1
|
Wen F, Ding Y, Wang M, Du J, Zhang S, Kee K. FOXL2 and NR5A1 induce human fibroblasts into steroidogenic ovarian granulosa-like cells. Cell Prolif 2024; 57:e13589. [PMID: 38192172 PMCID: PMC11056703 DOI: 10.1111/cpr.13589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Human granulosa cells in different stages are essential for maintaining normal ovarian function, and granulosa cell defect is the main cause of ovarian dysfunction. To address this problem, it is necessary to induce functional granulosa cells at different stages in vitro. In this study, we established a reprogramming method to induce early- and late-stage granulosa cells with different steroidogenic abilities. We used an AMH-fluorescence-reporter system to screen candidate factors for cellular reprogramming and generated human induced granulosa-like cells (hiGC) by overexpressing FOXL2 and NR5A1. AMH-EGFP+ hiGC resembled human cumulus cells in transcriptome profiling and secreted high levels of oestrogen and progesterone, similar to late-stage granulosa cells at antral or preovulatory stage. Moreover, we identified CD55 as a cell surface marker that can be used to isolate early-stage granulosa cells. CD55+ AMH-EGFP- hiGC secreted high levels of oestrogen but low levels of progesterone, and their transcriptome profiles were more similar to early-stage granulosa cells. More importantly, CD55+ hiGC transplantation alleviated polycystic ovary syndrome (PCOS) in a mouse model. Therefore, hiGC provides a cellular model to study the developmental program of human granulosa cells and has potential to treat PCOS.
Collapse
Affiliation(s)
- Fan Wen
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Yuxi Ding
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Mingming Wang
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Jing Du
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Shen Zhang
- Reproductive Medicine Center, The First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Kehkooi Kee
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
2
|
Carver JJ, Zhu Y. Metzincin metalloproteases in PGC migration and gonadal sex conversion. Gen Comp Endocrinol 2023; 330:114137. [PMID: 36191636 DOI: 10.1016/j.ygcen.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Development of a functional gonad includes migration of primordial germ cells (PGCs), differentiations of somatic and germ cells, formation of primary follicles or spermatogenic cysts with somatic gonadal cells, development and maturation of gametes, and subsequent releasing of mature germ cells. These processes require extensive cellular and tissue remodeling, as well as broad alterations of the surrounding extracellular matrix (ECM). Metalloproteases, including MMPs (matrix metalloproteases), ADAMs (a disintegrin and metalloproteinases), and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs), are suggested to have critical roles in the remodeling of the ECM during gonad development. However, few research articles and reviews are available on the functions and mechanisms of metalloproteases in remodeling gonadal ECM, gonadal development, or gonadal differentiation. Moreover, most studies focused on the roles of transcription and growth factors in early gonad development and primary sex determination, leaving a significant knowledge gap on how differentially expressed metalloproteases exert effects on the ECM, cell migration, development, and survival of germ cells during the development and differentiation of ovaries or testes. We will review gonad development with focus on the evidence of metalloprotease involvements, and with an emphasis on zebrafish as a model for studying gonadal sex differentiation and metalloprotease functions.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
3
|
Singh LK, Pandey M, Baithalu RK, Fernandes A, Ali SA, Jaiswal L, Pannu S, Neeraj, Mohanty TK, Kumaresan A, Datta TK, Kumar S, Mohanty AK. Comparative Proteome Profiling of Saliva Between Estrus and Non-Estrus Stages by Employing Label-Free Quantitation (LFQ) and Tandem Mass Tag (TMT)-LC-MS/MS Analysis: An Approach for Estrus Biomarker Identification in Bubalus bubalis. Front Genet 2022; 13:867909. [PMID: 35754844 PMCID: PMC9217162 DOI: 10.3389/fgene.2022.867909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Accurate determination of estrus is essentially required for efficient reproduction management of farm animals. Buffalo is a shy breeder and does not manifest overt signs of estrus that make estrus detection difficult resulting in a poor conception rate. Therefore, identifying estrus biomarkers in easily accessible biofluid such as saliva is of utmost interest. In the current study, we generated saliva proteome profiles during proestrus (PE), estrus (E), metestrus (ME), and diestrus (DE) stages of the buffalo estrous cycle using both label-free quantitation (LFQ) and labeled (TMT) quantitation and mass spectrometry analysis. A total of 520 proteins were identified as DEPs in LFQ; among these, 59 and four proteins were upregulated (FC ≥ 1.5) and downregulated (FC ≤ 0.5) during E vs. PE, ME, and DE comparisons, respectively. Similarly, TMT-LC-MS/MS analysis identified 369 DEPs; among these, 74 and 73 proteins were upregulated and downregulated during E vs. PE, ME, and DE stages, respectively. Functional annotations of GO terms showed enrichment of glycolysis, pyruvate metabolism, endopeptidase inhibitor activity, salivary secretion, innate immune response, calcium ion binding, oocyte meiosis, and estrogen signaling. Over-expression of SERPINB1, HSPA1A, VMO1, SDF4, LCN1, OBP, and ENO3 proteins during estrus was further confirmed by Western blotting. This is the first comprehensive report on differential proteome analysis of buffalo saliva between estrus and non-estrus stages. This study generated an important panel of candidate proteins that may be considered buffalo estrus biomarkers which can be applied in the development of a diagnostic kit for estrus detection in buffalo.
