1
|
Szabó JE, Nyíri K, Andrási D, Matejka J, Ozohanics O, Vértessy B. Redox status of cysteines does not alter functional properties of human dUTPase but the Y54C mutation involved in monogenic diabetes decreases protein stability. Sci Rep 2021; 11:19197. [PMID: 34584184 PMCID: PMC8478915 DOI: 10.1038/s41598-021-98790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Recently it was proposed that the redox status of cysteines acts as a redox switch to regulate both the oligomeric status and the activity of human dUTPase. In a separate report, a human dUTPase point mutation, resulting in a tyrosine to cysteine substitution (Y54C) was identified as the monogenic cause of a rare syndrome associated with diabetes and bone marrow failure. These issues prompt a critical investigation about the potential regulatory role of cysteines in the enzyme. Here we show on the one hand that independently of the redox status of wild-type cysteines, human dUTPase retains its characteristic trimeric assembly and its catalytic activity. On the other hand, the Y54C mutation did not compromise the substrate binding and the catalytic properties of the enzyme at room temperature. The thermal stability of the mutant protein was found to be decreased, which resulted in the loss of 67% of its activity after 90 min incubation at the physiological temperature in contrast to the wild-type enzyme. In addition, the presence or absence of reducing agents had no effect on hDUTY54C activity and stability, although it was confirmed that the introduced cysteine contains a solvent accessible thiol group.
Collapse
Affiliation(s)
- Judit Eszter Szabó
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Kinga Nyíri
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dániel Andrási
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit Matejka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Olivér Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Beáta Vértessy
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
2
|
Izrael R, Marton L, Nagy GN, Pálinkás HL, Kucsma N, Vértessy BG. Identification of a nuclear localization signal in the Plasmodium falciparum CTP: phosphocholine cytidylyltransferase enzyme. Sci Rep 2020; 10:19739. [PMID: 33184408 PMCID: PMC7665022 DOI: 10.1038/s41598-020-76829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
The phospholipid biosynthesis of the malaria parasite, Plasmodium falciparum is a key process for its survival and its inhibition is a validated antimalarial therapeutic approach. The second and rate-limiting step of the de novo phosphatidylcholine biosynthesis is catalysed by CTP: phosphocholine cytidylyltransferase (PfCCT), which has a key regulatory function within the pathway. Here, we investigate the functional impact of the key structural differences and their respective role in the structurally unique pseudo-heterodimer PfCCT protein in a heterologous cellular context using the thermosensitive CCT-mutant CHO-MT58 cell line. We found that a Plasmodium-specific lysine-rich insertion within the catalytic domain of PfCCT acts as a nuclear localization signal and its deletion decreases the nuclear propensity of the protein in the model cell line. We further showed that the putative membrane-binding domain also affected the nuclear localization of the protein. Moreover, activation of phosphatidylcholine biosynthesis by phospholipase C treatment induces the partial nuclear-to-cytoplasmic translocation of PfCCT. We additionally investigated the cellular function of several PfCCT truncated constructs in a CHO-MT58 based rescue assay. In absence of the endogenous CCT activity we observed that truncated constructs lacking the lysine-rich insertion, or the membrane-binding domain provided similar cell survival ratio as the full length PfCCT protein.
Collapse
Affiliation(s)
- Richard Izrael
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720, Szeged, Hungary.
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary.
| | - Lívia Marton
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Gergely N Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Hajnalka L Pálinkás
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720, Szeged, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary.
