1
|
Vibhavari RJA, Rao V, Cheruku SP, Kumar BH, Maity S, Nandakumar K, Kumar L, Mehta CH, Nayak U, Chamallamudi MR, Kumar N. Enhancing temozolomide antiglioma response by inhibiting O6-methylguanine-DNA methyltransferase with selected phytochemicals: in silico and in vitro approach. 3 Biotech 2023; 13:385. [PMID: 37928438 PMCID: PMC10622385 DOI: 10.1007/s13205-023-03821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/09/2023] [Indexed: 11/07/2023] Open
Abstract
The aim of our study was to investigate the potential of rutin, catechin, dehydrozingerone, naringenin, and quercetin, both alone and in combination with temozolomide, to inhibit the expression of O6-methylguanine-DNA methyltransferase (MGMT) in glioma cells. MGMT has been shown to be a major cause of temozolomide resistance in glioma. Our study used both in silico and in vitro methods to assess the inhibitory activity of these phytochemicals on MGMT, with the goal of identifying the most effective combination of compounds for reducing temozolomide resistance. After conducting an initial in silico screening of natural compounds against MGMT protein, five phytochemicals were chosen based on their high docking scores and favorable binding energies. From the molecular docking and simulation studies, we found that quercetin showed a good inhibitory effect of MGMT with its high binding affinity. C6 glioma cells showed increased cytotoxicity when treated with the temozolomide and quercetin combination. It was understood from the isobologram and combination index plot that the drug combination showed a synergistic effect at the lowest dose. Quercetin when combined with temozolomide significantly decreased the MGMT levels in C6 cells in comparison with the other drugs as estimated by ELISA. The percentage of apoptotic cells increased significantly in the temozolomide-quercetin group indicating the potency of quercetin in decreasing the resistance of temozolomide as confirmed by acridine orange/ethidium bromide staining. Our experiment hence suggests that temozolomide resistance can be reduced by combining the drug with quercetin which will serve as an effective therapeutic target for glioblastoma treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03821-7.
Collapse
Affiliation(s)
- R. J. A. Vibhavari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - B. Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Lalit Kumar
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Usha Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali, Hajipur, 844102 Bihar India
| |
Collapse
|
2
|
Bhattacharya P, Patel TN. Looking beyond the cytogenetics in haematological malignancies: decoding the role of tandem repeats in DNA repair genes. Mol Biol Rep 2022; 49:10293-10305. [PMID: 36097110 DOI: 10.1007/s11033-022-07761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND In cancer research, one of the most significant findings was to characterize the DNA repair deficiency as carcinogenic. Amongst the various repair mechanisms, mismatch repair (MMR) and direct reversal of DNA damage systems are designated as multilevel safeguards in the human genome. Defects in these elevate the rate of mutations and results in dire consequences like cancer. Of the several molecular signatures in human genome, tandem repeats (TRs) appear at various frequencies in the exonic, intronic, and regulatory regions of the DNA. Hypervariability among these repeats in the coding and non-coding regions of the genes is well characterized for solid tumours, but its significance in haematologic malignancies remains to be explored. The purpose of our study was to elucidate the role of nucleotide repeat instability in the coding and non-coding regions of 10 different repair genes in myeloid and lymphoid cell lines compared to the control samples. METHODS AND RESULTS We selected MMR deficient extensively studied microsatellite instable colorectal cancer (HCT116), and MMR proficient breast cancer (MCF-7) cells along with underemphasized haematologic cancer cell lines to decipher the hypermutability of tandem repeats. A statistically significant TR variation was observed for MSH2 and MSH6 genes in 4 and 3 of the 6 cell lines respectively. KG1 (AML) and Daudi (Burkitt's lymphoma) were found to have compromised DNA repair competency with highly unstable nucleotide repeats. CONCLUSION Taken together, the results suggest that mutable TRs in intronic and non-intronic regions of repair genes in blood cancer might have a tumorigenic role. Since this is a pilot study on cell lines, high throughput research in large cohorts can be undertaken to reveal novel diagnostic markers for unexplained blood cancer patients with normal karyotypes or otherwise with karyotypic defects.
