1
|
Miyoshi M, Usami M, Nishiyama Y, Kai M, Suzuki A, Maeshige N, Yamaguchi A, Ma X, Shinohara M. Soleus muscle contains a higher concentration of lipid metabolites than extensor digitorum longus in rats with lipopolysaccharide-induced acute muscle atrophy. Clin Nutr ESPEN 2023; 57:48-57. [PMID: 37739695 DOI: 10.1016/j.clnesp.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS Muscle atrophy is one of the most important and frequent problems for critically ill patients. The purpose of this study was to evaluate the effect of lipid mediators on acute muscle atrophy. Skeletal muscle fiber-specific analysis of lipid mediators in endotoxemic rats was therefore performed. METHODS Male Wistar rats were intraperitoneally injected with lipopolysaccharide (LPS). Slow-twitch soleus muscle and fast-twitch extensor digitorum longus (EDL) muscle were harvested 0, 6, and 24 h after LPS injection. Lipid mediators were profiled using liquid chromatography-tandem mass spectrometry, and free fatty acid (FFA) concentrations were measured using gas chromatography-mass spectrometry. Muscles were weighed and their cross-sectional areas were evaluated. Expression levels of mRNAs encoding inflammatory cytokines, autophagy-related transcription factors, and members of the ubiquitin-proteasome system were measured using real-time PCR. RESULTS Before LPS injection, the concentrations of all FFAs, including arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, and all measured lipid mediators were higher in soleus muscle than in EDL muscle, especially those of pro-inflammatory prostaglandin E2 (PGE2) and leukotriene B4. LPS injection, increased PGE2 and D2 and decreased FFAs in soleus muscle but did not change in EDL muscle. The concentrations of specialized pro-resolving mediators E-series hydroxy-eicosapentaenoic acid and D-series hydroxy-docosahexaenoic acid were higher in soleus muscle. Muscle cross-sectional area decreased and the expression level of atrogin-1 was upregulated in EDL muscle, but both were unchanged in soleus muscle. After LPS injection, a discrepancy involving an increased PGE2 concentration and decreased muscle atrophy was identified in this acute muscle atrophy model of critical illness. CONCLUSION Concentrations of FFAs and lipid mediators were higher in soleus muscle than in EDL muscle, and LPS injection rapidly increased concentrations of pro-inflammatory lipid mediators. However, muscle atrophy with upregulation of autophagy-related transcription factors was observed in EDL muscle but not in soleus muscle.
Collapse
Affiliation(s)
- Makoto Miyoshi
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| | - Makoto Usami
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan; Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, Japan
| | - Yuya Nishiyama
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Motoki Kai
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ayumi Suzuki
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Atomu Yamaguchi
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Xiaoqi Ma
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Jang J, Koh JH, Kim Y, Kim HJ, Park S, Chang Y, Jung J, Wolfe RR, Kim IY. Balanced Free Essential Amino Acids and Resistance Exercise Training Synergistically Improve Dexamethasone-Induced Impairments in Muscle Strength, Endurance, and Insulin Sensitivity in Mice. Int J Mol Sci 2022; 23:ijms23179735. [PMID: 36077132 PMCID: PMC9456044 DOI: 10.3390/ijms23179735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous study shows that an essential amino acid (EAA)-enriched diet attenuates dexamethasone (DEX)-induced declines in muscle mass and strength, as well as insulin sensitivity, but does not affect endurance. In the present study, we hypothesized that the beneficial effects will be synergized by adding resistance exercise training (RET) to EAA, and diet-free EAA would improve endurance. To test hypotheses, mice were randomized into the following four groups: control, EAA, RET, and EAA+RET. All mice except the control were subjected to DEX treatment. We evaluated the cumulative rate of myofibrillar protein synthesis (MPS) using 2H2O labeling and mass spectrometry. Neuromuscular junction (NMJ) stability, mitochondrial contents, and molecular signaling were demonstrated in skeletal muscle. Insulin sensitivity and glucose metabolism using 13C6-glucose tracing during oral glucose tolerance tests were analyzed. We found that EAA and RET synergistically improve muscle mass and/or strength, and endurance capacity, as well as insulin sensitivity, and glucose metabolism in DEX-treated muscle. These improvements are accomplished, in part, through improvements in myofibrillar protein synthesis, NMJ, fiber type preservation, and/or mitochondrial biogenesis. In conclusion, free EAA supplementation, particularly when combined with RET, can serve as an effective means that counteracts the adverse effects on muscle of DEX that are found frequently in clinical settings.
