptional coactivator and is critical for tumor metabolism. In cancer cells, native tetrameric PKM2 is phosphorylated or acetylated, which initiates a switch to a dimeric/monomeric form that translocates into the nucleus, causing oncogene transcription. However, it is not known how these post-translational modifications (PTMs) disrupt the oligomeric state of PKM2. We explored this question via crystallographic and biophysical analyses of PKM2 mutants containing residues that mimic phosphorylation and acetylation. We find that the PTMs elicit major structural reorganization of the fructose 1,6-bisphosphate (FBP), an allosteric activator, binding site, impacting the interaction with FBP and causing a disruption in oligomerization. To gain insight into how these modifications might cause unique outcomes in cancer cells, we examined the impact of increasing the intracellular pH (pHi) from ∼7.1 (in normal cells) to ∼7.5 (in cancer cells). Biochemical studies of WT PKM2 (wtPKM2) and the two mimetic variants demonstrated that the activity decreases as the pH is increased from 7.0 to 8.0, and wtPKM2 is optimally active and amenable to FBP-mediated allosteric regulation at pHi 7.5. However, the PTM mimetics exist as a mixture of tetramer and dimer, indicating that physiologically dimeric fraction is important and might be necessary for the modified PKM2 to translocate into the nucleus. Thus, our findings provide insight into how PTMs and pH regulate PKM2 and offer a broader understanding of its intricate allosteric regulation mechanism by phosphorylation or acetylation.
Collapse
Affiliation(s)
- Suparno Nandi
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA
| | | | | | - Mishtu Dey
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
12
|
Li N, He XY, Liu NH, Gu TJ, Li J, Geng YH, Zhang S, Wang P, Fu HH, Shi M, Chen XL, Zhang YZ, Zhang XY, Qin QL. Tritonibacter aquimaris sp. nov. and Tritonibacter litoralis sp. nov., two novel members of the Roseobacter group isolated from coastal seawater. Antonie Van Leeuwenhoek 2021; 114:787-798. [PMID: 33782795 DOI: 10.1007/s10482-021-01558-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
Two Gram-stain-negative bacterial strains, SM1969T and SM1979T, were isolated from coastal surface seawater of Qingdao, China. They were taxonomically characterized by the phylogenetic, genomic, chemotaxonomic and phenotypic analyses. The two strains shared 97.0% 16S rRNA gene sequence similarity with each other and the highest similarity (96.8-97.5%) with type strains of six species in the genera Shimia, Tritonibacter and Tropicibacter in the Roseobacter group of the family Rhodobacteraceae. In the phylogenetic tree based on single-copy orthologous clusters (OCs), both strains clustered with known species of the genus Tritonibacter and together formed a separate branch adjacent to Tritonibacter ulvae. Although sharing many chemotaxonomic and phenotypic characteristics, the two strains could be differentiated from each other and closely related species by numerous traits. Particularly, strain SM1969T was found to have a DMSP lyase coding gene dddW in its genome and have the ability to produce DMS from DMSP while strain SM1979T was not. The average nucleotide identity and in silico DNA-DNA hybridization values between strains SM1969T and SM1979T and type strains of closely related species were all below the thresholds to discriminate bacterial species, demonstrating that they constitute two new species in the genus Tritonibacter. The names Tritonibacter aquimaris sp. nov. and Tritonibacter litoralis sp. nov. are proposed for the two new species, with type strains being SM1969T (= MCCC 1K04320T = KCTC 72843T) and SM1979T (= MCCC 1K04321T = KCTC 72842T), respectively.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiao-Yan He
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ning-Hua Liu
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Tie-Ji Gu
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Jian Li
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yu-Hui Geng
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Shan Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Peng Wang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
13
|
Tümay SO, Irani-Nezhad MH, Khataee A. Multi-anthracene containing fluorescent probe for spectrofluorimetric iron determination in environmental water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119250. [PMID: 33316650 DOI: 10.1016/j.saa.2020.119250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
An anthracene-based fluorescence (FL) system was synthesized via a general synthetic procedure. Fourier transform infrared spectroscopy (FTIR), MALDI-MS, and nuclear magnetic resonance spectroscopy (13C and 1H NMR) were carried out to characterize the multi-anthracene containing probe. The photophysical properties of the probe were illustrated via 3D-FL analysis and excitation-emission matrix (EEM) measurements. Density-functional theory (DFT) was applied to optimize the structure of the prepared probe and investigate its molecular interactions with Fe3+. The FL proficiency of the probe was appraised by spectroscopic measurements like Ultraviolet-Visible (UV-Vis) and FL spectroscopies. The simple and highly sensitive probe was able to diagnose ferric ions' low concentrations and detection limit reached upto 0.223 µM with linear working range between 0.22 and 92.00 µM for Fe3+ ions. The efficacy of this fluorescent probe was confirmed by testing for iron determination in environmental samples. Various fluorophores or ionophores could be applied for achieving novel probes by the proposed procedures and for diagnosing diverse metal ions.