Collapse
|
4
|
Abstract
In vitro systems capable of reconstituting the process of mouse oogenesis are now being established to help develop further understanding of the mechanisms underlying oocyte/follicle development and differentiation. These systems could also help increase the production of useful livestock or genetically modified animals, and aid in identifying the causes of infertility in humans. Recently, we revealed, using an in vitro system for recapitulating oogenesis, that the activation of the estrogen signaling pathway induces abnormal follicle formation, that blocking estrogen-induced expression of anti-Müllerian hormone is crucial for normal follicle formation, and that the production of α-fetoprotein in fetal liver tissue is involved in normal in vivo follicle formation. In mouse fetuses, follicle formation is not carried out by factors within the ovaries but is instead orchestrated by distal endocrine factors. This review outlines findings from genetics, endocrinology, and in vitro studies regarding the factors that can affect the formation of primordial follicles in mammals.
Collapse
|
5
|
Frost ER, Taylor G, Baker MA, Lovell-Badge R, Sutherland JM. Establishing and maintaining fertility: the importance of cell cycle arrest. Genes Dev 2021; 35:619-634. [PMID: 33888561 PMCID: PMC8091977 DOI: 10.1101/gad.348151.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this review, Frost et al. summarize the current knowledge on the Cip/Kip family of cyclin-dependent kinase inhibitors in mouse gonad development and highlight new roles for cell cycle inhibitors in controlling and maintaining female fertility. Development of the ovary or testis is required to establish reproductive competence. Gonad development relies on key cell fate decisions that occur early in embryonic development and are actively maintained. During gonad development, both germ cells and somatic cells proliferate extensively, a process facilitated by cell cycle regulation. This review focuses on the Cip/Kip family of cyclin-dependent kinase inhibitors (CKIs) in mouse gonad development. We particularly highlight recent single-cell RNA sequencing studies that show the heterogeneity of cyclin-dependent kinase inhibitors. This diversity highlights new roles for cell cycle inhibitors in controlling and maintaining female fertility.
Collapse
Affiliation(s)
- Emily R Frost
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia.,Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Güneş Taylor
- Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Mark A Baker
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Robin Lovell-Badge
- Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| |
Collapse
|
6
|
Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc Natl Acad Sci U S A 2020; 117:20015-20026. [PMID: 32759216 PMCID: PMC7443898 DOI: 10.1073/pnas.2005570117] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This paper improves knowledge of the somatic and germ cells of the developing mouse ovary that assemble into ovarian follicles, by determining cellular gene expression, and tracing lineage relationships. The study covers the last week of fetal development through the first five days of postnatal development. During this time, many critically important processes take place, including sex determination, follicle assembly, and the initial events of meiosis. We report expression differences between pregranulosa cells of wave 1 follicles that function at puberty and wave 2 follicles that sustain fertility. These studies illuminate ovarian somatic cells and provide a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicle formation. We sequenced more than 52,500 single cells from embryonic day 11.5 (E11.5) postembryonic day 5 (P5) gonads and performed lineage tracing to analyze primordial follicles and wave 1 medullar follicles during mouse fetal and perinatal oogenesis. Germ cells clustered into six meiotic substages, as well as dying/nurse cells. Wnt-expressing bipotential precursors already present at E11.5 are followed at each developmental stage by two groups of ovarian pregranulosa (PG) cells. One PG group, bipotential pregranulosa (BPG) cells, derives directly from bipotential precursors, expresses Foxl2 early, and associates with cysts throughout the ovary by E12.5. A second PG group, epithelial pregranulosa (EPG) cells, arises in the ovarian surface epithelium, ingresses cortically by E12.5 or earlier, expresses Lgr5, but delays robust Foxl2 expression until after birth. By E19.5, EPG cells predominate in the cortex and differentiate into granulosa cells of quiescent primordial follicles. In contrast, medullar BPG cells differentiate along a distinct pathway to become wave 1 granulosa cells. Reflecting their separate somatic cellular lineages, second wave follicles were ablated by diptheria toxin treatment of Lgr5-DTR-EGFP mice at E16.5 while first wave follicles developed normally and supported fertility. These studies provide insights into ovarian somatic cells and a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicles.