Collapse
Affiliation(s)
- Jiwoong Jang
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Korea
| | - Jin-Ho Koh
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Hee-Joo Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Sanghee Park
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Yewon Chang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Jiyeon Jung
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Robert R. Wolfe
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Il-Young Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-899-6685
| |
Collapse
|
3
|
NISHIKAWA A, NISHIKAWA A, KAMAJIRI N, OKADA K, IMAGITA H. The Effects of Branched-Chain Amino Acids on the Akt/mTOR Pathway and Nebulin Protein in Joint Fixation-Induced Muscle Atrophy. J Nutr Sci Vitaminol (Tokyo) 2022; 68:112-119. [DOI: 10.3177/jnsv.68.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Kim Y, Park S, Lee J, Jang J, Jung J, Koh JH, Choi CS, Wolfe RR, Kim IY. Essential Amino Acid-Enriched Diet Alleviates Dexamethasone-Induced Loss of Muscle Mass and Function through Stimulation of Myofibrillar Protein Synthesis and Improves Glucose Metabolism in Mice. Metabolites 2022; 12:metabo12010084. [PMID: 35050206 PMCID: PMC8778336 DOI: 10.3390/metabo12010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 01/18/2023] Open
Abstract
Dexamethasone (DEX) induces dysregulation of protein turnover, leading to muscle atrophy and impairment of glucose metabolism. Positive protein balance, i.e., rate of protein synthesis exceeding rate of protein degradation, can be induced by dietary essential amino acids (EAAs). In this study, we investigated the roles of an EAA-enriched diet in the regulation of muscle proteostasis and its impact on glucose metabolism in the DEX-induced muscle atrophy model. Mice were fed normal chow or EAA-enriched chow and were given daily injections of DEX over 10 days. We determined muscle mass and functions using treadmill running and ladder climbing exercises, protein kinetics using the D2O labeling method, molecular signaling using immunoblot analysis, and glucose metabolism using a U-13C6 glucose tracer during oral glucose tolerance test (OGTT). The EAA-enriched diet increased muscle mass, strength, and myofibrillar protein synthesis rate, concurrent with improved glucose metabolism (i.e., reduced plasma insulin concentrations and increased insulin sensitivity) during the OGTT. The U-13C6 glucose tracing revealed that the EAA-enriched diet increased glucose uptake and subsequent glycolytic flux. In sum, our results demonstrate a vital role for the EAA-enriched diet in alleviating the DEX-induced muscle atrophy through stimulation of myofibrillar proteins synthesis, which was associated with improved glucose metabolism.
Collapse
Affiliation(s)
- Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea; (Y.K.); (J.L.); (J.J.)
| | - Sanghee Park
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (J.-H.K.); (C.S.C.)
| | - Jinseok Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea; (Y.K.); (J.L.); (J.J.)
| | - Jiwoong Jang
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
- Gil Medical Center, Department of Internal Medicine, Gachon University, Incheon 21565, Korea
| | - Jiyeon Jung
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea; (Y.K.); (J.L.); (J.J.)
| | - Jin-Ho Koh
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (J.-H.K.); (C.S.C.)
| | - Cheol Soo Choi
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (J.-H.K.); (C.S.C.)
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
- Gil Medical Center, Department of Internal Medicine, Gachon University, Incheon 21565, Korea
| | - Robert R. Wolfe
- The Center for Translational Research in Aging and Longevity, Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Il-Young Kim
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (J.-H.K.); (C.S.C.)
