1
|
Bajwa EK, Cislak D, Kumar A, Li D, Messina EJ, Reynders T, Denef JF, Corcea V, Buch KP, Lai E, Stoch SA. Phase 1 Study of MK-5475, an Inhaled Soluble Guanylate Cyclase Stimulator, in Participants with Pulmonary Hypertension Associated with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:1105-1121. [PMID: 38803412 PMCID: PMC11129706 DOI: 10.2147/copd.s454905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose This phase 1 study (NCT04370873) evaluated safety and pharmacokinetics/pharmacodynamics (PK/PD) of MK-5475 in participants with pulmonary hypertension associated with COPD (PH-COPD). Methods Eligible participants were 40-80 years old with COPD (FEV1/FVC <0.7; FEV1 >30% predicted) and PH (mean pulmonary arterial pressure ≥25 mmHg). Participants were randomized 2:1 to MK-5475 or placebo via dry-powder inhaler once daily for 7 days in Part 1 (360 µg) or 28 days in Part 2 (380 µg). Safety was assessed by adverse events (AEs) and arterial blood oxygenation. Part-2 participants had pulmonary vascular resistance (PVR; primary PD endpoint) and pulmonary blood volume (PBV; secondary PD endpoint) measured at baseline and Day 28. A non-informative prior was used to calculate posterior probability (PP) that the between-group difference (MK-5475 - placebo) in mean percent reduction from baseline in PVR was less than -15%. Results Nine participants were randomized in Part 1, and 14 participants in Part 2. Median age of participants (86.4% male) was 68.5 years (41-77 years); 95.5% had moderate-to-severe COPD. Incidences of AEs were comparable between MK-5475 and placebo: overall (5/14 [36%] versus 5/8 [63%]), drug-related (1/14 [7%] versus 2/8 [25%]), and serious (1/14 [7%] versus 1/8 [13%]). MK-5475 caused no meaningful changes in arterial blood oxygenation or PBV. MK-5475 versus placebo led to numerical improvements from baseline in PVR (-21.2% [95% CI: -35.4, -7.0] versus -5.4% [95% CI: -83.7, 72.9]), with between-group difference in PVR less than -15% and calculated PP of 51%. Conclusion The favorable safety profile and numerical reductions in PVR observed support further clinical development of inhaled MK-5475 for PH-COPD treatment.
Collapse
Affiliation(s)
| | | | | | - Dan Li
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | - Tom Reynders
- Translational Medicine, MSD Belgium, Brussels, Belgium
| | | | - Vasile Corcea
- PMSI Republican Clinical Hospital “T. Mosneaga”, ARENSIA EM Unit, Chisinau, Republic of Moldova
| | - Ketan P Buch
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, Lexington VA Healthcare, Lexington, KY, USA
| | - Eseng Lai
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | |
Collapse
|
2
|
Kim J, Cho Y, Oh GJ, Park HB, Yang MJ, Park CM, Kim YH, Choi KC, Go RE, Kim MS. Repeated intratracheal instillation of whole-cigarette smoke condensate to assess lung damage in a rat model. ENVIRONMENTAL TOXICOLOGY 2024; 39:2304-2315. [PMID: 38148711 DOI: 10.1002/tox.24113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/29/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
Cigarette smoke induces an inflammatory response in the lungs by recruiting inflammatory cells, leading to lung diseases such as lung cancer, chronic obstructive pulmonary disease, and pulmonary fibrosis. Existing inhalation exposure methods for assessing the adverse effects of cigarette smoke require expensive equipment and are labor-intensive. Therefore, we attempted to develop a novel method to assess these adverse effects using intratracheal instillation (ITI) of whole cigarette smoke condensate (WCSC). The WCSC (0, 5, 10, or 20 mg/mL) was administered by ITI once daily for 6 or 12 days using an automatic video instillator. Repeated WCSC ITI increased the lung weight, and monocyte chemoattractant protein-1 (MCP-1), neutrophil, and lymphocyte levels within bronchoalveolar lavage fluid compared to the control. In the histopathological analysis of the lung tissue, a mild inflammatory response was observed in the 6 and 12 days 20 mg/mL WCSC exposure groups. The genome-wide RNA-seq expression patterns revealed that inflammatory and immune response-related genes, such as the chemokine signaling pathway, Th1/Th2 cell differentiation, and cytokine-cytokine receptor interaction, were employed following WCSC exposure. In addition, MCP-1 was time-dependent and increased in the 10 mg/mL exposure group compared to the control group. These results suggested that the WCSC might induce the potential pulmonary inflammatory response. Furthermore, we proposed that ITI may be a rapid and effective method of evaluating the adverse effects of WCSC within a short exposure period (less than 2 weeks), and it can be used to evaluate cigarette inhalation toxicity studies as an alternative method.
Collapse
Affiliation(s)
- Jinhee Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Yoon Cho
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Gi-Jun Oh
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Hae-Bin Park
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Mi Jin Yang
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Chul-Min Park
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Yong-Hyun Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
- Department of Environment & Energy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| |
Collapse
|
3
|
Park JM, Seo YS, Kim SH, Kim HY, Kim MS, Lee MY. Impact of inhalation exposure to cigarette smoke on the pathogenesis of pulmonary hypertension primed by monocrotaline in rats. J Appl Toxicol 2024; 44:470-483. [PMID: 37876240 DOI: 10.1002/jat.4555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
Extensive, long-term exposure to cigarette smoke (CS) was recently suggested to be a risk factor for pulmonary hypertension, although further validation is required. The vascular effects of CS share similarities with the etiology of pulmonary hypertension, including vascular inflammation and remodeling. Thus, we examined the influence of CS exposure on the pathogenesis of monocrotaline (MCT)-induced pulmonary hypertension, hypothesizing that smoking might accelerate the development of primed pulmonary hypertension. CS was generated from 3R4F reference cigarettes, and rats were exposed to CS by inhalation at total particulate matter concentrations of 100-300 μg/L for 4 h/day, 7 days/week for 4 weeks. Following 1 week of initial exposure, rats received 60 mg/kg MCT and were sacrificed and analyzed after an additional 3 weeks of exposure. MCT induced hypertrophy in pulmonary arterioles and increased the Fulton index, a measure of right ventricular hypertrophy. Additional CS exposure exacerbated arteriolar hypertrophy but did not further elevate the Fulton index. No significant alterations were observed in levels of endothelin-1 and vascular endothelial growth factor, or in hematological and serum biochemical parameters. Short-term inhalation exposure to CS exacerbated arteriolar hypertrophy in the lung, although this effect did not directly aggravate the overworked heart under the current experimental conditions.