Collapse
|
7
|
Songsasen N, Nagashima J. Intraovarian regulation of folliculogenesis in the dog: A review. Reprod Domest Anim 2020; 55 Suppl 2:66-73. [PMID: 32347633 DOI: 10.1111/rda.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Dog reproductive cycle is unique among other mammals in that females experience long and variable periods of ovarian inactivity. Neuroendocrine controls of the reproductive cycle have been thoroughly studied in the dog. However, there is little information regarding endocrine, paracrine and autocrine controls of dog ovarian folliculogenesis. Advancements in the understanding of mechanisms regulating dog ovarian follicle development will be helpful in the establishment of an approach to control cyclicity in this species. Furthermore, such information will likely be useful for the establishment of an in vitro follicle culture system to preserve fertility of genetically valuable disease models or endangered canids. This review highlights current knowledge on dog folliculogenesis with emphasis on endocrine, paracrine and autocrine controls of follicular development.
Collapse
Affiliation(s)
- Nucharin Songsasen
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Jennifer Nagashima
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| |
Collapse
|
8
|
Evidence that Melatonin Increases Inhibin Beta-A and Follistatin Gene Expression in Ovaries of Pinealectomized Rats. Reprod Sci 2020; 27:1455-1464. [PMID: 32046468 DOI: 10.1007/s43032-020-00162-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Melatonin plays an important role in the regulation of ovarian function including oocyte maturation in different mammalian species. Many studies indicate that melatonin has an impact on the ovarian function of a variety of ovarian cells. However, the information on the exact mechanism and involved hormones is low. To evaluate inhibin beta-A (INHBA) and follistatin (FST) expression in the ovaries of pinealectomized rats treated with melatonin, thirty adult female Wistar rats were randomized into three groups of ten animals each: group 1 (GSh), sham-operated controls receiving vehicle; group 2 (GPx), pinealectomized animals receiving vehicle; and group 3 (GPxMe), pinealectomized animals receiving replacement melatonin (1.0 mg/kg body weight. It was assumed that each animal drank 6.5 ± 1.2 ml per night and weighs approximately 300 g.) for 60 consecutive days. The ovaries were collected for mRNA abundance and protein of INHBA and FST by qRT-PCR and immunohistochemical analyses, respectively. Treatment with melatonin resulted in the upregulation of INHBA and FST genes in the ovarian tissue of the melatonin-treated animals (GPxMe), when compared with GPx. These findings were then confirmed by analyzing the expression of protein by immunohistochemical analyses, which revealed higher immunoreactivity of INHBA and FST in GPxMe animals in the follicular cells compared with GSh and GPx rats. Melatonin increases the expression of INHBA and FST in the ovaries of pinealectomized female rats.