Collapse
Affiliation(s)
- Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Turkey
| | - Mahsa Haddad Irani-Nezhad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| |
Collapse
|
14
|
Design of novel anthracene-based fluorescence sensor for sensitive and selective determination of iron in real samples. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112819] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Iakimova ET, Yordanova ZP, Cristescu SM, Harren FFM, Woltering EJ. Cell death associated release of volatile organic sulphur compounds with antioxidant properties in chemical-challenged tobacco BY-2 suspension cultured cells. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153223. [PMID: 32645555 DOI: 10.1016/j.jplph.2020.153223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 05/24/2023]
Abstract
The production of volatile organic compounds (VOCs) during programmed cell death (PCD) is still insufficiently studied and their implication in the process is not well understood. The present study demonstrates that the release of VOSCs with presumed antioxidant capacity (methanethiol, dimethylsulfide and dimethyldisulfide) accompanies the cell death in chemical-stressed tobacco BY-2 suspension cultured cells. The cells were exposed to cell death inducers of biotic nature mastoparan (MP, wasp venom) and camptothecin (CPT, alkaloid), and to the abiotic stress agent CdSO4. The VOCs emission was monitored by proton-transfer reaction mass spectrometry (PTR-MS). The three chemicals induced PCD expressing apoptotic-like phenotype. The identified VOSCs were emitted in response to MP and CPT but not in presence of Cd. The VOSCs production occurred within few hours after the administration of the elicitors, peaked up when 20-50 % of the cells were dead and further levelled off with cell death advancement. This suggests that VOSCs with antioxidant activity may contribute to alleviation of cell death-associated oxidative stress at medium severity of cell death in response to the stress factors of biotic origin. The findings provide novel information about cell death defence mechanisms in chemical-challenged BY-2 cells and show that PCD related VOSCs synthesis depends on the type of inducer.
Collapse
Affiliation(s)
- Elena T Iakimova
- Wageningen University & Research, Horticulture and Product Physiology Group, Droevendaalsesteeg 1, P.O. Box 630, 6700AP, Wageningen, the Netherlands
| | - Zhenia P Yordanova
- Radboud University, Institute for Molecules and Materials, Department of Molecular and Laser Physics, Life Science Trace Gas Facility & Trace Gas Research Group, P.O. Box, 9010, NL-6500 GL, Nijmegen, the Netherlands.
| | - Simona M Cristescu
- Radboud University, Institute for Molecules and Materials, Department of Molecular and Laser Physics, Life Science Trace Gas Facility & Trace Gas Research Group, P.O. Box, 9010, NL-6500 GL, Nijmegen, the Netherlands.
| | - Frans F M Harren
- Radboud University, Institute for Molecules and Materials, Department of Molecular and Laser Physics, Life Science Trace Gas Facility & Trace Gas Research Group, P.O. Box, 9010, NL-6500 GL, Nijmegen, the Netherlands.