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
- Correspondence: ; Tel.: +82-32-899-6685
| |
Collapse
|
5
|
Sawa R, Wake I, Yamamoto Y, Okimura Y. The involvement of Sestrin2 in the effect of IGF-I and leucine on mTROC1 activity in C2C12 and L6 myocytes. Growth Horm IGF Res 2021; 59:101406. [PMID: 34126555 DOI: 10.1016/j.ghir.2021.101406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/25/2021] [Accepted: 05/13/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE IGF-I and branched-chain amino acids have been reported to promote muscle hypertrophy via the stimulation of protein synthesis. Sestrin2, the function of which is regulated by leucine, has been reported to attenuate the activity of the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) that stimulates protein synthesis. The objective of this study was to examine whether IGF-I modulates Sestrin2 abundance and to clarify the involvement of Sestrin2 in the effect of IGF-I and leucine on mTROC1. DESIGN C2C12 and L6 myocytes were stimulated by leucine (1 mM) with or without pretreatment with IGF-I (100 ng/mL). Phosphorylation of p70 S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1), both of which are targets of the mTORC1, was examined by western blotting. Effects of Sestrin2 small interfering RNA (siRNA) on the actions of leucine and IGF-I were examined. Sestrin2 mRNA and protein levels were also determined after Sestrin2 siRNA. RESULTS Leucine increased the phosphorylation of S6K and 4E-BP1 in a dose-dependent manner. Pretreatment with IGF-I for 5 h further increased the stimulatory effect of leucine on the phosphorylation of S6K and 4E-BP1 in C2C12 cells. IGF-I increased Sestrin2 protein and messenger RNA levels. Sestrin2 siRNA increased or tended to increase basal phosphorylation of 4E-BP1 and decreased the leucine-induced phosphorylation in C2C12 and L6 cells, in particular after IGF-I treatment, suggesting the involvement of Sestrin2 in the action of leucine and IGF-I. The net increase in leucine-induced 4E-BP1 phosphorylation appeared to be attenuated by Sestrin2 siRNA. Likewise, Sestrin2 siRNA attenuated leucine-induced S6K phosphorylation in L6 cells. However, Sestrin2 siRNA did not influence leucine-induced S6K phosphorylation in C2C12 cells. CONCLUSIONS IGF-I and leucine cooperatively increased mTORC1 activity in C2C12 cells. IGF-I increased Sestrin2. Sestrin2 siRNA experiments showed that Sestrin2 was involved in the effect of leucine and IGF-I on mTORC1 activity in C2C12 and L6 cells, and suggested that increased Sestrin2 by IGF-I pretreatment might play a role in enhancing the effect of leucine on mTORC1.
Collapse
Affiliation(s)
- Ran Sawa
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Ikumi Wake
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Yu Yamamoto
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Yasuhiko Okimura
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan.
| |
Collapse
|
6
|
Karnia MJ, Korewo D, Myślińska D, Ciepielewski ZM, Puchalska M, Konieczna-Wolska K, Kowalski K, Kaczor JJ. The Positive Impact of Vitamin D on Glucocorticoid-Dependent Skeletal Muscle Atrophy. Nutrients 2021; 13:nu13030936. [PMID: 33799389 PMCID: PMC7998166 DOI: 10.3390/nu13030936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
(1) The study aimed to investigate whether vitamin D3 supplementation would positively affect rats with glucocorticoids-induced muscle atrophy as measured by skeletal muscle mass in two experimental conditions: chronic dexamethasone (DEX) administration and a model of the chronic stress response. (2) The study lasted 28 consecutive days and was performed on 45 male Wistar rats randomly divided into six groups. These included two groups treated by abdominal injection of DEX at a dose of 2 mg/kg/day supplemented with vegetable oil (DEX PL; n = 7) or with vitamin D3 600 IU/kg/day (DEX SUP; n = 8), respectively, and a control group treated with an abdominal injection of saline (CON; n = 6). In addition, there were two groups of rats chronically stressed by cold water immersion (1 hour/day in a glass box with 1-cm-deep ice/water mixture; temperature ~4 °C), which were supplemented with vegetable oil as a placebo (STR PL; n = 9) or vitamin D3 at 600 IU/kg/day (STR SUP; n = 9). The last group was of sham-stressed rats (SHM; n = 6). Blood, soleus, extensor digitorum longus, gastrocnemius, tibialis anterior, and quadriceps femoris muscles were collected and weighed. The heart, liver, spleen, and thymus were removed and weighed immediately after sacrifice. The plasma corticosterone (CORT) and vitamin D3 metabolites were measured. (3) We found elevated CORT levels in both cold water-immersed groups; however, they did not alter body and muscle weight. Body weight and muscle loss occurred in groups with exogenously administered DEX, with the exception of the soleus muscle in rats supplemented with vitamin D3. Decreased serum 25(OH)D3 concentrations in DEX-treated rats were observed, and the cold water immersion did not affect vitamin D3 levels. (4) Our results indicate that DEX-induced muscle loss was abolished in rats supplemented with vitamin D3, especially in the soleus muscle.