Collapse
|
9
|
The Ovarian Transcriptome of Reproductively Aged Multiparous Mice: Candidate Genes for Ovarian Cancer Protection. Biomolecules 2020; 10:biom10010113. [PMID: 31936467 PMCID: PMC7022285 DOI: 10.3390/biom10010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
In middle-aged women, the decline of ovarian follicle reserve below a critical threshold marks menopause, leading to hormonal, inflammatory, and metabolic changes linked to disease. The highest incidence and mortality of sporadic ovarian cancer (OC) occur at post-menopause, while OC risk is reduced by full-term pregnancies during former fertile life. Herein, we investigate how parity history modulates the ovarian transcriptome related to such declining follicle pool and systemic inflammation in reproductively-aged mice. Female C57BL/6 mice were housed under multiparous and virgin (nulliparous) breeding regimens from adulthood until estropause. The ovaries were then subjected to follicle count and transcriptional profiling, while a cytokine panel was determined in the sera. As expected, the follicle number was markedly decreased just by aging. Importantly, a significantly higher count of primordial and total follicles was observed in aged multiparous relative to aged virgin ovaries. Consistently, among the 65 genes of higher expression in aged multiparous ovaries, 27 showed a follicle count-like pattern, 21 had traceable evidence of roles in follicular/oocyte homeostasis, and 7 were transforming-growth factor beta (TGF-β)/bone morphogenetic protein (BMP) superfamily members. The remaining genes were enriched in cell chemotaxis and innate-immunity, and resembled the profiles of circulating CXCL1, CXCL2, CXCL5, CSF3, and CCL3, chemokines detected at higher levels in aged multiparous mice. We conclude that multiparity during reproductive life promotes the retention of follicle remnants while improving local (ovarian) and systemic immune-innate surveillance in aged female mice. These findings could underlie the mechanisms by which pregnancy promotes the long-term reduced OC risk observed at post-menopause.
Collapse
|
10
|
Jia Y, Wang F, Zhang R, Liang T, Zhang W, Ji X, Du Q, Chang Z. Identification of suh gene and evidence for involvement of notch signaling pathway on gonadal differentiation of Yellow River carp (Cyprinus carpio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:375-386. [PMID: 29164452 DOI: 10.1007/s10695-017-0441-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
The suh gene is crucial in Notch pathway and regulates mammalian gonad development. In this study, the sequences of suh1 and suh2 genes in Yellow River carp (Cyprinus carpio) were verified. The partial 5'-flanking regions of suh1 and suh2 were analyzed and several potential transcription factor-binding sites were identified. Phylogenetic, gene structure, and chromosome synteny analyses revealed that carp suh1 and suh2 were orthologs and homologous to vertebrate suh. Investigation of the expression profiles of suh1 and suh2 with qPCR showed that these genes were abundant in the brain and gonad of carp, with suh1 exhibiting sexual dimorphism expression pattern in gonad. To study the relationship between gonad differentiation and Notch signaling, primordial gonads were exposed to DAPT, an inhibitor of Notch signaling, in vitro and in vivo. The results revealed a significant downregulation of suh1 and other Notch genes in vitro. In addition, expression of male-biased genes, such as amh, dmrt1, etc., was downregulated, whereas that of female-biased genes, such as foxl2, gdf9, etc., was upregulated. When the primordial gonads were subjected to long-term DAPT exposure, an increased proportion of ovary and delay in testis development were observed. These results suggest that suh gene may have a conservative function between teleosts and mammals. Furthermore, Notch signaling was found to be involved in gonad differentiation in Yellow River carp, and DAPT was noted to inhibit and enhance the expression of male- and female-biased genes, respectively, and induce the increase in number of females.
Collapse
Affiliation(s)
- Yongfang Jia
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Fang Wang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Ruihua Zhang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Tingting Liang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - WanWan Zhang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Xiaolin Ji
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Qiyan Du
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
11
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Kawashima I, Kawamura K. Disorganization of the germ cell pool leads to primary ovarian insufficiency. Reproduction 2017; 153:R205-R213. [PMID: 28289071 DOI: 10.1530/rep-17-0015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/10/2017] [Accepted: 03/13/2017] [Indexed: 01/26/2023]
Abstract
The mammalian ovary is an organ that controls female germ cell development, storing them and releasing mature oocytes for transporting to the oviduct. During the fetal stage, female germ cells change from a proliferative state to meiosis before forming follicles with the potential for the growth of surrounding somatic cells. Understanding of molecular and physiological bases of germ cell development in the fetal ovary contributed not only to the elucidation of genetic disorders in primary ovarian insufficiency (POI), but also to the advancement of novel treatments for patients with POI. Accumulating evidence indicates that mutations in NOBOX, DAZL and FIGLAgenes are associated with POI. In addition, cell biology studies revealed the important roles of these genes as essential translational factors for germ cell development. Recent insights into the role of the PI3K (phosphatidylinositol 3-kinase)-Akt signaling pathway in primordial follicle activation allowed the development of a new infertility treatment, IVA (in vitro activation), leading to successful pregnancy/delivery in POI patients. Furthermore, elucidation of genetic dynamics underlying female germ cell development could allow regeneration of oocytes from ES (embryonic stem)/iPS (induced pluripotent stem) cells in mammals. The purpose of this review is to summarize basic findings related to female germ cell development and potential clinical implications, especially focusing on POI etiologies. We also summarize evolving new POI therapies based on IVA as well as oocyte regeneration.