Collapse
Affiliation(s)
- Jung-Min Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Yoon-Seok Seo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sung-Hwan Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Hyeon-Young Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Moo-Yeol Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Nourian YH, Salimian J, Ahmadi A, Salehi Z, Karimi M, Emamvirdizadeh A, Azimzadeh Jamalkandi S, Ghanei M. cAMP-PDE signaling in COPD: Review of cellular, molecular and clinical features. Biochem Biophys Rep 2023; 34:101438. [PMID: 36865738 PMCID: PMC9971187 DOI: 10.1016/j.bbrep.2023.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death among non-contagious diseases in the world. PDE inhibitors are among current medicines prescribed for COPD treatment of which, PDE-4 family is the predominant PDE isoform involved in hydrolyzing cyclic adenosine monophosphate (cAMP) that regulates the inflammatory responses in neutrophils, lymphocytes, macrophages and epithelial cells The aim of this study is to investigate the cellular and molecular mechanisms of cAMP-PDE signaling, as an important pathway in the treatment management of patients with COPD. In this review, a comprehensive literature review was performed about the effect of PDEs in COPD. Generally, PDEs are overexpressed in COPD patients, resulting in cAMP inactivation and decreased cAMP hydrolysis from AMP. At normal amounts, cAMP is one of the essential agents in regulating metabolism and suppressing inflammatory responses. Low amount of cAMP lead to activation of downstream inflammatory signaling pathways. PDE4 and PDE7 mRNA transcript levels were not altered in polymorphonuclear leukocytes and CD8 lymphocytes originating from the peripheral venous blood of stable COPD subjects compared to healthy controls. Therefore, cAMP-PDE signaling pathway is one of the most important signaling pathways involved in COPD. By examining the effects of different drugs in this signaling pathway critical steps can be taken in the treatment of this disease.
Collapse
Affiliation(s)
- Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
van Nijnatten J, Brandsma CA, Steiling K, Hiemstra PS, Timens W, van den Berge M, Faiz A. High miR203a-3p and miR-375 expression in the airways of smokers with and without COPD. Sci Rep 2022; 12:5610. [PMID: 35379844 PMCID: PMC8980043 DOI: 10.1038/s41598-022-09093-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Smoking is a leading cause of chronic obstructive pulmonary disease (COPD). It is known to have a significant impact on gene expression and (inflammatory) cell populations in the airways involved in COPD pathogenesis. In this study, we investigated the impact of smoking on the expression of miRNAs in healthy and COPD individuals. We aimed to elucidate the overall smoking-induced miRNA changes and those specific to COPD. In addition, we investigated the downstream effects on regulatory gene expression and the correlation to cellular composition. We performed a genome-wide miRNA expression analysis on a dataset of 40 current- and 22 ex-smoking COPD patients and a dataset of 35 current- and 38 non-smoking respiratory healthy controls and validated the results in an independent dataset. miRNA expression was then correlated with mRNA expression in the same patients to assess potential regulatory effects of the miRNAs. Finally, cellular deconvolution analysis was used to relate miRNAs changes to specific cell populations. Current smoking was associated with increased expression of three miRNAs in the COPD patients and 18 miRNAs in the asymptomatic smokers compared to respiratory healthy controls. In comparison, four miRNAs were lower expressed with current smoking in asymptomatic controls. Two of the three smoking-related miRNAs in COPD, miR-203a-3p and miR-375, were also higher expressed with current smoking in COPD patients and the asymptomatic controls. The other smoking-related miRNA in COPD patients, i.e. miR-31-3p, was not present in the respiratory healthy control dataset. miRNA-mRNA correlations demonstrated that miR-203a-3p, miR-375 and also miR-31-3p expression were negatively associated with genes involved in pro-inflammatory pathways and positively associated with genes involved in the xenobiotic pathway. Cellular deconvolution showed that higher levels of miR-203a-3p were associated with higher proportions of proliferating-basal cells and secretory (club and goblet) cells and lower levels of fibroblasts, luminal macrophages, endothelial cells, B-cells, amongst other cell types. MiR-375 expression was associated with lower levels of secretory cells, ionocytes and submucosal cells, but higher levels of endothelial cells, smooth muscle cells, and mast cells, amongst other cell types. In conclusion, we identified two smoking-induced miRNAs (miR-375 and miR-203a-3p) that play a role in regulating inflammation and detoxification pathways, regardless of the presence or absence of COPD. Additionally, in patients with COPD, we identified miR-31-3p as a miRNA induced by smoking. Our identified miRNAs should be studied further to unravel which smoking-induced inflammatory mechanisms are reactive and which are involved in COPD pathogenesis.
Collapse
|
6
|
Gredic M, Wu CY, Hadzic S, Pak O, Savai R, Kojonazarov B, Doswada S, Weiss A, Weigert A, Guenther A, Brandes RP, Schermuly RT, Grimminger F, Seeger W, Sommer N, Kraut S, Weissmann N. Myeloid-cell-specific deletion of inducible nitric oxide synthase protects against smoke-induced pulmonary hypertension in mice. Eur Respir J 2022; 59:2101153. [PMID: 34475225 PMCID: PMC8989054 DOI: 10.1183/13993003.01153-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common complication of COPD, associated with increased mortality and morbidity. Intriguingly, pulmonary vascular alterations have been suggested to drive emphysema development. Previously, we identified inducible nitric oxide synthase (iNOS) as an essential enzyme for development and reversal of smoke-induced PH and emphysema, and showed that iNOS expression in bone-marrow-derived cells drives pulmonary vascular remodelling, but not parenchymal destruction. In this study, we aimed to identify the iNOS-expressing cell type driving smoke-induced PH and to decipher pro-proliferative pathways involved. METHODS To address this question we used 1) myeloid-cell-specific iNOS knockout mice in chronic smoke exposure and 2) co-cultures of macrophages and pulmonary artery smooth muscle cells (PASMCs) to decipher underlying signalling pathways. RESULTS Myeloid-cell-specific iNOS knockout prevented smoke-induced PH but not emphysema in mice. Moreover, iNOS deletion in myeloid cells ameliorated the increase in expression of CD206, a marker of M2 polarisation, on interstitial macrophages. Importantly, the observed effects on lung macrophages were hypoxia-independent, as these mice developed hypoxia-induced PH. In vitro, smoke-induced PASMC proliferation in co-cultures with M2-polarised macrophages could be abolished by iNOS deletion in phagocytic cells, as well as by extracellular signal-regulated kinase inhibition in PASMCs. Crucially, CD206-positive and iNOS-positive macrophages accumulated in proximity of remodelled vessels in the lungs of COPD patients, as shown by immunohistochemistry. CONCLUSION In summary, our results demonstrate that iNOS deletion in myeloid cells confers protection against PH in smoke-exposed mice and provide evidence for an iNOS-dependent communication between M2-like macrophages and PASMCs in underlying pulmonary vascular remodelling.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Cheng-Yu Wu
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Stefan Hadzic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Rajkumar Savai
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Baktybek Kojonazarov
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany
| | - Siddartha Doswada
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Astrid Weiss
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Guenther
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- European IPF Registry & Biobank (eurIPFreg), Giessen, Germany
- Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
- DZHK - German Center for Cardiovascular Research, Partner site Rhine-Main, Germany
| | - Ralph T Schermuly
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Werner Seeger
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Natascha Sommer
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Simone Kraut
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
7
|
The Involvement of PDE4 in the Protective Effects of Melatonin on Cigarette-Smoke-Induced Chronic Obstructive Pulmonary Disease. Molecules 2021; 26:molecules26216588. [PMID: 34771000 PMCID: PMC8587536 DOI: 10.3390/molecules26216588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a significant disease threatening human health. Currently, roflumilast, a phosphodiesterase (PDE)4 inhibitor, is recommended as a therapeutic agent for COPD. In this study, we investigated the therapeutic effects of melatonin against COPD, focusing on determining whether it is a PDE4 inhibitor via in vivo and in vitro experiment using cigarette smoke (CS) and cigarette smoke condensate (CSC), respectively. In the in vivo experiments, melatonin treatment reduced inflammatory responses, including inflammatory cell counts. Melatonin treatment also suppressed the CS-exposure-induced upregulation of cytokine and matrix metalloproteinase (MMP)-9, reduced the PDE4B expression, and elevated cAMP levels. In addition, these effects were synergistic, as melatonin and roflumilast cotreatment eventually ameliorated the CS-exposure-induced worsening of lung function. In the CSC-stimulated NCI-H292 cells, melatonin inhibited elevation in the levels of inflammatory cytokines, MMP-9, and PDE4, and elevated cAMP levels. Furthermore, melatonin and roflumilast cotreatment was more effective on inflammatory responses than only melatonin or roflumilast treatment. Our results indicate that melatonin relieves inflammatory response and loss of lung function in COPD, which is associated with decreased PDE4 expression. Therefore, we suggest that melatonin is a putative candidate for the treatment of COPD.