| |
Collapse
|
3
|
Gleber-Netto FO, Neskey D, Costa AFDM, Kataria P, Rao X, Wang J, Kowalski LP, Pickering CR, Dias-Neto E, Myers JN. Functionally impactful TP53 mutations are associated with increased risk of extranodal extension in clinically advanced oral squamous cell carcinoma. Cancer 2020; 126:4498-4510. [PMID: 32797678 DOI: 10.1002/cncr.33101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/24/2020] [Accepted: 06/20/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND The treatment of advanced oral squamous cell carcinoma (OSCC) is a clinical challenge because it is unclear which therapeutic approaches are the best for this highly heterogeneous group of patients. Because TP53 mutations are the most common genetic event in these tumors, the authors investigated whether they could represent an ancillary biomarker in the management of advanced OSCC. METHODS The TP53 gene was sequenced in 78 samples from patients with advanced OSCC who received treatment at 2 institutions located in the United States and Brazil. TP53 mutations were classified according to an in-silico impact score (the evolutionary action score of p53 [EAp53]), which identifies mutations that have greater alterations of p53 protein function (high-risk). Associations between TP53 mutation status/characteristics and clinicopathologic characteristics were investigated. The relevant findings were validated in silico by analyzing 197 samples from patients with advanced OSCC from The Cancer Genome Atlas. RESULTS No differences in clinical outcomes were detected between patients with TP53-mutant and wild-type TP53 disease. However, patients who had tumors carrying high-risk TP53 mutations had a significantly increased risk of developing extranodal extension (ENE) compared with those who had wild-type TP53-bearing tumors. The increased chances of detecting ENE among patients who had high-risk TP53 mutations was validated among patients with advanced OSCC from The Cancer Genome Atlas cohort. CONCLUSIONS High-risk TP53 mutations are associated with an increased chance of detecting ENE in patients with advanced OSCC. Because ENE is 1 of the major factors considered for OSCC patient management, TP53 mutation status may represent a potential ancillary biomarker for treatment decisions regarding postoperative adjuvant therapy.
Collapse
Affiliation(s)
- Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Neskey
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina.,Department of Cell and Molecular Pharmacology and Developmental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Ana Flávia de Mattos Costa
- Laboratory of Medical Genomics, International Research Center, AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Pranav Kataria
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, International Research Center, AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
4
|
Papp‐Kádár V, Balázs Z, Vékey K, Ozohanics O, Vértessy BG. Mass spectrometry-based analysis of macromolecular complexes of Staphylococcus aureus uracil-DNA glycosylase and its inhibitor reveals specific variations due to naturally occurring mutations. FEBS Open Bio 2019; 9:420-427. [PMID: 30868050 PMCID: PMC6396141 DOI: 10.1002/2211-5463.12567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
The base excision repair pathway plays an important role in correcting damage induced by either physiological or external effects. This repair pathway removes incorrect bases from the DNA. The uracil base is among the most frequently occurring erroneous bases in DNA, and is cut out from the phosphodiester backbone via the catalytic action of uracil-DNA glycosylase. Uracil excision repair is an evolutionarily highly conserved pathway and can be specifically inhibited by a protein inhibitor of uracil-DNA glycosylase. Interestingly, both uracil-DNA glycosylase (Staphylococcus aureus uracil-DNA glycosylase; SAUDG) and its inhibitor (S. aureus uracil-DNA glycosylase inhibitor; SAUGI) are present in the staphylococcal cell. The interaction of these two proteins effectively decreases the efficiency of uracil-DNA excision repair. The physiological relevance of this complexation has not yet been addressed in detailed; however, numerous mutations have been identified within SAUGI. Here, we investigated whether these mutations drastically perturb the interaction with SAUDG. To perform quantitative analysis of the macromolecular interactions, we applied native mass spectrometry and demonstrated that this is a highly efficient and specific method for determination of dissociation constants. Our results indicate that several naturally occurring mutations of SAUGI do indeed lead to appreciable changes in the dissociation constants for complex formation. However, all of these Kd values remain in the nanomolar range and therefore the association of these two proteins is preserved. We conclude that complexation is most likely preserved even with the naturally occurring mutant uracil-DNA glycosylase inhibitor proteins.