| | - Ernst J Woltering
- Wageningen University & Research, Horticulture and Product Physiology Group, Droevendaalsesteeg 1, P.O. Box 630, 6700AP, Wageningen, the Netherlands; Wageningen Food and Biobased Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
16
|
Single-cell bacterial transcription measurements reveal the importance of dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nat Commun 2020; 11:1942. [PMID: 32327645 PMCID: PMC7181598 DOI: 10.1038/s41467-020-15693-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 01/09/2023] Open
Abstract
Dimethylsulfoniopropionate (DMSP) is a pivotal compound in marine biogeochemical cycles and a key chemical currency in microbial interactions. Marine bacteria transform DMSP via two competing pathways with considerably different biogeochemical implications: demethylation channels sulfur into the microbial food web, whereas cleavage releases sulfur into the atmosphere. Here, we present single-cell measurements of the expression of these two pathways using engineered fluorescent reporter strains of Ruegeria pomeroyi DSS-3, and find that external DMSP concentration dictates the relative expression of the two pathways. DMSP induces an upregulation of both pathways, but only at high concentrations (>1 μM for demethylation; >35 nM for cleavage), characteristic of microscale hotspots such as the vicinity of phytoplankton cells. Co-incubations between DMSP-producing microalgae and bacteria revealed an increase in cleavage pathway expression close to the microalgae’s surface. These results indicate that bacterial utilization of microscale DMSP hotspots is an important determinant of the fate of sulfur in the ocean. DMSP is a ubiquitous organosulfur compound in the ocean that, once degraded by bacteria, plays key roles in global biogeochemical cycles and climate regulation. Here, the authors use single-cell measurements of transcription to investigate the intricate dynamics of bacterial DMSP degradation.
Collapse
|
17
|
Nandi S, Dey M. Biochemical and structural insights into how amino acids regulate pyruvate kinase muscle isoform 2. J Biol Chem 2020; 295:5390-5403. [PMID: 32144209 PMCID: PMC7170521 DOI: 10.1074/jbc.ra120.013030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Pyruvate kinase muscle isoform 2 (PKM2) is a key glycolytic enzyme involved in ATP generation and critical for cancer metabolism. PKM2 is expressed in many human cancers and is regulated by complex mechanisms that promote tumor growth and proliferation. Therefore, it is considered an attractive therapeutic target for modulating tumor metabolism. Various stimuli allosterically regulate PKM2 by cycling it between highly active and less active states. Several small molecules activate PKM2 by binding to its intersubunit interface. Serine and cysteine serve as an activator and inhibitor of PKM2, respectively, by binding to its amino acid (AA)-binding pocket, which therefore represents a potential druggable site. Despite binding similarly to PKM2, how cysteine and serine differentially regulate this enzyme remains elusive. Using kinetic analyses, fluorescence binding, X-ray crystallography, and gel filtration experiments with asparagine, aspartate, and valine as PKM2 ligands, we examined whether the differences in the side-chain polarity of these AAs trigger distinct allosteric responses in PKM2. We found that Asn (polar) and Asp (charged) activate PKM2 and that Val (hydrophobic) inhibits it. The results also indicate that both Asn and Asp can restore the activity of Val-inhibited PKM2. AA-bound crystal structures of PKM2 displayed distinctive interactions within the binding pocket, causing unique allosteric effects in the enzyme. These structure-function analyses of AA-mediated PKM2 regulation shed light on the chemical requirements in the development of mechanism-based small-molecule modulators targeting the AA-binding pocket of PKM2 and provide broader insights into the regulatory mechanisms of complex allosteric enzymes.