Collapse
|
8
|
Wang F, Hadzic S, Roxlau ET, Fuehler B, Janise-Libawski A, Wimmer T, Lei B, Li SW, Weissmann N, Stieger K. Retinal tissue develops an inflammatory reaction to tobacco smoke and electronic cigarette vapor in mice. J Mol Med (Berl) 2021; 99:1459-1469. [PMID: 34264377 PMCID: PMC8455497 DOI: 10.1007/s00109-021-02108-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022]
Abstract
Cigarette smoke has been identified as a major risk factor for the development of age-related macular degeneration (AMD). As an alternative to conventional cigarettes (C-cigarette), electronic cigarettes (E-cigarette) have been globally promoted and are currently widely used. The increasing usage of E-cigarettes raises concerns with regard to short- (2 weeks), medium- (3 months), and long- (8 months) term consequences related to retinal tissue. In this report, a controlled study in mouse models was conducted to probe the comprehensive effects of E-cigarette vapor on retina, retinal pigmented epithelium (RPE), and choroidal tissues by (1) comparing the effects of C-cigarette smoke and E-cigarette vapor on retina separately and (2) determining the effects of E-cigarette vapor on the RPE and analyzing the changes with regard to inflammatory (IL-1β, TNFα, iNOS) and angiogenic (VEGF, PEDF) mediators in retina/RPE/choroid by ELISA assays. The data showed that C-cigarette smoke exposure promoted an inflammatory reaction in the retina in vivo. Mice exposed to E-cigarette (nicotine-free) vapor developed inflammatory and angiogenic reactions more pronounced in RPE and choroid as compared to retinal tissue, while nicotine-containing E-cigarette vapor caused even a more serious reaction. Both inflammatory and pro-angiogenic reactions increased with the extension of exposure time. These results demonstrate that exposure to C-cigarette smoke is harmful to the retina. Likewise, the exposure to E-cigarette vapor (with or without nicotine) increases the occurrence and progression of inflammatory and angiogenic stimuli in the retina, which might also be related to the onset of wet AMD in humans. KEY MESSAGES: C-cigarette smoke exposure promotes an inflammatory reaction in the retina in vivo. Mice exposed to E-cigarette (nicotine-free) vapor develop inflammatory and angiogenic reactions more pronounced in RPE and choroid compared to retinal tissue, while nicotine-containing E-cigarette vapor causes even a more serious reaction. Both inflammatory and pro-angiogenic reactions increase with the extension of E-cigarette vapor exposure time.
Collapse
Affiliation(s)
- Feng Wang
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
- Department of Ophthalmology, Aier School of Ophthalmology, Central South University, Changsha, China
| | - Stefan Hadzic
- Excellence Cluster Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Giessen, Germany
| | - Elsa T Roxlau
- Excellence Cluster Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Giessen, Germany
| | - Baerbel Fuehler
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Tobias Wimmer
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shao-Wei Li
- Department of Ophthalmology, Aier School of Ophthalmology, Central South University, Changsha, China
- Beijing Aier-Intech Eye Hospital, Beijing, China
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Giessen, Germany
| | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
9
|
Rochford I, Joshi JC, Rayees S, Anwar M, Akhter MZ, Yalagala L, Banerjee S, Mehta D. Evidence for reprogramming of monocytes into reparative alveolar macrophages in vivo by targeting PDE4b. Am J Physiol Lung Cell Mol Physiol 2021; 321:L686-L702. [PMID: 34318714 DOI: 10.1152/ajplung.00145.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased lung vascular permeability and neutrophilic inflammation are hallmarks of acute lung injury. Alveolar macrophages (AMϕ), the predominant sentinel cell type in the airspace, die in massive numbers while fending off pathogens. Recent studies indicate that the AMϕ pool is replenished by airspace-recruited monocytes, but the mechanisms instructing the conversion of recruited monocytes into reparative AMϕ remain elusive. Cyclic AMP (cAMP) is a vascular barrier protective and immunosuppressive second messenger in the lung. Here, we subjected mice expressing GFP under the control of the Lysozyme-M promoter (LysM-GFP mice) to the LPS model of rapidly resolving lung injury to address the impact of mechanisms determining cAMP levels in AMϕ and regulation of mobilization of the reparative AMϕ-pool. RNA-seq analysis of flow-sorted Mϕ identified phosphodiesterase 4b (PDE4b) as the top LPS-responsive cAMP-regulating gene. We observed that PDE4b expression markedly increased at the time of peak injury (4 h) and then decreased to below the basal level during the resolution phase (24 h). Activation of transcription factor NFATc2 was required for transcription of PDE4b in Mϕ. Inhibition of PDE4 activity at the time of peak injury, using i.t. rolipram, increased cAMP levels, augmented the reparative AMϕ pool, and resolved lung injury. This response was not seen following conditional depletion of monocytes, thus establishing airspace-recruited PDE4b-sensitive monocytes as the source of reparative AMϕ. Interestingly, adoptive transfer of rolipram-educated AMϕ into injured mice resolved lung edema. We propose suppression of PDE4b as an effective approach to promote reparative AMϕ generation from monocytes for lung repair.