Collapse
Affiliation(s)
- Veronika Papp‐Kádár
- Hungarian Academy of SciencesResearch Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
- Department of Applied Biotechnology and Food ScienceBudapest University of Technology and EconomicsBudapestHungary
| | - Zoltán Balázs
- Department of Applied Biotechnology and Food ScienceBudapest University of Technology and EconomicsBudapestHungary
| | - Károly Vékey
- Hungarian Academy of SciencesResearch Centre for Natural SciencesInstitute of Organic ChemistryBudapestHungary
| | - Olivér Ozohanics
- Hungarian Academy of SciencesResearch Centre for Natural SciencesInstitute of Organic ChemistryBudapestHungary
- Department of Medical BiochemistrySemmelweis UniversityBudapestHungary
| | - Beáta G. Vértessy
- Hungarian Academy of SciencesResearch Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
- Department of Applied Biotechnology and Food ScienceBudapest University of Technology and EconomicsBudapestHungary
| |
Collapse
|
5
|
Guca E, Nagy GN, Hajdú F, Marton L, Izrael R, Hoh F, Yang Y, Vial H, Vértessy BG, Guichou JF, Cerdan R. Structural determinants of the catalytic mechanism of Plasmodium CCT, a key enzyme of malaria lipid biosynthesis. Sci Rep 2018; 8:11215. [PMID: 30046154 PMCID: PMC6060094 DOI: 10.1038/s41598-018-29500-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/10/2018] [Indexed: 11/13/2022] Open
Abstract
The development of the malaria parasite, Plasmodium falciparum, in the human erythrocyte, relies on phospholipid metabolism to fulfil the massive need for membrane biogenesis. Phosphatidylcholine (PC) is the most abundant phospholipid in Plasmodium membranes. PC biosynthesis is mainly ensured by the de novo Kennedy pathway that is considered as an antimalarial drug target. The CTP:phosphocholine cytidylyltransferase (CCT) catalyses the rate-limiting step of the Kennedy pathway. Here we report a series of structural snapshots of the PfCCT catalytic domain in its free, substrate- and product-complexed states that demonstrate the conformational changes during the catalytic mechanism. Structural data show the ligand-dependent conformational variations of a flexible lysine. Combined kinetic and ligand-binding analyses confirm the catalytic roles of this lysine and of two threonine residues of the helix αE. Finally, we assessed the variations in active site residues between Plasmodium and mammalian CCT which could be exploited for future antimalarial drug design.
Collapse
Affiliation(s)
- Ewelina Guca
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS, Université de Montpellier, Montpellier, France.,Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Gergely N Nagy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX37BN, United Kingdom
| | - Fanni Hajdú
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lívia Marton
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary
| | - Richard Izrael
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - François Hoh
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, Montpellier, France.,INSERM U1054, Montpellier, France
| | - Yinshan Yang
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, Montpellier, France.,INSERM U1054, Montpellier, France
| | - Henri Vial
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS, Université de Montpellier, Montpellier, France
| | - Beata G Vértessy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jean-François Guichou
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, Montpellier, France.,INSERM U1054, Montpellier, France
| | - Rachel Cerdan
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS, Université de Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Heterologous expression of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum rescues Chinese Hamster Ovary cells deficient in the Kennedy phosphatidylcholine biosynthesis pathway. Sci Rep 2018; 8:8932. [PMID: 29895950 PMCID: PMC5997628 DOI: 10.1038/s41598-018-27183-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/23/2018] [Indexed: 01/10/2023] Open
Abstract
The plasmodial CTP:phosphocholine cytidylyltransferase (PfCCT) is a promising antimalarial target, which can be inhibited to exploit the need for increased lipid biosynthesis during the erythrocytic life stage of Plasmodium falciparum. Notable structural and regulatory differences of plasmodial and mammalian CCTs offer the possibility to develop species-specific inhibitors. The aim of this study was to use CHO-MT58 cells expressing a temperature-sensitive mutant CCT for the functional characterization of PfCCT. We show that heterologous expression of wild type PfCCT restores the viability of CHO-MT58 cells at non-permissive (40 °C) temperatures, whereas catalytically perturbed or structurally destabilized PfCCT variants fail to provide rescue. Detailed in vitro characterization indicates that the H630N mutation diminishes the catalytic rate constant of PfCCT. The flow cytometry-based rescue assay provides a quantitative readout of the PfCCT function opening the possibility for the functional analysis of PfCCT and the high throughput screening of antimalarial compounds targeting plasmodial CCT.