Collapse
Affiliation(s)
- Suparno Nandi
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Mishtu Dey
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
18
|
Development of a synthetic strategy for Water soluble tripodal receptors: Two novel fluorescent receptors for highly selective and sensitive detections of Fe3+ and Cu2+ ions and biological evaluation. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112411] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Zhang XH, Liu J, Liu J, Yang G, Xue CX, Curson ARJ, Todd JD. Biogenic production of DMSP and its degradation to DMS-their roles in the global sulfur cycle. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1296-1319. [PMID: 31231779 DOI: 10.1007/s11427-018-9524-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/16/2019] [Indexed: 01/08/2023]
Abstract
Dimethyl sulfide (DMS) is the most abundant form of volatile sulfur in Earth's oceans, and is mainly produced by the enzymatic clevage of dimethylsulfoniopropionate (DMSP). DMS and DMSP play important roles in driving the global sulfur cycle and may affect climate. DMSP is proposed to serve as an osmolyte, a grazing deterrent, a signaling molecule, an antioxidant, a cryoprotectant and/or as a sink for excess sulfur. It was long believed that only marine eukaryotes such as phytoplankton produce DMSP. However, we recently discovered that marine heterotrophic bacteria can also produce DMSP, making them a potentially important source of DMSP. At present, one prokaryotic and two eukaryotic DMSP synthesis enzymes have been identified. Marine heterotrophic bacteria are likely the major degraders of DMSP, using two known pathways: demethylation and cleavage. Many phytoplankton and some fungi can also cleave DMSP. So far seven different prokaryotic and one eukaryotic DMSP lyases have been identified. This review describes the global distribution pattern of DMSP and DMS, the known genes for biosynthesis and cleavage of DMSP, and the physiological and ecological functions of these important organosulfur molecules, which will improve understanding of the mechanisms of DMSP and DMS production and their roles in the environment.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Ji Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jingli Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Guipeng Yang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266071, China
| | - Chun-Xu Xue
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
20
|
Abstract
The organosulfur metabolite dimethylsulfoniopropionate (DMSP) and its enzymatic breakdown product dimethyl sulfide (DMS) have important implications in the global sulfur cycle and in marine microbial food webs. Enormous amounts of DMSP are produced in marine environments where microbial communities import and catabolize it via either the demethylation or the cleavage pathways. The enzymes that cleave DMSP are termed "DMSP lyases" and generate acrylate or hydroxypropionate, and ~107tons of DMS annually. An important environmental factor affecting DMS generation by the DMSP lyases is the availability of metal ions as these enzymes use various cofactors for catalysis. This chapter summarizes advances on bacterial DMSP catabolism, with an emphasis on various biochemical methods employed for the isolation and characterization of bacterial DMSP lyases. Strategies are presented for the purification of DMSP lyases expressed in bacterial cells. Specific conditions for the efficient isolation of apoproteins in Escherichia coli are detailed. DMSP cleavage is effectively inferred, utilizing the described HPLC-based acrylate detection assay. Finally, substrate and metal binding interactions are examined using fluorescence and UV-visible assays. Together, these methods are rapid and well suited for the biochemical and structural characterization of DMSP lyases and in the assessment of uncharacterized DMSP catabolic enzymes, and new metalloenzymes in general.
Collapse
|
21
|
Structure-Function Analysis Indicates that an Active-Site Water Molecule Participates in Dimethylsulfoniopropionate Cleavage by DddK. Appl Environ Microbiol 2019; 85:AEM.03127-18. [PMID: 30770407 DOI: 10.1128/aem.03127-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/13/2019] [Indexed: 11/20/2022] Open
Abstract
The osmolyte dimethylsulfoniopropionate (DMSP) is produced in petagram quantities in marine environments and has important roles in global sulfur and carbon cycling. Many marine microorganisms catabolize DMSP via DMSP lyases, generating the climate-active gas dimethyl sulfide (DMS). DMS oxidation products participate in forming cloud condensation nuclei and, thus, may influence weather and climate. SAR11 bacteria are the most abundant marine heterotrophic bacteria; many of them contain the DMSP lyase DddK, and their dddK transcripts are relatively abundant in seawater. In a recently described catalytic mechanism for DddK, Tyr64 is predicted to act as the catalytic base initiating the β-elimination reaction of DMSP. Tyr64 was proposed to be deprotonated by coordination to the metal cofactor or its neighboring His96. To further probe this mechanism, we purified and characterized the DddK protein from Pelagibacter ubique strain HTCC1062 and determined the crystal structures of wild-type DddK and its Y64A and Y122A mutants (bearing a change of Y to A at position 64 or 122, respectively), where the Y122A mutant is complexed with DMSP. The structural and mutational analyses largely support the catalytic role of Tyr64, but not the method of its deprotonation. Our data indicate that an active water molecule in the active site of DddK plays an important role in the deprotonation of Tyr64 and that this is far more likely than coordination to the metal or His96. Sequence alignment and phylogenetic analysis suggest that the proposed catalytic mechanism of DddK has universal significance. Our results provide new mechanistic insights into DddK and enrich our understanding of DMS generation by SAR11 bacteria.IMPORTANCE The climate-active gas dimethyl sulfide (DMS) plays an important role in global sulfur cycling and atmospheric chemistry. DMS is mainly produced through the bacterial cleavage of marine dimethylsulfoniopropionate (DMSP). When released into the atmosphere from the oceans, DMS can be photochemically oxidized into DMSO or sulfate aerosols, which form cloud condensation nuclei that influence the reflectivity of clouds and, thereby, global temperature. SAR11 bacteria are the most abundant marine heterotrophic bacteria, and many of them contain DMSP lyase DddK to cleave DMSP, generating DMS. In this study, based on structural analyses and mutational assays, we revealed the catalytic mechanism of DddK, which has universal significance in SAR11 bacteria. This study provides new insights into the catalytic mechanism of DddK, leading to a better understanding of how SAR11 bacteria generate DMS.