Collapse
Affiliation(s)
- Ian Rochford
- Department of Pharmacology and Regenerative Medicine and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jagdish Chandra Joshi
- Department of Pharmacology and Regenerative Medicine and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Sheikh Rayees
- Department of Pharmacology and Regenerative Medicine and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mumtaz Anwar
- Department of Pharmacology and Regenerative Medicine and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Md Zahid Akhter
- Department of Pharmacology and Regenerative Medicine and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Lakshmi Yalagala
- Department of Pharmacology and Regenerative Medicine and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Somenath Banerjee
- Department of Pharmacology and Regenerative Medicine and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Dolly Mehta
- Department of Pharmacology and Regenerative Medicine and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Bayarri MA, Milara J, Estornut C, Cortijo J. Nitric Oxide System and Bronchial Epithelium: More Than a Barrier. Front Physiol 2021; 12:687381. [PMID: 34276407 PMCID: PMC8279772 DOI: 10.3389/fphys.2021.687381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Airway epithelium forms a physical barrier that protects the lung from the entrance of inhaled allergens, irritants, or microorganisms. This epithelial structure is maintained by tight junctions, adherens junctions and desmosomes that prevent the diffusion of soluble mediators or proteins between apical and basolateral cell surfaces. This apical junctional complex also participates in several signaling pathways involved in gene expression, cell proliferation and cell differentiation. In addition, the airway epithelium can produce chemokines and cytokines that trigger the activation of the immune response. Disruption of this complex by some inflammatory, profibrotic, and carcinogens agents can provoke epithelial barrier dysfunction that not only contributes to an increase of viral and bacterial infection, but also alters the normal function of epithelial cells provoking several lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) or lung cancer, among others. While nitric oxide (NO) molecular pathway has been linked with endothelial function, less is known about the role of the NO system on the bronchial epithelium and airway epithelial cells function in physiological and different pathologic scenarios. Several data indicate that the fraction of exhaled nitric oxide (FENO) is altered in lung diseases such as asthma, COPD, lung fibrosis, and cancer among others, and that reactive oxygen species mediate uncoupling NO to promote the increase of peroxynitrite levels, thus inducing bronchial epithelial barrier dysfunction. Furthermore, iNOS and the intracellular pathway sGC-cGMP-PKG are dysregulated in bronchial epithelial cells from patients with lung inflammation, fibrosis, and malignancies which represents an attractive drug molecular target. In this review we describe in detail current knowledge of the effect of NOS-NO-GC-cGMP-PKG pathway activation and disruption in bronchial epithelial cells barrier integrity and its contribution in different lung diseases, focusing on bronchial epithelial cell permeability, inflammation, transformation, migration, apoptosis/necrosis, and proliferation, as well as the specific NO molecular pathways involved.
Collapse
Affiliation(s)
- María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| | - Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| |
Collapse
|
11
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Li ZK, Gao LF, Zhu XA, Xiang DK. LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis. Biochem Genet 2021; 59:1158-1172. [PMID: 33687636 DOI: 10.1007/s10528-021-10053-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Pulmonary arterial hypertension (PAH) seriously threatens the elder people. Long non-coding RNAs (lncRNAs) are involved in multiple diseases. However, the study of the lncRNAs in the occurrence of PAH is just beginning. For this, we sought to explore the biological function of lncRNA HOXA cluster antisense RNA 3 (HOXA-AS3) in PAH. Hypoxia (HYP) was used to mimic in vitro model of PAH. Gene and protein expressions in cells were detected by q-PCR and Western blotting, respectively. In addition, cell proliferation and viability were tested by CCK-8 and MTT assay. Cell apoptosis was measured by flow cytometry. Wound healing was used to detect cell migration. Furthermore, the connection of HOXA-AS3, miR-675-3p, and phosphodiesterase 5A (PDE5A) was verified by dual-luciferase report assay. HOXA-AS3 and PDE5A were upregulated in human pulmonary artery smooth muscle cells (HPASMCs) in the presence of HYP, while miR-675-3p was downregulated. Moreover, knockdown of HOXA-AS3 suppressed the growth and migration of HPASMCs, but induced the apoptosis. Overexpression of miR-675-3p achieved the same effect. MiR-675-3p inhibitor or overexpression of PDE5A notably reversed the inhibitory effect of HOXA-AS3 knockdown on PAH. Finally, HOXA-AS3 could sponge miR-675-3p, and PDE5A was directly targeted by miR-675-3p. HOXA-AS3 increased the development of PAH via regulation of miR-675-3p/PDE5 axis, which could be the potential biomarker for treatment of PAH.
Collapse
Affiliation(s)
- Zhong-Kui Li
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Lu-Fang Gao
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Xi-An Zhu
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Dao-Kang Xiang
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China.
| |
Collapse
|
13
|
Ren Z, Li J, Shen J, Yu H, Mei X, Zhao P, Xiao Z, Wu W. Therapeutic sildenafil inhibits pulmonary damage induced by cigarette smoke exposure and bacterial inhalation in rats. PHARMACEUTICAL BIOLOGY 2020; 58:116-123. [PMID: 31967915 PMCID: PMC7006811 DOI: 10.1080/13880209.2019.1711135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/19/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Context: Clinical reports showed sildenafil beneficial therapy on severe chronic obstructive pulmonary disease (COPD) with pulmonary hypertension (PH) patients.Objective: The study investigated therapeutic effects of silenafil on pulmonary damage induced by cigarette smoke exposure and bacterial inhalation in rats.Materials and methods: Female Sprague-Dawley rats (200-250 g) were divided into control group (no exposure, n = 10) and exposure group (n = 50) suffered from cigarette smoke exposure and Klebsiella pneumonia inhalation for 8 weeks. Then rats were orally given normal saline (control group or model group), 2.0, 3.0, or 4.5 mg/kg sildenafil for 4 weeks, respectively. Pulmonary pressure, RVHI and morphological analysis of pulmonary vascular remodeling, respiratory functions assay, morphological analysis of pulmonary alveoli, and expression of PCNA and caspase-3 of epithelial cells in bronchioles wall were examined.Results: Compared to model rats, 2.0, 3.0, and 4.5 mg/kg sildenafil increased VT by -0.6 to 9.58%, PEF by 3.12 to 6.49%, EF50 by 0.81 to 6.50%, decreased mPAP by 4.43 to 25.58%, RVHI by 6.54 to 26.41%, showing a dose-dependent improvement. Furthermore, 4.5 mg/kg sildenafil significantly increased MAN by 39.70%, LA/CSA by 37.07%, decreased muscular pulmonary arteries by 48.00%, WT by 12.83%, MT by 22.89%, caspase-3 expression by 17.71%, and showed improvement on abnormality in lung interstitial and bronchioles by microscopy.Discussion and conclusion: Our results demonstrated that sildenafil decreased pathological changes in alveoli, bronchioles, interstitial tissue, and arterioles of rats with COPD and PH.