Collapse
|
7
|
Marton L, Nagy GN, Ozohanics O, Lábas A, Krámos B, Oláh J, Vékey K, Vértessy BG. Correction: Molecular Mechanism for the Thermo-Sensitive Phenotype of CHO-MT58 Cell Line Harbouring a Mutant CTP:Phosphocholine Cytidylyltransferase. PLoS One 2016; 11:e0165871. [PMID: 27788274 PMCID: PMC5083039 DOI: 10.1371/journal.pone.0165871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Benedek A, Horváth A, Hirmondó R, Ozohanics O, Békési A, Módos K, Révész Á, Vékey K, Nagy GN, Vértessy BG. Potential steps in the evolution of a fused trimeric all-β dUTPase involve a catalytically competent fused dimeric intermediate. FEBS J 2016; 283:3268-86. [PMID: 27380921 DOI: 10.1111/febs.13800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 06/08/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022]
Abstract
Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is essential for genome integrity. Interestingly, this enzyme from Drosophila virilis has an unusual form, as three monomer repeats are merged with short linker sequences, yielding a fused trimer-like dUTPase fold. Unlike homotrimeric dUTPases that are encoded by a single repeat dut gene copy, the three repeats of the D. virilis dut gene are not identical due to several point mutations. We investigated the potential evolutionary pathway that led to the emergence of this extant fused trimeric dUTPase in D. virilis. The herein proposed scenario involves two sequential gene duplications followed by sequence divergence amongst the dut repeats. This pathway thus requires the existence of a transient two-repeat-containing fused dimeric dUTPase intermediate. We identified the corresponding ancestral dUTPase single repeat enzyme together with its tandem repeat evolutionary intermediate and characterized their enzymatic function and structural stability. We additionally engineered and characterized artificial single or tandem repeat constructs from the extant enzyme form to investigate the influence of the emergent residue alterations on the formation of a functional assembly. The observed severely impaired stability and catalytic activity of these latter constructs provide a plausible explanation for evolutionary persistence of the extant fused trimeric D. virilis dUTPase form. For the ancestral homotrimeric and the fused dimeric intermediate forms, we observed strong catalytic and structural competence, verifying viability of the proposed evolutionary pathway. We conclude that the progression along the herein described evolutionary trajectory is determined by the retained potential of the enzyme for its conserved three-fold structural symmetry.
Collapse
Affiliation(s)
- András Benedek
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary.
| | - András Horváth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rita Hirmondó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Olivér Ozohanics
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Angéla Békési
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Módos
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Ágnes Révész
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Vékey
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely N Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary.
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary.
| |
Collapse
|
9
|
Brault JP, Friesen JA. Characterization of cytidylyltransferase enzyme activity through high performance liquid chromatography. Anal Biochem 2016; 510:26-32. [PMID: 27443959 DOI: 10.1016/j.ab.2016.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 11/26/2022]
Abstract
The cytidylyltransferases are a family of enzymes that utilize cytidine 5'-triphosphate (CTP) to synthesize molecules that are typically precursors to membrane phospholipids. The most extensively studied cytidylyltransferase is CTP:phosphocholine cytidylyltransferase (CCT), which catalyzes conversion of phosphocholine and CTP to cytidine diphosphocholine (CDP-choline), a step critical for synthesis of the membrane phospholipid phosphatidylcholine (PC). The current method used to determine catalytic activity of CCT measures production of radiolabeled CDP-choline from (14)C-labeled phosphocholine. The goal of this research was to develop a CCT enzyme assay that employed separation of non-radioactive CDP-choline from CTP. A C18 reverse phase column with a mobile phase of 0.1 M ammonium bicarbonate (98%) and acetonitrile (2%) (pH 7.4) resulted in separation of solutions of the substrate CTP from the product CDP-choline. A previously characterized truncated version of rat CCTα (denoted CCTα236) was used to test the HPLC enzyme assay by measuring CDP-choline product formation. The Vmax for CCTα236 was 3850 nmol/min/mg and K0.5 values for CTP and phosphocholine were 4.07 mM and 2.49 mM, respectively. The HPLC method was applied to glycerol 3-phosphate cytidylyltransferase (GCT) and CTP:2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase synthetase (CMS), members of the cytidylyltransferase family that produce CDP-glycerol and CDP-methylerythritol, respectively.
Collapse
Affiliation(s)
- James P Brault
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Jon A Friesen
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA.
| |
Collapse
|
10
|
Cornell RB, Ridgway ND. CTP:phosphocholine cytidylyltransferase: Function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog Lipid Res 2015; 59:147-71. [PMID: 26165797 DOI: 10.1016/j.plipres.2015.07.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes a rate-limiting and regulated step in the CDP-choline pathway for the synthesis of phosphatidylcholine (PC) and PC-derived lipids. Control of CCT activity is multi-layered, and includes direct regulation by reversible membrane binding involving a built-in lipid compositional sensor. Thus CCT contributes to phospholipid compositional homeostasis. CCT also modifies the curvature of its target membrane. Knowledge of CCT structure and regulation of its catalytic function are relatively advanced compared to many lipid metabolic enzymes, and are reviewed in detail. Recently the genetic origins of two human developmental and lipogenesis disorders have been traced to mutations in the gene for CCTα.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Department of Molecular Biology and Biochemistry and the Department of Chemistry, Simon Fraser University, Burnaby, B.C. V5A-1S6, Canada.
| | - Neale D Ridgway
- Departments of Pediatrics, and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H-4H7, Canada
| |
Collapse
|