Collapse
Affiliation(s)
- Mateusz Jakub Karnia
- Department of Physiology and Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336 Gdansk, Poland; (M.J.K.); (D.K.)
| | - Daria Korewo
- Department of Physiology and Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336 Gdansk, Poland; (M.J.K.); (D.K.)
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Ziemowit Maciej Ciepielewski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Monika Puchalska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Klaudia Konieczna-Wolska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Konrad Kowalski
- Masdiag-Diagnostic Mass Spectrometry Laboratory, Stefana Żeromskiego 33, 01-882 Warsaw, Poland;
| | - Jan Jacek Kaczor
- Department of Physiology and Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336 Gdansk, Poland; (M.J.K.); (D.K.)
- Correspondence: ; Tel.: +48-58-554-72-55
| |
Collapse
|
7
|
Gouvêa AL, Martinez CG, Kurtenbach E. Determining Maximal Muscle Strength in Mice: Validity and Reliability of an Adapted Swimming Incremental Overload Test. J Strength Cond Res 2020; 34:2360-2368. [DOI: 10.1519/jsc.0000000000002777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Skeletal Muscle Response to Deflazacort, Dexamethasone and Methylprednisolone. Cells 2019; 8:cells8050406. [PMID: 31052442 PMCID: PMC6562646 DOI: 10.3390/cells8050406] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/07/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoids represent some of the most prescribed drugs that are widely used in the treatment of neuromuscular diseases, but their usage leads to side effects such as muscle atrophy. However, different synthetic glucocorticoids can lead to different muscle effects, depending upon its chemical formulation. Here, we intended to demonstrate the muscle histologic and molecular effects of administering different glucocorticoids in equivalency and different dosages. Methods: Seventy male Wistar rats distributed into seven groups received different glucocorticoids in equivalency for ten days or saline solution. The study groups were: Control group (CT) saline solution; dexamethasone (DX) 1.25 or 2.5 mg/kg/day; methylprednisolone (MP) 6.7 or 13.3mg/kg/day; and deflazacort (DC) 10 or 20 mg/kg/day. At the end of the study, the animals were euthanized, and the tibialis anterior and gastrocnemius muscles were collected for metachromatic ATPase (Cross-sectional area (CSA) measurement), Western blotting (protein expression of IGF-1 and Ras/Raf/MEK/ERK pathways) and RT-PCR (MYOSTATIN, MuRF-1, Atrogin-1, REDD-1, REDD-2, MYOD, MYOG and IRS1/2 genes expression) experiments. Results: Muscle atrophy occurred preferentially in type 2B fibers in all glucocorticoid treated groups. DC on 10 mg/kg/day was less harmful to type 2B fibers CSA than other doses and types of synthetic glucocorticoids. In type 1 fibers CSA, lower doses of DC and DX were more harmful than high doses. DX had a greater effect on the IGF-1 pathway than other glucocorticoids. MP more significantly affected P-ERK1/2 expression, muscle fiber switching (fast-to-slow), and expression of REDD1 and MyoD genes than other glucocorticoids. Compared to DX and MP, DC had less of an effect on the expression of atrogenes (MURF-1 and Atrogin-1) despite increased MYOSTATIN and decreased IRS-2 genes expression. Conclusions: Different glucocorticoids appears to cause muscle atrophy affecting secondarily different signaling mechanisms. MP is more likely to affect body/muscles mass, MEK/ERK pathway and fiber type transition, DX the IGF-1 pathway and IRS1/2 expression. DC had the smallest effect on muscle atrophic response possibly due a delayed timing on atrogenes response.