Collapse
Affiliation(s)
- Zhouxin Ren
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Zhengzhou, China
| | - Jiansheng Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Zhengzhou, China
| | - Junling Shen
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Haibin Yu
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofeng Mei
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Zhengzhou, China
| | - Zhenya Xiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wanliu Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
14
|
McDonough W, Aragon IV, Rich J, Murphy JM, Abou Saleh L, Boyd A, Koloteva A, Richter W. PAN-selective inhibition of cAMP-phosphodiesterase 4 (PDE4) induces gastroparesis in mice. FASEB J 2020; 34:12533-12548. [PMID: 32738081 DOI: 10.1096/fj.202001016rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of cAMP-phosphodiesterase 4 (PDE4) exert a number of promising therapeutic benefits, but adverse effects, in particular emesis and nausea, have curbed their clinical utility. Here, we show that PAN-selective inhibition of PDE4, but not inhibition of PDE3, causes a time- and dose-dependent accumulation of chow in the stomachs of mice fed ad libitum without changing the animals' food intake or the weight of their intestines, suggesting that PDE4 inhibition impairs gastric emptying. Indeed, PDE4 inhibition induced gastric retention in an acute model of gastric motility that traces the passage of a food bolus through the stomach over a 30 minutes time period. In humans, abnormal gastric retention of food is known as gastroparesis, a syndrome predominated by nausea (>90% of cases) and vomiting (>80% of cases). We thus explored the abnormal gastric retention induced by PDE4 inhibition in mice under the premise that it may represent a useful correlate of emesis and nausea. Delayed gastric emptying was produced by structurally distinct PAN-PDE4 inhibitors including Rolipram, Piclamilast, Roflumilast, and RS25344, suggesting that it is a class effect. PDE4 inhibitors induced gastric retention at similar or below doses commonly used to induce therapeutic benefits (e.g., 0.04 mg/kg Rolipram), thus mirroring the narrow therapeutic window of PDE4 inhibitors in humans. YM976, a PAN-PDE4 inhibitor that does not efficiently cross the blood-brain barrier, induced gastroparesis only at significantly higher doses (≥1 mg/kg). This suggests that PDE4 inhibition may act in part through effects on the autonomic nervous system regulation of gastric emptying and that PDE4 inhibitors that are not brain-penetrant may have an improved safety profile. The PDE4 family comprises four subtypes, PDE4A, B, C, and D. Selective ablation of any of these subtypes in mice did not induce gastroparesis per se, nor did it protect from PAN-PDE4 inhibitor-induced gastroparesis, indicating that gastric retention may result from the concurrent inhibition of multiple PDE4s. Thus, potentially, any of the four PDE4 subtypes may be targeted individually for therapeutic benefits without inducing nausea or emesis. Acute gastric retention induced by PDE4 inhibition is alleviated by treatment with the widely used prokinetic Metoclopramide, suggesting a potential of this drug to alleviate the side effects of PDE4 inhibitors. Finally, given that the cause of gastroparesis remains largely idiopathic, our findings open the possibility that a physiologic or pathophysiologic downregulation of PDE4 activity/expression may be causative in a subset of patients.
Collapse
Affiliation(s)
- Will McDonough
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Ileana V Aragon
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Justin Rich
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - James M Murphy
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Anna Koloteva
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
15
|
Summers ME, Richmond BW, Menon S, Sheridan RM, Kropski JA, Majka SA, Taketo MM, Bastarache JA, West JD, De Langhe S, Geraghty P, Klemm DJ, Chu HW, Friedman RS, Tao YK, Foronjy RF, Majka SM. Resident mesenchymal vascular progenitors modulate adaptive angiogenesis and pulmonary remodeling via regulation of canonical Wnt signaling. FASEB J 2020; 34:10267-10285. [PMID: 32533805 PMCID: PMC7496763 DOI: 10.1096/fj.202000629r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
Adaptive angiogenesis is necessary for tissue repair, however, it may also be associated with the exacerbation of injury and development of chronic disease. In these studies, we demonstrate that lung mesenchymal vascular progenitor cells (MVPC) modulate adaptive angiogenesis via lineage trace, depletion of MVPC, and modulation of β-catenin expression. Single cell sequencing confirmed MVPC as multipotential vascular progenitors, thus, genetic depletion resulted in alveolar simplification with reduced adaptive angiogenesis. Following vascular endothelial injury, Wnt activation in MVPC was sufficient to elicit an emphysema-like phenotype characterized by increased MLI, fibrosis, and MVPC driven adaptive angiogenesis. Lastly, activation of Wnt/β-catenin signaling skewed the profile of human and murine MVPC toward an adaptive phenotype. These data suggest that lung MVPC drive angiogenesis in response to injury and regulate the microvascular niche as well as subsequent distal lung tissue architecture via Wnt signaling.
Collapse
Affiliation(s)
- Megan E. Summers
- Department of MedicineDivision of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverCOUSA
| | - Bradley W. Richmond
- Department of MedicineDivision of Allergy, Pulmonary and Critical Care Medicine or CardiologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Swapna Menon
- Pulmonary Vascular Research Institute KochiAnalyzeDat Consulting ServicesErnakulamIndia
| | - Ryan M. Sheridan
- Department of Biochemistry and Molecular GeneticsRNA Bioscience InitiativeUniversity of Colorado School of MedicineAuroraCOUSA
| | - Jonathan A. Kropski
- Department of MedicineDivision of Allergy, Pulmonary and Critical Care Medicine or CardiologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Sarah A. Majka
- Department of MedicineDivision of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverCOUSA
| | - M. Mark Taketo
- Division of Experimental TherapeuticsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Julie A. Bastarache
- Department of MedicineDivision of Allergy, Pulmonary and Critical Care Medicine or CardiologyVanderbilt University Medical CenterNashvilleTNUSA
| | - James D. West
- Department of MedicineDivision of Allergy, Pulmonary and Critical Care Medicine or CardiologyVanderbilt University Medical CenterNashvilleTNUSA
| | | | - Patrick Geraghty
- Division of Pulmonary and Critical Care MedicineSUNY Downstate Medical CenterBrooklynNYUSA