Collapse
|
22
|
Tripodal synthetic receptors based on cyclotriphosphazene scaffold for highly selective and sensitive spectrofluorimetric determination of iron(III) in water samples. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Lei L, Alcolombri U, Tawfik DS. Biochemical Profiling of DMSP Lyases. Methods Enzymol 2018; 605:269-289. [PMID: 29909827 DOI: 10.1016/bs.mie.2018.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dimethyl sulfide (DMS) is released at rates of >107 tons annually and plays a key role in the oceanic sulfur cycle and ecology. Marine bacteria, algae, and possibly other organisms release DMS via cleavage of dimethylsulfoniopropionate (DMSP). DMSP lyases have been identified in various organisms, including bacteria, coral, and algae, thus comprising a range of gene families putatively assigned as DMSP lyases. Metagenomics may therefore provide insight regarding the presence of DMSP lyases in various marine environments, thereby promoting a better understanding of global DMS emission. However, gene counts, and even mRNA levels, do not necessarily reflect the level of DMSP cleavage activity in a given environmental sample, especially because some of the families assigned as DMSP lyases may merely exhibit promiscuous lyase activity. Here, we describe a range of biochemical profiling methods that can assign an observed DMSP lysis activity to a specific gene family. These methods include selective inhibitors and DMSP substrate analogues. Combined with genomics and metagenomics, biochemical profiling may enable a more reliable identification of the origins of DMS release in specific organisms and in crude environmental samples.
Collapse
Affiliation(s)
- Lei Lei
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uria Alcolombri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
24
|
Burkhardt I, Lauterbach L, Brock NL, Dickschat JS. Chemical differentiation of three DMSP lyases from the marine Roseobacter group. Org Biomol Chem 2018; 15:4432-4439. [PMID: 28485454 DOI: 10.1039/c7ob00913e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) catabolism of marine bacteria plays an important role in marine and global ecology. The genome of Ruegeria pomeroyi DSS-3, a model organism from the Roseobacter group, harbours no less than three genes for different DMSP lyases (DddW, DddP and DddQ) that catalyse the degradation of DMSP to dimethyl sulfide (DMS) and acrylate. Despite their apparent similar function these enzymes show no significant overall sequence identity. In this work DddQ and DddW from R. pomeroyi and the DddP homolog from Phaeobacter inhibens DSM 17395 were functionally characterised and their substrate scope was tested using several synthetic DMSP analogues. Comparative kinetic assays revealed differences in the conversion of DMSP and its analogues in terms of selectivity and overall velocity, giving additional insights into the molecular mechanisms of DMSP lyases and into their putatively different biological functions.