Collapse
|
9
|
Fappi A, Neves JDC, Kawasaki KA, Bacelar L, Sanches LN, P. da Silva F, Larina‐Neto R, Chadi G, Zanoteli E. Omega-3 multiple effects increasing glucocorticoid-induced muscle atrophy: autophagic, AMPK and UPS mechanisms. Physiol Rep 2019; 7:e13966. [PMID: 30648357 PMCID: PMC6333722 DOI: 10.14814/phy2.13966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Muscle atrophy occurs in many conditions, including use of glucocorticoids. N-3 (omega-3) is widely consumed due its healthy properties; however, concomitant use with glucocorticoids can increase its side effects. We evaluated the influences of N-3 on glucocorticoid atrophy considering IGF-1, Myostatin, MEK/ERK, AMPK pathways besides the ubiquitin-proteasome system (UPS) and autophagic/lysosomal systems. Sixty animals constituted six groups: CT, N-3 (EPA 100 mg/kg/day for 40 days), DEXA 1.25 (DEXA 1.25 mg/kg/day for 10 days), DEXA 1.25 + N3 (EPA for 40 days + DEXA 1.25 mg/kg/day for the last 10 days), DEXA 2.5 (DEXA 2.5 mg/kg/day for 10 days), and DEXA 2.5 + N3 (EPA for 40 days + DEXA 2.5 mg/kg/day for 10 days). Results: N-3 associated with DEXA increases atrophy (fibers 1 and 2A), FOXO3a, P-SMAD2/3, Atrogin-1/MAFbx (mRNA) expression, and autophagic protein markers (LC3II, LC3II/LC3I, LAMP-1 and acid phosphatase). Additionally, N-3 supplementation alone decreased P-FOXO3a, PGC1-alpha, and type 1 muscle fiber area. Conclusion: N-3 supplementation increases muscle atrophy caused by DEXA in an autophagic, AMPK and UPS process.
Collapse
Affiliation(s)
- Alan Fappi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Juliana de C. Neves
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Karine A. Kawasaki
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Luana Bacelar
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Leandro N. Sanches
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Felipe P. da Silva
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Rubens Larina‐Neto
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Gerson Chadi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Edmar Zanoteli
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| |
Collapse
|
10
|
Sawa R, Nishida H, Yamamoto Y, Wake I, Kai N, Kikkawa U, Okimura Y. Growth hormone and Insulin-like growth factor-I (IGF-I) modulate the expression of L-type amino acid transporters in the muscles of spontaneous dwarf rats and L6 and C2C12 myocytes. Growth Horm IGF Res 2018; 42-43:66-73. [PMID: 30273774 DOI: 10.1016/j.ghir.2018.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/10/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Branched-chain amino acids (BCAAs) have been reported to inhibit several types of muscle atrophy via the activation of the mechanistic target of rapamycin complex 1 (mTORC1). However, we previously found that BCAA did not activate mTORC1 in growth hormone (GH)-deficient spontaneous dwarf rats (SDRs), and that GH restored the stimulatory effect of BCAAs toward the mTORC1. The objective of this study was to determine whether GH or Insulin-like growth factor-I (IGF-I) stimulated the expression of L-type amino acid transporters (LATs) that delivered BCAAs, and whether LATs were involved in the mTORC1 activation. DESIGN After the continuous administration of GH, cross-sectional areas (CSAs) of muscle fibers and LAT mRNA levels in the skeletal muscles of SDRs were compared to those from the SDRs that received normal saline. The effect of GH and IGF-I on LAT mRNA levels were determined in L6 and C2C12 myocytes. The effects of 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH), a blocker for LATs, and LAT1 siRNA on mTORC1 activation and cell functions were examined in C2C12 cells. RESULTS GH increased LAT1 and LAT4 mRNA levels in accordance with the increase in CSAs of muscle fibers in SDRs. IGF-I, and not GH, increased LAT1 mRNA levels in cultured L6 myocytes. IGF-I also increased LAT1 mRNA level in another myocyte line, C2C12. Furthermore, IGF-I reduced LAT3 and LAT4 mRNA levels in both cell lines. GH reduced LAT3 and LAT4 mRNA levels in L6 cells. BCH decreased basal C2C12 cell proliferation and reduced IGF-I-induced phosphorylation of 4E-BP1 and S6K, both of which are mTORC1 targets, but LAT1 siRNA did not affect the phosphorylation. This suggests that BCH may exert its effect via other pathway than LAT1. CONCLUSIONS IGF-I increased LAT1 mRNA level in myocytes. However, the role of LAT1 in IGF-I-induced mTORC1 activation and cell functions remains unclear.