Collapse
Affiliation(s)
| | - Trupti N Patel
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
3
|
Irfandi R, Santi S, Raya I, Ahmad A, Ahmad Fudholi, Sari DRT, Prihantono. Study of new Zn(II)Prolinedithiocarbamate as a potential agent for breast cancer: Characterization and molecular docking. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Gharouni M, Mosaddeghi H, Mehrzad J, Es-haghi A, Motavalizadehkakhky A. Detecting a novel motif of O6-methyl guanine DNA methyltransferase, a DNA repair enzyme, involved in interaction with proliferating cell nuclear antigen through a computer modeling approach. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Wang Q, Mehmood A, Wang H, Xu Q, Xiong Y, Wei DQ. Computational Screening and Analysis of Lung Cancer Related Non-Synonymous Single Nucleotide Polymorphisms on the Human Kirsten Rat Sarcoma Gene. Molecules 2019; 24:molecules24101951. [PMID: 31117243 PMCID: PMC6572712 DOI: 10.3390/molecules24101951] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 11/16/2022] Open
Abstract
The human KRAS (Kirsten rat sarcoma) is an oncogene, involved in the regulation of cell growth and division. The mutations in the KRAS gene have the potential to cause normal cells to become cancerous in human lungs. In the present study, we focus on non-synonymous single nucleotide polymorphisms (nsSNPs), which are point mutations in the DNA sequence leading to the amino acid variants in the encoded protein. To begin with, we developed a pipeline to utilize a set of computational tools in order to obtain the most deleterious nsSNPs (Q22K, Q61P, and Q61R) associated with lung cancer in the human KRAS gene. Furthermore, molecular dynamics simulation and structural analyses of the 3D structures of native and mutant proteins confirmed the impact of these nsSNPs on the stability of the protein. Finally, the experimental results demonstrated that the structural stability of the mutant proteins was worse than that of the native protein. This study provides significant guidance for narrowing down the number of KRAS mutations to be screened as potential diagnostic biomarkers and to better understand the structural and functional mechanisms of the KRAS protein.
Collapse
Affiliation(s)
- Qiankun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Aamir Mehmood
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Heng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Peng XN, Wang J, Zhang W. Molecular dynamics simulation analysis of the effect of T790M mutation on epidermal growth factor receptor protein architecture in non-small cell lung carcinoma. Oncol Lett 2017; 14:2249-2253. [PMID: 28789446 PMCID: PMC5530049 DOI: 10.3892/ol.2017.6387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/21/2017] [Indexed: 11/23/2022] Open
Abstract
Non-small cell lung cancer etiology and its treatment failure are due to epidermal growth factor receptor (EGFR) kinase domain mutations at amino acid position 790. The mutational change from threonine to methionine at position 790 (T790M) is responsible for tyrosine kinase inhibition failure. Using molecular dynamic simulation, the present study investigated the architectural changes occurring at the atomic scale. The 50-nsec runs using a GROMOS force field for wild-type and mutant EGFR's kinase domains were investigated for contrasting variations using Gromacs inbuilt tools. The adenosine triphosphate binding domain and the active site of EGFR were studied extensively in order to understand the structural changes. All the parameters investigated in the present study revealed considerable changes in the studied structures, and the knowledge gained from this may be used to develop novel kinase inhibitors that will be effective irrespective of the structural alterations in kinase domain.
Collapse
Affiliation(s)
- Xiao-Nu Peng
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Jing Wang
- Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Wei Zhang
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
7
|
Patel TN, Roy S, Ravi R. Gastric cancer and related epigenetic alterations. Ecancermedicalscience 2017; 11:714. [PMID: 28144288 PMCID: PMC5243136 DOI: 10.3332/ecancer.2017.714] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer, a malignant and highly proliferative condition, has significantly affected a large population around the globe and is known to be caused by various factors including genetic, epigenetic, and environmental influences. Though the global trend of these cancers is declining, an increase in its frequency is still a threat because of changing lifestyles and dietary habits. However, genetic and epigenetic alterations related to gastric cancers also have an equivalent contribution towards carcinogenic development. DNA methylation is one of the major forms of epigenetic modification which plays a significant role in gastric carcinogenesis. Methylation leads to inactivation of some of the most important genes like DNA repair genes, cell cycle regulators, apoptotic genes, transcriptional regulators, and signalling pathway regulators; which subsequently cause uncontrolled proliferation of cells. Mutations in these genes can be used as suitable prognostic markers for early diagnosis of the disease, since late diagnosis of gastric cancers has a huge negative impact on overall patient survival. In this review, we focus on the important epigenetic mutations that contribute to the development of gastric cancer and the molecular pathogenesis underlying each of them. Methylation, acetylation, and histone modifications play an integral role in the onset of genomic instability, one of the many contributory factors to gastric cancer. This article also covers the constraints of incomplete knowledge of epigenetic factors influencing gastric cancer, thus throwing light on our understanding of the disease.