Collapse
Affiliation(s)
- Immo Burkhardt
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | | | | | |
Collapse
|
25
|
Lei L, Cherukuri KP, Alcolombri U, Meltzer D, Tawfik DS. The Dimethylsulfoniopropionate (DMSP) Lyase and Lyase-Like Cupin Family Consists of Bona Fide DMSP lyases as Well as Other Enzymes with Unknown Function. Biochemistry 2018; 57:3364-3377. [DOI: 10.1021/acs.biochem.8b00097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Lei
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Uria Alcolombri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Diana Meltzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
26
|
Li CY, Zhang D, Chen XL, Wang P, Shi WL, Li PY, Zhang XY, Qin QL, Todd JD, Zhang YZ. Mechanistic Insights into Dimethylsulfoniopropionate Lyase DddY, a New Member of the Cupin Superfamily. J Mol Biol 2017; 429:3850-3862. [DOI: 10.1016/j.jmb.2017.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/08/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022]
|
27
|
Schnicker NJ, Razzaghi M, Guha Thakurta S, Chakravarthy S, Dey M. Bacillus anthracis Prolyl 4-Hydroxylase Interacts with and Modifies Elongation Factor Tu. Biochemistry 2017; 56:5771-5785. [PMID: 28981257 DOI: 10.1021/acs.biochem.7b00601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prolyl hydroxylation is a very common post-translational modification and plays many roles in eukaryotes such as collagen stabilization, hypoxia sensing, and controlling protein transcription and translation. There is a growing body of evidence that suggests that prokaryotes contain prolyl 4-hydroxylases (P4Hs) homologous to the hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) enzymes that act on elongation factor Tu (EFTu) and are likely involved in the regulation of bacterial translation. Recent biochemical and structural studies with a PHD from Pseudomonas putida (PPHD) determined that it forms a complex with EFTu and hydroxylates a prolyl residue of EFTu. Moreover, while animal, plant, and viral P4Hs act on peptidyl proline, most prokaryotic P4Hs have been known to target free l-proline; the exceptions include PPHD and a P4H from Bacillus anthracis (BaP4H) that modifies collagen-like proline-rich peptides. Here we use biophysical and mass spectrometric methods to demonstrate that BaP4H recognizes full-length BaEFTu and a BaEFTu 9-mer peptide for site-specific proline hydroxylation. Using size-exclusion chromatography coupled small-angle X-ray scattering (SEC-SAXS) and binding studies, we determined that BaP4H forms a 1:1 heterodimeric complex with BaEFTu. The SEC-SAXS studies reveal dissociation of BaP4H dimeric subunits upon interaction with BaEFTu. While BaP4H is unusual within bacteria in that it is structurally and functionally similar to the animal PHDs and collagen P4Hs, respectively, this work provides further evidence of its promiscuous substrate recognition. It is possible that the enzyme might have evolved to hydroxylate a universally conserved protein in prokaryotes, similar to the PHDs, and implies a functional role in B. anthracis.
Collapse
Affiliation(s)
- Nicholas J Schnicker
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Mortezaali Razzaghi
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Sanjukta Guha Thakurta
- Department of Cell Biology, Harvard Medical School , 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Mishtu Dey
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
28
|
Wang P, Cao HY, Chen XL, Li CY, Li PY, Zhang XY, Qin QL, Todd JD, Zhang YZ. Mechanistic insight into acrylate metabolism and detoxification in marine dimethylsulfoniopropionate-catabolizing bacteria. Mol Microbiol 2017; 105:674-688. [PMID: 28598523 DOI: 10.1111/mmi.13727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2017] [Indexed: 12/24/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) cleavage, yielding dimethyl sulfide (DMS) and acrylate, provides vital carbon sources to marine bacteria, is a key component of the global sulfur cycle and effects atmospheric chemistry and potentially climate. Acrylate and its metabolite acryloyl-CoA are toxic if allowed to accumulate within cells. Thus, organisms cleaving DMSP require effective systems for both the utilization and detoxification of acrylate. Here, we examine the mechanism of acrylate utilization and detoxification in Roseobacters. We propose propionate-CoA ligase (PrpE) and acryloyl-CoA reductase (AcuI) as the key enzymes involved and through structural and mutagenesis analyses, provide explanations of their catalytic mechanisms. In most cases, DMSP lyases and DMSP demethylases (DmdAs) have low substrate affinities, but AcuIs have very high substrate affinities, suggesting that an effective detoxification system for acylate catabolism exists in DMSP-catabolizing Roseobacters. This study provides insight on acrylate metabolism and detoxification and a possible explanation for the high Km values that have been noted for some DMSP lyases. Since acrylate/acryloyl-CoA is probably produced by other metabolism, and AcuI and PrpE are conserved in many organisms across all domains of life, the detoxification system is likely relevant to many metabolic processes and environments beyond DMSP catabolism.