| | - Dwight J. Klemm
- Department of Medicine, Pulmonary & Critical Care MedicineUniversity of ColoradoAuroraCOUSA
- Gates Center for Regenerative Medicine and Stem Cell BiologyUniversity of ColoradoAuroraCOUSA
| | - Hong Wei Chu
- Department of MedicineDivision of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverCOUSA
| | | | - Yuankai K. Tao
- Pulmonary Vascular Research Institute KochiAnalyzeDat Consulting ServicesErnakulamIndia
| | - Robert F. Foronjy
- Division of Pulmonary and Critical Care MedicineSUNY Downstate Medical CenterBrooklynNYUSA
| | - Susan M. Majka
- Department of MedicineDivision of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverCOUSA
- Gates Center for Regenerative Medicine and Stem Cell BiologyUniversity of ColoradoAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
- Biomedical EngineeringVanderbilt UniversityNashvilleTNUSA
| |
Collapse
|
16
|
Gredic M, Blanco I, Kovacs G, Helyes Z, Ferdinandy P, Olschewski H, Barberà JA, Weissmann N. Pulmonary hypertension in chronic obstructive pulmonary disease. Br J Pharmacol 2020; 178:132-151. [PMID: 31976545 DOI: 10.1111/bph.14979] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Even mild pulmonary hypertension (PH) is associated with increased mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). However, the underlying mechanisms remain elusive; therefore, specific and efficient treatment options are not available. Therapeutic approaches tested in the clinical setting, including long-term oxygen administration and systemic vasodilators, gave disappointing results and might be only beneficial for specific subgroups of patients. Preclinical studies identified several therapeutic approaches for the treatment of PH in COPD. Further research should provide deeper insight into the complex pathophysiological mechanisms driving vascular alterations in COPD, especially as such vascular (molecular) alterations have been previously suggested to affect COPD development. This review summarizes the current understanding of the pathophysiology of PH in COPD and gives an overview of the available treatment options and recent advances in preclinical studies. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,PharmInVivo Ltd, Pécs, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Norbert Weissmann
- Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
17
|
Hadzic S, Wu CY, Avdeev S, Weissmann N, Schermuly RT, Kosanovic D. Lung epithelium damage in COPD - An unstoppable pathological event? Cell Signal 2020; 68:109540. [PMID: 31953012 DOI: 10.1016/j.cellsig.2020.109540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common term for alveolar septal wall destruction resulting in emphysema, and chronic bronchitis accompanied by conductive airway remodelling. In general, this disease is characterized by a disbalance of proteolytic/anti-proteolytic activity, augmented inflammatory response, increased oxidative/nitrosative stress, rise in number of apoptotic cells and decreased proliferation. As the first responder to the various environmental stimuli, epithelium occupies an important position in different lung pathologies, including COPD. Epithelium sequentially transitions from the upper airways in the direction of the gas exchange surface in the alveoli, and every cell type possesses a distinct role in the maintenance of the homeostasis. Basically, a thick ciliated structure of the airway epithelium has a major function in mucus secretion, whereas, alveolar epithelium which forms a thin barrier covered by surfactant has a function in gas exchange. Following this line, we will try to reveal whether or not the chronic bronchitis and emphysema, being two pathological phenotypes in COPD, could originate in two different types of epithelium. In addition, this review focuses on the role of lung epithelium in COPD pathology, and summarises underlying mechanisms and potential therapeutics.
Collapse
Affiliation(s)
- Stefan Hadzic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Cheng-Yu Wu
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Sergey Avdeev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Djuro Kosanovic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
18
|
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most important causes of death worldwide, and in addition to its impact on the patient's health, it poses a major socioeconomic burden. Tobacco smoke, indoor cooking, and air pollution are major triggers of the disease. This article summarizes evidence for the concept that lung microvascular molecular alterations can be a driver of lung emphysema. If findings from preclinical models allow a transfer to the human situation, this concept can offer new approaches for curative treatment of lung emphysema.
Collapse
|
19
|
Pichl A, Sommer N, Bednorz M, Seimetz M, Hadzic S, Kuhnert S, Kraut S, Roxlau ET, Kojonazarov B, Wilhelm J, Gredic M, Gall H, Tello K, Richter MJ, Pak O, Petrovic A, Hecker M, Schermuly RT, Grimminger F, Seeger W, Ghofrani HA, Weissmann N. Riociguat for treatment of pulmonary hypertension in COPD: a translational study. Eur Respir J 2019; 53:13993003.02445-2018. [PMID: 30956210 DOI: 10.1183/13993003.02445-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/26/2019] [Indexed: 11/05/2022]
Abstract
Chronic obstructive pulmonary disease (COPD), which comprises the phenotypes of chronic bronchitis and emphysema, is often associated with pulmonary hypertension (PH). However, currently, no approved therapy exists for PH-COPD. Signalling of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) axis plays an important role in PH and COPD.We investigated the treatment effect of riociguat, which promotes the NO-cGMP pathway, in the mouse model of smoke-induced PH and emphysema in a curative approach, and retrospectively analysed the effect of riociguat treatment on PH in single patients with PH-COPD.In mice with established PH and emphysema (after 8 months of cigarette smoke exposure), riociguat treatment for another 3 months fully reversed PH. Moreover, histological hallmarks of emphysema were decreased. Microarray analysis revealed involvement of different signalling pathways, e.g. related to matrix metalloproteinases (MMPs). MMP activity was decreased in vivo by riociguat. In PH-COPD patients treated with riociguat (n=7), the pulmonary vascular resistance, airway resistance and circulating MMP levels decreased, while oxygenation at rest was not significantly changed.Riociguat may be beneficial for treatment of PH-COPD. Further long-term prospective studies are necessary to investigate the tolerability, efficacy on functional parameters and effect specifically on pulmonary emphysema in COPD patients.