Collapse
Affiliation(s)
- Trupti N Patel
- Department of Medical Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Soumyadipta Roy
- Department of Medical Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Revathi Ravi
- Department of Medical Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
8
|
Neves M, Ribeiro J, Medeiros R, Sousa H. Genetic polymorphism in DNMTs and gastric cancer: A systematic review and meta-analysis. Porto Biomed J 2016; 1:164-172. [PMID: 32258570 DOI: 10.1016/j.pbj.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
Highlights Single nucleotide polymorphisms (SNPs) in DNA methyltransferases (DNMTs) modulate protein expression and affect DNA methylation.Aberrant DNA methylation, have been associated with gastric carcinogenesis.DNMT2 rs11254413 is associated with protection for GC development.DNMT3A rs7560488, DNMT3A rs36012910 and, specially, DNMT1 rs16999593 are associated with increased susceptibility for GC development. Abstract Epigenetics alterations, including aberrant DNA methylation, have been associated with gastric carcinogenesis. Single nucleotide polymorphisms (SNPs) in DNA methyltransferases (DNMTs) may influence protein expression and therefore affect DNA regulation and susceptibility for Gastric Cancer (GC).We have performed a systematic review and meta-analysis involving 11 studies and a total of 24 SNPs in DNMTs were analyzed. According to literature, only 4 SNPs, DNMT1 rs16999593, DNMT2 rs11254413 and DNMT3A rs7560488 and DNMT3A rs36012910, were associated with GC. DNMT1 rs16999593 and DNMT3A rs7560488C allele and DNMT3A rs36012910 G allele showed an increased risk for GC. On the other hand, DNMT2 rs11254413 G allele presented a protective effect for GC. Additionally, the meta-analysis evaluated the SNPs analyzed in more than one study (n = 6). Results revealed that only DNMT1 rs16999593 had a statistically significant association with GC development (OR = 1.31; 95% CI = 1.08-1.60; p = 0.006 for TC + CC genotypes).Our study suggests that DNMT2 rs11254413, DNMT3A rs7560488, DNMT3A rs36012910 and, specially, DNMT1 rs16999593 may have an association with GC development. Nevertheless, further studies are need using different populations to clarify this association with GC risk.
Collapse
Affiliation(s)
- Marco Neves
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Research Department, Portuguese League Against Cancer (LPCC-NRNorte), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Research Department, Portuguese League Against Cancer (LPCC-NRNorte), Porto, Portugal.,Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| |
Collapse
|
9
|
Zhao FL, Yang GH, Xiang S, Gao DD, Zeng C. In silico analysis of the effect of mutation on epidermal growth factor receptor in non-small-cell lung carcinoma: from mutational analysis to drug designing. J Biomol Struct Dyn 2016; 35:427-434. [PMID: 26813338 DOI: 10.1080/07391102.2016.1146165] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fu-Li Zhao
- The First Department of Oncology Subject, Center Hospital of Zhumadian in Henan, Zhumadian, Henan 463000, P.R. China
| | - Guang-Hua Yang
- The First Department of Oncology Subject, Center Hospital of Zhumadian in Henan, Zhumadian, Henan 463000, P.R. China
| | - Sen Xiang
- The First Department of Oncology Subject, Center Hospital of Zhumadian in Henan, Zhumadian, Henan 463000, P.R. China
| | - Dong-Dong Gao
- The First Department of Oncology Subject, Center Hospital of Zhumadian in Henan, Zhumadian, Henan 463000, P.R. China
| | - Chen Zeng
- The First Department of Oncology Subject, Center Hospital of Zhumadian in Henan, Zhumadian, Henan 463000, P.R. China
| |
Collapse
|