1
|
Javid H, Oryani MA, Rezagholinejad N, Esparham A, Tajaldini M, Karimi‐Shahri M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med 2024; 13:e6800. [PMID: 38349028 PMCID: PMC10832341 DOI: 10.1002/cam4.6800] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024] Open
Abstract
RGD peptide can be found in cell adhesion and signaling proteins, such as fibronectin, vitronectin, and fibrinogen. RGD peptides' principal function is to facilitate cell adhesion by interacting with integrin receptors on the cell surface. They have been intensively researched for use in biotechnology and medicine, including incorporation into biomaterials, conjugation to medicinal molecules or nanoparticles, and labeling with imaging agents. RGD peptides can be utilized to specifically target cancer cells and the tumor vasculature by engaging with these integrins, improving drug delivery efficiency and minimizing adverse effects on healthy tissues. RGD-functionalized drug carriers are a viable option for cancer therapy as this focused approach has demonstrated promise in the future. Writing a review on the RGD peptide can significantly influence how drugs are developed in the future by improving our understanding of the peptide, finding knowledge gaps, fostering innovation, and making drug design easier.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory SciencesVarastegan Institute for Medical SciencesMashhadIran
- Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Esparham
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research CenterGolestan University of Medical SciencesGorganIran
| | - Mehdi Karimi‐Shahri
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Pathology, School of MedicineGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
2
|
Thirumalai A, Girigoswami K, Pallavi P, Harini K, Gowtham P, Girigoswami A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull Cancer 2023; 110:1288-1300. [PMID: 37813754 DOI: 10.1016/j.bulcan.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
One of the primary threats in tumor treatment revolves around the limited ability to penetrate tumor sites, leading to reduced therapeutic effectiveness, which remains a critical concern. Recently gaining importance are novel peptides, namely CRGDK/RGPD/EC (iRGD), that possess enhanced tumor-penetrating and inhibitory properties. These peptides specifically target and penetrate tumors by binding to αvβ integrins, namely αvβ3 and αvβ5, as well as NRP-1 receptors. Remarkably abundant on both the vasculature and tumor cell surfaces, these peptides show promising potential for improving tumor treatment outcomes. As a result, iRGD penetrated deep into the tumor tissues with biological products, contrast agents (imaging agents), antitumor drugs, and immune modulators after co-injecting them with peptides or chemically linked to peptides. The synthesis of iRGD peptides is a relatively straightforward process compared to the synthesis of other traditional peptides, and they significantly improved tumor tissue penetration inhibiting tumor metastasis effectively. Recent studies demonstrate the effectiveness of iRGD-driven dual-targeting chemotherapeutics on cancer cells, and the nanocarriers were modified with iRGD, serving as a favorable delivery strategy of payloads for deeper tumor regions. This review aims to provide an overview to emphasize the recent advancements and advantages of iRGD in treating and imaging various cancers.
Collapse
Affiliation(s)
- Anbazhagan Thirumalai
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Koyeli Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pragya Pallavi
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Karthick Harini
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pemula Gowtham
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Agnishwar Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India.
| |
Collapse
|
3
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Liu X, Zhu X, Qi X, Meng X, Xu K. Co-Administration of iRGD with Sorafenib-Loaded Iron-Based Metal-Organic Framework as a Targeted Ferroptosis Agent for Liver Cancer Therapy. Int J Nanomedicine 2021; 16:1037-1050. [PMID: 33603367 PMCID: PMC7884959 DOI: 10.2147/ijn.s292528] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is one of the most common fatal cancers, with no curative therapy available. The concept of ferroptosis is attracting increasing attention in cancer research. Herein, we describe the use of a nanodevice as an effective strategy for inducing ferroptosis to manage HCC. Methods To improve ferroptosis-induced treatment of HCC, we constructed sorafenib (sor)-loaded MIL-101(Fe) nanoparticles (NPs) [MIL-101(Fe)@sor] and evaluated the efficacy of ferroptosis-based HCC therapy after co-administration with the iRGD peptide both in vitro and in vivo. Results The prepared MIL-101(Fe) NPs have several promising characteristics including drug-loading, controllable release, peroxidase activity, biocompatibility, and T2 magnetic resonance imaging ability. MIL-101(Fe)@sor NPs significantly induced ferroptosis in HepG2 cells, increased the levels of lipid peroxidation and malondialdehyde, and reduced those of glutathione and glutathione peroxidase 4 (GPX-4). The in vivo results showed that the MIL-101(Fe)@sor NPs significantly inhibited tumor progression and decreased GPX-4 expression levels, with negligible long-term toxicity. Meanwhile, co-administration of MIL-101(Fe)@sor NPs with iRGD significantly accelerated ferroptosis. Conclusion Our findings suggest that MIL-101(Fe)@sor NPs co-administered with iRGD are a promising strategy for inducing HCC ferroptosis.