Collapse
Affiliation(s)
- Ran Sawa
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Hikaru Nishida
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Yu Yamamoto
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Ikumi Wake
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Noriko Kai
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Ushio Kikkawa
- Division of Signal Functions, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhiko Okimura
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan.
| |
Collapse
|
11
|
Yuan Y, Xu Y, Xu J, Liang B, Cai X, Zhu C, Wang L, Wang S, Zhu X, Gao P, Wang X, Zhang Y, Jiang Q, Shu G. Succinate promotes skeletal muscle protein synthesis via Erk1/2 signaling pathway. Mol Med Rep 2017; 16:7361-7366. [PMID: 28944867 PMCID: PMC5865866 DOI: 10.3892/mmr.2017.7554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022] Open
Abstract
It is well known that endurance training is effective to attenuate skeletal muscle atrophy. Succinate is a typical TCA metabolite, of which exercise could dramatically increase the content. The present study aimed to investigate the effect of succinate on protein synthesis in skeletal muscle, and try to delineate the underlying mechanism. The in vitro study revealed that succinate dose‑dependently increased protein synthesis in C2C12 myotube along with the enhancement of phosphorylation levels of AKT Serine/Threonine Kinase 1(Akt), mammalian target of rapamycin, S6, eukaryotic translation initiation factor 4E, 4E binding protein 1 and forkhead box O (FoxO) 3a. Furthermore, it was demonstrated that 20 mM succinate markedly increased [Ca2+]i. Then, the phospho‑extracellular regulated kinase (Erk), ‑Akt level and the crosstalk between Erk and Akt were elevated in response to succinate. Notably, the Erk antagonist (U0126) or mTOR inhibitor (rapamycin) abolished the effect of succinate on protein synthesis. The in vivo study verified that succinate dose‑dependently increased the protein synthesis, in addition to phosphorylation levels of Erk, Akt and FoxO3a in gastrocnemius muscle. In summary, these findings demonstrated that succinate promoted skeletal muscle protein deposition via Erk/Akt signaling pathway.
Collapse
Affiliation(s)
- Yexian Yuan
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yaqiong Xu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Jingren Xu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Bingqing Liang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Xingcai Cai
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Canjun Zhu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Lina Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Songbo Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Xiaotong Zhu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Ping Gao
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Xiuqi Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yongliang Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Qingyan Jiang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Gang Shu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
12
|
Gordon BS, Steiner JL, Williamson DL, Lang CH, Kimball SR. Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism. Am J Physiol Endocrinol Metab 2016; 311:E157-74. [PMID: 27189933 PMCID: PMC4967146 DOI: 10.1152/ajpendo.00059.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022]
Abstract
Since its discovery, the protein regulated in development and DNA damage 1 (REDD1) has been implicated in the cellular response to various stressors. Most notably, its role as a repressor of signaling through the central metabolic regulator, the mechanistic target of rapamycin in complex 1 (mTORC1) has gained considerable attention. Not surprisingly, changes in REDD1 mRNA and protein have been observed in skeletal muscle under various physiological conditions (e.g., nutrient consumption and resistance exercise) and pathological conditions (e.g., sepsis, alcoholism, diabetes, obesity) suggesting a role for REDD1 in regulating mTORC1-dependent skeletal muscle protein metabolism. Our understanding of the causative role of REDD1 in skeletal muscle metabolism is increasing mostly due to the availability of genetically modified mice in which the REDD1 gene is disrupted. Results from such studies provide support for an important role for REDD1 in the regulation of mTORC1 as well as reveal unexplored functions of this protein in relation to other aspects of skeletal muscle metabolism. The goal of this work is to provide a comprehensive review of the role of REDD1 (and its paralog REDD2) in skeletal muscle during both physiological and pathological conditions.
Collapse
Affiliation(s)
- Bradley S Gordon
- Institute of Exercise Physiology and Wellness, The University of Central Florida, Orlando, Florida;
| | - Jennifer L Steiner
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| |
Collapse
|