Collapse
Affiliation(s)
- Peng Wang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Hai-Yan Cao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Chun-Yang Li
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Ping-Yi Li
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xi-Ying Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Qi-Long Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
29
|
Schnicker NJ, De Silva SM, Todd JD, Dey M. Structural and Biochemical Insights into Dimethylsulfoniopropionate Cleavage by Cofactor-Bound DddK from the Prolific Marine Bacterium Pelagibacter. Biochemistry 2017; 56:2873-2885. [DOI: 10.1021/acs.biochem.7b00099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nicholas J. Schnicker
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Saumya M. De Silva
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan D. Todd
- School
of Biological Sciences, University of East Anglia, Norwich Research
Park, Norwich NR4 7TJ, United Kingdom
| | - Mishtu Dey
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
30
|
Bullock HA, Luo H, Whitman WB. Evolution of Dimethylsulfoniopropionate Metabolism in Marine Phytoplankton and Bacteria. Front Microbiol 2017; 8:637. [PMID: 28469605 PMCID: PMC5395565 DOI: 10.3389/fmicb.2017.00637] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
The elucidation of the pathways for dimethylsulfoniopropionate (DMSP) synthesis and metabolism and the ecological impact of DMSP have been studied for nearly 70 years. Much of this interest stems from the fact that DMSP metabolism produces the climatically active gas dimethyl sulfide (DMS), the primary natural source of sulfur to the atmosphere. DMSP plays many important roles for marine life, including use as an osmolyte, antioxidant, predator deterrent, and cryoprotectant for phytoplankton and as a reduced carbon and sulfur source for marine bacteria. DMSP is hypothesized to have become abundant in oceans approximately 250 million years ago with the diversification of the strong DMSP producers, the dinoflagellates. This event coincides with the first genome expansion of the Roseobacter clade, known DMSP degraders. Structural and mechanistic studies of the enzymes of the bacterial DMSP demethylation and cleavage pathways suggest that exposure to DMSP led to the recruitment of enzymes from preexisting metabolic pathways. In some cases, such as DmdA, DmdD, and DddP, these enzymes appear to have evolved to become more specific for DMSP metabolism. By contrast, many of the other enzymes, DmdB, DmdC, and the acrylate utilization hydratase AcuH, have maintained broad functionality and substrate specificities, allowing them to carry out a range of reactions within the cell. This review will cover the experimental evidence supporting the hypothesis that, as DMSP became more readily available in the marine environment, marine bacteria adapted enzymes already encoded in their genomes to utilize this new compound.
Collapse
Affiliation(s)
- Hannah A Bullock
- Department of Microbiology, University of Georgia, AthensGA, USA
| | - Haiwei Luo
- School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | | |
Collapse
|
31
|
Enzymology of Microbial Dimethylsulfoniopropionate Catabolism. STRUCTURAL AND MECHANISTIC ENZYMOLOGY 2017; 109:195-222. [DOI: 10.1016/bs.apcsb.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Brummett AE, Dey M. New Mechanistic Insight from Substrate- and Product-Bound Structures of the Metal-Dependent Dimethylsulfoniopropionate Lyase DddQ. Biochemistry 2016; 55:6162-6174. [PMID: 27755868 DOI: 10.1021/acs.biochem.6b00585] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The marine microbial catabolism of dimethylsulfoniopropionate (DMSP) by the lyase pathway liberates ∼300 million tons of dimethyl sulfide (DMS) per year, which plays a major role in the biogeochemical cycling of sulfur. Recent biochemical and structural studies of some DMSP lyases, including DddQ, reveal the importance of divalent transition metal ions in assisting DMSP cleavage. While DddQ is believed to be zinc-dependent primarily on the basis of structural studies, excess zinc inhibits the enzyme. We examine the importance of iron in regulating the DMSP β-elimination reaction catalyzed by DddQ as our as-isolated purple-colored enzyme possesses ∼0.5 Fe/subunit. The UV-visible spectrum exhibited a feature at 550 nm, consistent with a tyrosinate-Fe(III) ligand-to-metal charge transfer transition. Incubation of as-isolated DddQ with added iron increases the intensity of the 550 nm peak, whereas addition of dithionite causes a bleaching as Fe(III) is reduced. Both the Fe(III) oxidized and Fe(II) reduced species are active, with similar kcat values and 2-fold differences in their Km values for DMSP. The slow turnover of Fe(III)-bound DddQ allowed us to capture a substrate-bound form of the enzyme. Our DMSP-Fe(III)-DddQ structure reveals conformational changes associated with substrate binding and shows that DMSP is positioned optimally to bind iron and is in the proximity of Tyr 120 that acts as a Lewis base to initiate catalysis. The structures of Tris-, DMSP-, and acrylate-bound forms of Fe(III)-DddQ reported here illustrate various states of the enzyme along the reaction pathway. These results provide new insights into DMSP lyase catalysis and have broader significance for understanding the mechanism of oceanic DMS production.