Collapse
Affiliation(s)
- Ikko Kawashima
- Department of Advanced Reproductive MedicineSt. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan
| | - Kazuhiro Kawamura
- Department of Advanced Reproductive MedicineSt. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan
| |
Collapse
|
13
|
Wang YY, Sun YC, Sun XF, Cheng SF, Li B, Zhang XF, De Felici M, Shen W. Starvation at birth impairs germ cell cyst breakdown and increases autophagy and apoptosis in mouse oocytes. Cell Death Dis 2017; 8:e2613. [PMID: 28182014 PMCID: PMC5386484 DOI: 10.1038/cddis.2017.3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 01/12/2023]
Abstract
The female reproductive lifespan is largely determined by the size of primordial follicle pool, which is established following germ cell cyst breakdown around birth. Almost two-third of oocytes are lost during germ cell cysts breakdown, following autophagic and apoptosis mechanisms. To investigate a possible relationship between germ cell cyst breakdown and nutrition supply, we established a starvation model in mouse pups at birth and evaluated the dynamics of cyst breakdown during nutrient deprivation. Our results showed that after 36 h of starvation between 1.5 and 3 d.p.p., indicators of metabolism both at systemic and ovarian level were significantly altered and the germ cell cyst breakdown markedly decreased. We also found that markers of oxidative stress, autophagy and apoptosis were increased and higher number of oocytes in cyst showing autophagic markers and of TUNEL-positive oocytes and somatic cells were present in the ovaries of starved pups. Moreover, the proliferation of pre-granulosa cells and the expression of the oocyte-specific transcription factor Nobox were decreased in such ovaries. Finally, we observed that the ovaries of the starved pups could recover a normal number of follicles after about 3 weeks from re-feeding. In conclusion, these data indicate that nutrient deficiency at birth can generate a number of adaptive metabolic and oxidative responses in the ovaries causing increased apoptosis both in the somatic cells and oocyte and autophagy mainly in these latter and leading to a delay of germ cell cyst breakdown and follicle assembly.
Collapse
Affiliation(s)
- Yong-Yong Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.,College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan-Chao Sun
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.,College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bo Li
- Chengguo Station of Animal Husbandry and Veterinary, Laizhou 261437, China
| | - Xi-Feng Zhang
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Wei Shen
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
14
|
Findlay JK, Hutt KJ, Hickey M, Anderson RA. How Is the Number of Primordial Follicles in the Ovarian Reserve Established? Biol Reprod 2015; 93:111. [PMID: 26423124 DOI: 10.1095/biolreprod.115.133652] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022] Open
Abstract
The number of primordial follicles in the ovarian reserve is an important determinant of the length of the ovarian lifespan, and therefore the fertility of an individual. This reserve contains all of the oocytes potentially available for fertilization throughout the fertile lifespan. The maximum number is set during pregnancy or just after birth in most mammalian species; current evidence does not support neofolliculogenesis after the ovarian reserve is established, although this is increasingly being reexamined. Under physiological circumstances, this number will be influenced by the number of primordial germ cells initially specified in the epiblast of the developing embryo, their proliferation during and after migration to the developing gonads, and their death during oogenesis and formation of primordial follicles at nest breakdown. Death of germ cells during the establishment of the ovarian reserve occurs principally by autophagy or apoptosis, although the triggers that initiate these remain elusive. This review outlines the regulatory steps that determine the number of primordial follicles and thus the number of oocytes in the ovarian reserve at birth, using the mouse as the model, interspersed with human data where available. This information has application for understanding the variability in duration of fertility that occurs between normal individuals and with age, in premature ovarian insufficiency, and after chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- John K Findlay
- Centre for Reproductive Biology, Hudson Institute of Medical Research, Clayton, Victoria, Australia Department of Obstetrics & Gynaecology, Monash University, Clayton, Victoria, Australia Department of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Karla J Hutt
- Centre for Reproductive Biology, Hudson Institute of Medical Research, Clayton, Victoria, Australia Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Martha Hickey
- Department of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Richard A Anderson
- Medical Research Council Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|