Collapse
Affiliation(s)
- Alexandra Pichl
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany.,These two authors contributed equally to this work
| | - Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany.,These two authors contributed equally to this work
| | - Mariola Bednorz
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Stefan Hadzic
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Stefan Kuhnert
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Simone Kraut
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Elsa T Roxlau
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Baktybek Kojonazarov
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Marija Gredic
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Henning Gall
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Khodr Tello
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Manuel J Richter
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Aleksandar Petrovic
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Matthias Hecker
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Friedrich Grimminger
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| |
Collapse
|
20
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
21
|
Zuo H, Han B, Poppinga WJ, Ringnalda L, Kistemaker LEM, Halayko AJ, Gosens R, Nikolaev VO, Schmidt M. Cigarette smoke up-regulates PDE3 and PDE4 to decrease cAMP in airway cells. Br J Pharmacol 2018; 175:2988-3006. [PMID: 29722436 PMCID: PMC6016635 DOI: 10.1111/bph.14347] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/16/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE cAMP is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease, a lung disease primarily provoked by cigarette smoke (CS), the activation of cAMP-dependent pathways, via inhibition of hydrolyzing PDEs, is a major therapeutic strategy. Mechanisms that disrupt cAMP signalling in airway cells, in particular regulation of endogenous PDEs, are poorly understood. EXPERIMENTAL APPROACH We used a novel Förster resonance energy transfer (FRET) based cAMP biosensor in mice in vivo, ex vivo precision cut lung slices (PCLS) and in human cell models, in vitro, to track the effects of CS exposure. KEY RESULTS Under fenoterol stimulation, FRET responses to cilostamide were significantly increased in in vivo, ex vivo PCLS exposed to CS and in human airway smooth muscle cells exposed to CS extract. FRET signals to rolipram were only increased in the in vivo CS model. Under basal conditions, FRET responses to cilostamide and rolipram were significantly increased in in vivo, ex vivo PCLS exposed to CS. Elevated FRET signals to rolipram correlated with a protein up-regulation of PDE4 subtypes. In ex vivo PCLS exposed to CS extract, rolipram reversed down-regulation of ciliary beating frequency, whereas only cilostamide significantly increased airway relaxation of methacholine pre-contracted airways. CONCLUSION AND IMPLICATIONS Exposure to CS, in vitro or in vivo, up-regulated expression and activity of both PDE3 and PDE4, which affected real-time cAMP dynamics. These mechanisms determine the availability of cAMP and can contribute to CS-induced pulmonary pathophysiology.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands.,Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Bing Han
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Wilfred J Poppinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Lennard Ringnalda
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| |
Collapse
|
22
|
Huertas A, Guignabert C, Barberà JA, Bärtsch P, Bhattacharya J, Bhattacharya S, Bonsignore MR, Dewachter L, Dinh-Xuan AT, Dorfmüller P, Gladwin MT, Humbert M, Kotsimbos T, Vassilakopoulos T, Sanchez O, Savale L, Testa U, Wilkins MR. Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases. Eur Respir J 2018; 51:13993003.00745-2017. [DOI: 10.1183/13993003.00745-2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 02/03/2018] [Indexed: 12/15/2022]
Abstract
The European Respiratory Society (ERS) Research Seminar entitled “Pulmonary vascular endothelium: orchestra conductor in respiratory diseases - highlights from basic research to therapy” brought together international experts in dysfunctional pulmonary endothelium, from basic science to translational medicine, to discuss several important aspects in acute and chronic lung diseases. This review will briefly sum up the different topics of discussion from this meeting which was held in Paris, France on October 27–28, 2016. It is important to consider that this paper does not address all aspects of endothelial dysfunction but focuses on specific themes such as: 1) the complex role of the pulmonary endothelium in orchestrating the host response in both health and disease (acute lung injury, chronic obstructive pulmonary disease, high-altitude pulmonary oedema and pulmonary hypertension); and 2) the potential value of dysfunctional pulmonary endothelium as a target for innovative therapies.
Collapse
|
23
|
Zhang Y, Li Y, Shi C, Fu X, Zhao L, Song Y. Angiotensin-(1-7)-mediated Mas1 receptor/NF-κB-p65 signaling is involved in a cigarette smoke-induced chronic obstructive pulmonary disease mouse model. ENVIRONMENTAL TOXICOLOGY 2018; 33:5-15. [PMID: 28960804 DOI: 10.1002/tox.22454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 05/04/2023]
Abstract
Angiotensin-(1-7) [Ang-(1-7)] has been shown to play a significant role in the pathogenesis of lung inflammation via Mas receptor; however, its effect in chronic obstructive pulmonary disease (COPD) remains unknown. To explore the effect of Ang-(1-7) on a cigarette smoke (CS) exposure-induced COPD model, 40 C57BL/6J mice were divided into four groups (n = 10) and exposed to air or CS for 8 weeks. After that, they were treated with saline or Ang-(1-7) at 0.3 mg/kg for 2 weeks by subcutaneous infusion using osmotic pump. The day following drug/vehicle challenge, lung function was examined and bronchoalveolar lavage (BAL) was performed. Chemokine (C-X-C motif) ligand 1, interleukin-6, and tumor necrosis factor-α protein levels in BAL fluid were determined using ELISA; the corresponding mRNA levels in lung tissues were measured using RT-PCR. Mas1 receptor, pIκBα, IκBα, nuclear NF-κB-p65 protein, pERK1/2, ERK2, pp38, and p38 proteins expression in lung tissues were examined by immunohistochemical staining and western blotting. Ang-(1-7) challenge had no effect on the decreased lung function and emphysema induced by CS exposure. However, Ang-(1-7) treatment blocked CS exposure-induced lung inflammatory responses and lung fibrosis, as determined by Masson's Trichrome staining. Exposure to CS for 8 weeks caused irreversible loss of lung function and emphysema, which could not be reversed by Ang-(1-7) treatment. Thus, the beneficial effect of Ang-(1-7) may be confined to pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yang Li
- Department of Respiration, Shangqiu First People's Hospital, Shangqiu, China
| | - Ce Shi
- Department of Respiration, Shangqiu First People's Hospital, Shangqiu, China
| | - Xiaomin Fu
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lingdi Zhao
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
24
|
Shafiee-Nick R, Afshari AR, Mousavi SH, Rafighdoust A, Askari VR, Mollazadeh H, Fanoudi S, Mohtashami E, Rahimi VB, Mohebbi M, Vahedi MM. A comprehensive review on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases. Biomed Pharmacother 2017; 94:541-556. [PMID: 28779712 DOI: 10.1016/j.biopha.2017.07.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/02/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterases are a group of enzymes that hydrolyze cyclic nucleotides, which assume a key role in directing intracellular levels of the second messengers' cAMP and cGMP, and consequently cell function. The disclosure of 11 isoenzyme families and our expanded knowledge of their functions at the cell and molecular level stimulate the improvement of isoenzyme selective inhibitors for the treatment of various diseases, particularly cardiovascular diseases. Hence, future and new mechanistic investigations and carefully designed clinical trials could help reap additional benefits of natural/synthetic PDE inhibitors for cardiovascular disease in patients. This review has concentrated on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases.
Collapse
Affiliation(s)
- Reza Shafiee-Nick
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbasali Rafighdoust
- Department of Cardiology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Mohtashami
- Department of Pharmacodynamic and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Mohebbi
- Department of Internal Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
25
|
Selim AO, Gouda ZA, Selim SA. An experimental study of a rat model of emphysema induced by cigarette smoke exposure and the effect of Survanta therapy. Ann Anat 2017; 211:69-77. [DOI: 10.1016/j.aanat.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022]
|
26
|
A diffuse lung emphysema, severe pulmonary hypertension and lack of airflow limitation. Respir Med Case Rep 2017; 21:74-77. [PMID: 28413774 PMCID: PMC5384413 DOI: 10.1016/j.rmcr.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/01/2022] Open
Abstract
Pulmonary veno-occlusive disease is characterized by remodeling of pulmonary arteries, capillaries and venules. We report a case of diffuse lung emphysema and pulmonary veno-occlusive disease with the characteristic of having no airflow limitation. A very low diffusing capacity for carbon monoxide and results of high-resolution computed tomography of the chest suggested pulmonary veno-occlusive disease. The diagnosis was confirmed on histological analysis after lung transplantation. The combination of results of the computed tomography of the chest and the histological analysis suggested a relationship between diffuse lung emphysema and remodeling of pulmonary vessels. A distinctive pattern of mild-to-moderate airflow limitation in patients with chronic obstructive pulmonary disease and severe pulmonary hypertension has been described. This observation of the combination of diffuse emphysema, pulmonary veno-occlusive disease and no airflow limitation supports further pathophysiological studies on severe pulmonary hypertension in chronic obstructive pulmonary disease.