Collapse
Affiliation(s)
- Adam E Brummett
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Mishtu Dey
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
33
|
Schnicker NJ, Dey M. Structural analysis of cofactor binding for a prolyl 4-hydroxylase from the pathogenic bacteriumBacillus anthracis. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:675-81. [DOI: 10.1107/s2059798316004198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/11/2016] [Indexed: 11/11/2022]
Abstract
The prolyl 4-hydroxylases (P4Hs) are mononuclear nonheme iron enzymes that catalyze the formation of 4R-hydroxyproline from many different substrates, with various biological implications. P4H is a key player in collagen accumulation, which has implications in fibrotic disorders. The stabilization of collagen triple-helical structureviaprolyl hydroxylation is the rate-limiting step in collagen biosynthesis, and therefore P4H has been extensively investigated as a potential therapeutic target of fibrotic disease. Understanding how these enzymes recognize cofactors and substrates is important and will aid in the future design of inhibitors of P4H. In this article, X-ray crystal structures of a metallocofactor- and α-ketoglutarate (αKG)-bound form of P4H fromBacillus anthracis(BaP4H) are reported. Structures of BaP4H were solved at 1.63 and 2.35 Å resolution and contained a cadmium ion and αKG bound in the active site. The αKG–Cd–BaP4H ternary complex reveals conformational changes of conserved residues upon the binding of metal ion and αKG, resulting in a closed active-site configuration required for dioxygen, substrate binding and catalysis.
Collapse
|
34
|
Schnicker NJ, Dey M. Bacillus anthracis Prolyl 4-Hydroxylase Modifies Collagen-like Substrates in Asymmetric Patterns. J Biol Chem 2016; 291:13360-74. [PMID: 27129244 DOI: 10.1074/jbc.m116.725432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
Proline hydroxylation is the most prevalent post-translational modification in collagen. The resulting product trans-4-hydroxyproline (Hyp) is of critical importance for the stability and thus function of collagen, with defects leading to several diseases. Prolyl 4-hydroxylases (P4Hs) are mononuclear non-heme iron α-ketoglutarate (αKG)-dependent dioxygenases that catalyze Hyp formation. Although animal and plant P4Hs target peptidyl proline, prokaryotes have been known to use free l-proline as a precursor to form Hyp. The P4H from Bacillus anthracis (BaP4H) has been postulated to act on peptidyl proline in collagen peptides, making it unusual within the bacterial clade, but its true physiological substrate remains enigmatic. Here we use mass spectrometry, fluorescence binding, x-ray crystallography, and docking experiments to confirm that BaP4H recognizes and acts on peptidyl substrates but not free l-proline, using elements characteristic of an Fe(II)/αKG-dependent dioxygenases. We further show that BaP4H can hydroxylate unique peptidyl proline sites in collagen-derived peptides with asymmetric hydroxylation patterns. The cofactor-bound crystal structures of BaP4H reveal active site conformational changes that define open and closed forms and mimic "ready" and "product-released" states of the enzyme in the catalytic cycle. These results help to clarify the role of BaP4H as well as provide broader insights into human collagen P4H and proteins with poly-l-proline type II helices.
Collapse
Affiliation(s)
- Nicholas J Schnicker
- From the Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1727
| | - Mishtu Dey
- From the Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1727
| |
Collapse
|
35
|
Enzymatic breakage of dimethylsulfoniopropionate — a signature molecule for life at sea. Curr Opin Chem Biol 2016; 31:58-65. [DOI: 10.1016/j.cbpa.2016.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 11/18/2022]
|