Collapse
|
27
|
Kylhammar D, Rådegran G. The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol (Oxf) 2017; 219:728-756. [PMID: 27381367 DOI: 10.1111/apha.12749] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 12/13/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) serves to optimize ventilation-perfusion matching in focal hypoxia and thereby enhances pulmonary gas exchange. During global hypoxia, however, HPV induces general pulmonary vasoconstriction, which may lead to pulmonary hypertension (PH), impaired exercise capacity, right-heart failure and pulmonary oedema at high altitude. In chronic hypoxia, generalized HPV together with hypoxic pulmonary arterial remodelling, contribute to the development of PH. The present article reviews the principal pathways in the in vivo modulation of HPV, hypoxic pulmonary arterial remodelling and PH with primary focus on the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways. In summary, endothelin-1 and thromboxane A2 may enhance, whereas nitric oxide and prostacyclin may moderate, HPV as well as hypoxic pulmonary arterial remodelling and PH. The production of prostacyclin seems to be coupled primarily to cyclooxygenase-1 in acute hypoxia, but to cyclooxygenase-2 in chronic hypoxia. The potential role of adenine nucleotides in modulating HPV is unclear, but warrants further study. Additional modulators of the pulmonary vascular responses to hypoxia may include angiotensin II, histamine, serotonin/5-hydroxytryptamine, leukotrienes and epoxyeicosatrienoic acids. Drugs targeting these pathways may reduce acute and/or chronic hypoxic PH. Endothelin receptor antagonists and phosphodiesterase-5 inhibitors may additionally improve exercise capacity in hypoxia. Importantly, the modulation of the pulmonary vascular responses to hypoxia varies between species and individuals, with hypoxic duration and age. The review also define how drugs targeting the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways may improve pulmonary haemodynamics, but also impair pulmonary gas exchange by interference with HPV in chronic lung diseases.
Collapse
Affiliation(s)
- D. Kylhammar
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| | - G. Rådegran
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| |
Collapse
|
28
|
Grimminger J, Ghofrani HA, Weissmann N, Klose H, Grimminger F. COPD-associated pulmonary hypertension: clinical implications and current methods for treatment. Expert Rev Respir Med 2016; 10:755-66. [PMID: 27212458 DOI: 10.1080/17476348.2016.1190275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease is the fourth leading cause of death worldwide, one serious complication being pulmonary hypertension, which occurs in up to 30% of patients and increases mortality drastically. Difficulties in diagnosis and the unclear beneficial effects of PH-specific therapy have hitherto resulted in the absence of approved therapies. Consequently, PH and right heart failure in COPD are still currently treated according to symptoms and not underlying cause Areas covered: This review focuses on the current knowledge of its pathogenesis, clinical picture, diagnosis as well as methods for treatment Expert commentary: Since PH-COPD is an orphan disease with grievous consequences, and diagnosis as well as the right choice of possible treatment is crucial, referral to an expert center in cases of suspicion is necessary. Hitherto there is no officially approved treatment available even though several studies have shown notable improvement in selected individuals, making diagnostics, prognostic markers, and the search for therapeutic agents key issues of interest in this field.
Collapse
Affiliation(s)
- Jan Grimminger
- a University of Giessen and Marburg Lung Center (UGMLC), University of Giessen , Giessen , Germany.,b German Center for Lung Research (DZL) , University of Giessen , Giessen , Germany.,c Excellence Cluster Cardio-Pulmonary System (ECCPS) , University of Giessen , Giessen , Germany.,d University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg , Hamburg , Germany.,e Center for Pulmonary Arterial Hypertension Hamburg (CPAHH), Martin Zeitz Center for Rare Diseases , University of Hamburg , Hamburg , Germany
| | - Hossein Ardeschir Ghofrani
- a University of Giessen and Marburg Lung Center (UGMLC), University of Giessen , Giessen , Germany.,b German Center for Lung Research (DZL) , University of Giessen , Giessen , Germany.,c Excellence Cluster Cardio-Pulmonary System (ECCPS) , University of Giessen , Giessen , Germany.,f Department of Medicine , Imperial College London , London , UK
| | - Nobert Weissmann
- a University of Giessen and Marburg Lung Center (UGMLC), University of Giessen , Giessen , Germany.,b German Center for Lung Research (DZL) , University of Giessen , Giessen , Germany.,c Excellence Cluster Cardio-Pulmonary System (ECCPS) , University of Giessen , Giessen , Germany
| | - Hans Klose
- d University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg , Hamburg , Germany.,e Center for Pulmonary Arterial Hypertension Hamburg (CPAHH), Martin Zeitz Center for Rare Diseases , University of Hamburg , Hamburg , Germany.,g German Center for Lung Research (DZL) , University of Hamburg , Hamburg , Germany
| | - Friedrich Grimminger
- a University of Giessen and Marburg Lung Center (UGMLC), University of Giessen , Giessen , Germany.,b German Center for Lung Research (DZL) , University of Giessen , Giessen , Germany.,c Excellence Cluster Cardio-Pulmonary System (ECCPS) , University of Giessen , Giessen , Germany
| |
Collapse
|
29
|
Wang T, Chen X, Zhang W, Xiang X, Leng C, Jia Q. Roles of macrophage stimulating protein and tyrosine kinase receptor RON in smoke-induced airway inflammation of rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8797-8808. [PMID: 26464622 PMCID: PMC4583854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the roles of macrophage stimulating protein (MSP) and its tyrosine kinase receptor RON in smoke-induced airway inflammation of rats. METHODS Inhalation of combustion smoke was administered in rats to induce airway inflammation. Alveolar macrophages (AM) of healthy and smoking rats were isolated at different time points, cultured and then treated with different concentrations of MSP for 24 h. RESULTS When compared with healthy rats, MSP increased in the serum and bronchoalveolar lavage fluid (BALF) of smoking rats in a time dependent manner. In smoking rats, the RON expression in the lung and AM was higher than in healthy rats, and these increases were time dependent. MSP stimulated the production of malondialdehyde (MDA) and reduced superoxide dismutase (SOD) activity in rat AM cells in a dose dependent manner. MSP also stimulated the release of inflammatory factors TNF-α, IL-8, IL-1β and IL-10 in rat AM in a dose-dependent manner. Moreover, at the same MSP concentration, the contents of MDA, TNF-α, IL-8 and IL-1β in the AM of smoking rates were higher than in healthy rats, while the IL-10 content and SOD activity were lower than in healthy rats. CONCLUSION MSP and its receptor RON are involved in the smoke-induced airway inflammation in rats via promoting AM to release inflammatory cytokines and inducing the increase of oxygen free radical.
Collapse
Affiliation(s)
- Tao Wang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Xiaoju Chen
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Wenbo Zhang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Xiaojun Xiang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Changyan Leng
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Qinyao Jia
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| |
Collapse
|