Collapse
Affiliation(s)
- Xianchuang Liu
- Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xinyang Zhu
- Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xun Qi
- Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ke Xu
- Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
5
|
Kang S, Lee S, Park S. iRGD Peptide as a Tumor-Penetrating Enhancer for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020; 12:E1906. [PMID: 32847045 PMCID: PMC7563641 DOI: 10.3390/polym12091906] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The unique structure and physiology of a tumor microenvironment impede intra-tumoral penetration of chemotherapeutic agents. A novel iRGD peptide that exploits the tumor microenvironment can activate integrin-dependent binding to tumor vasculatures and neuropilin-1 (NRP-1)-dependent transport to tumor tissues. Recent studies have focused on its dual-targeting ability to achieve enhanced penetration of chemotherapeutics for the efficient eradication of cancer cells. Both the covalent conjugation and the co-administration of iRGD with chemotherapeutic agents and engineered delivery vehicles have been explored. Interestingly, the iRGD-mediated drug delivery also enhances penetration through the blood-brain barrier (BBB). Recent studies have shown its synergistic effect with BBB disruptive techniques. The efficacy of immunotherapy involving immune checkpoint blockades has also been amplified by using iRGD as a targeting moiety. In this review, we presented the recent advances in iRGD technology, focusing on cancer treatment modalities, including the current clinical trials using iRGD. The iRGD-mediated nano-carrier system could serve as a promising strategy in drug delivery to the deeper tumor regions, and be combined with various therapeutic interventions due to its novel targeting ability.
Collapse
Affiliation(s)
| | | | - Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea; (S.K.); (S.L.)
| |
Collapse
|
6
|
Confeld MI, Mamnoon B, Feng L, Jensen-Smith H, Ray P, Froberg J, Kim J, Hollingsworth MA, Quadir M, Choi Y, Mallik S. Targeting the Tumor Core: Hypoxia-Responsive Nanoparticles for the Delivery of Chemotherapy to Pancreatic Tumors. Mol Pharm 2020; 17:2849-2863. [PMID: 32521162 DOI: 10.1021/acs.molpharmaceut.0c00247] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), early onset of hypoxia triggers remodeling of the extracellular matrix, epithelial-to-mesenchymal transition, increased cell survival, the formation of cancer stem cells, and drug resistance. Hypoxia in PDAC is also associated with the development of collagen-rich, fibrous extracellular stroma (desmoplasia), resulting in severely impaired drug penetration. To overcome these daunting challenges, we created polymer nanoparticles (polymersomes) that target and penetrate pancreatic tumors, reach the hypoxic niches, undergo rapid structural destabilization, and release the encapsulated drugs. In vitro studies indicated a high cellular uptake of the polymersomes and increased cytotoxicity of the drugs under hypoxia compared to unencapsulated drugs. The polymersomes decreased tumor growth by nearly 250% and significantly increased necrosis within the tumors by 60% in mice compared to untreated controls. We anticipate that these polymer nanoparticles possess a considerable translational potential for delivering drugs to solid hypoxic tumors.
Collapse
Affiliation(s)
- Matthew I Confeld
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Babak Mamnoon
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Li Feng
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Heather Jensen-Smith
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Priyanka Ray
- Coatings and Polymeric Materials Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - James Froberg
- Physics Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jiha Kim
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Michael A Hollingsworth
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mohiuddin Quadir
- Coatings and Polymeric Materials Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Yongki Choi
- Physics Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Sanku Mallik
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
7
|
iRGD: A Promising Peptide for Cancer Imaging and a Potential Therapeutic Agent for Various Cancers. JOURNAL OF ONCOLOGY 2019; 2019:9367845. [PMID: 31346334 PMCID: PMC6617877 DOI: 10.1155/2019/9367845] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Poor penetration into the tumor parenchyma and the reduced therapeutic efficacy of anticancer drugs and other medications are the major problems in tumor treatment. A new tumor-homing and penetrating peptide, iRGD (CRGDK/RGPD/EC), can be effectively used to combine and deliver imaging agents or anticancer drugs into tumors. The different “vascular zip codes” expressed in different tissues can serve as targets for docking-based (synaptic) delivery of diagnostic and therapeutic molecules. αv-Integrins are abundantly expressed in the tumor vasculature, where they are recognized by peptides containing the RGD integrin recognition motif. The iRGD peptide follows a multistep tumor-targeting process: First, it is proteolytically cleaved to generate the CRGDK fragment by binding to the surface of cells expressing αv integrins (αvβ3 and αvβ5). Then, the fragment binds to neuropilin-1 and penetrates the tumor parenchyma more deeply. Compared with conventional RGD peptides, the affinity of iRGD for αv integrins is in the mid to low nanomolar range, and the CRGDK fragment has a stronger affinity for neuropilin-1 than that for αv integrins because of the C-terminal exposure of a conditional C-end Rule (CendR) motif (R/KXXR/K), whose receptor proved to be neuropilin-1. Consequently, these advantages facilitate the transfer of CRGDK fragments from integrins to neuropilin-1 and consequently deeper penetration into the tumor. Due to its specific binding and strong affinity, the iRGD peptide can deliver imaging agents and anticancer drugs into tumors effectively and deeply, which is useful in detecting the tumor, blocking tumor growth, and inhibiting tumor metastasis. This review aims to focus on the role of iRGD in the imaging and treatment of various cancers.
Collapse
|
8
|
Yu SL, Koo H, Lee HY, Yeom YI, Lee DC, Kang J. Recombinant cell-permeable HOXA9 protein inhibits NSCLC cell migration and invasion. Cell Oncol (Dordr) 2019; 42:275-285. [DOI: 10.1007/s13402-019-00424-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 11/28/2022] Open
|
9
|
Hu C, Huang Y, Chen Y. Targeted Modification of the Cationic Anticancer Peptide HPRP-A1 with iRGD To Improve Specificity, Penetration, and Tumor-Tissue Accumulation. Mol Pharm 2019; 16:561-572. [PMID: 30592418 DOI: 10.1021/acs.molpharmaceut.8b00854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The chimeric peptide HPRP-A1-iRGD, composed of a chemically conjugated tumor-homing/penetration domain (iRGD) and a cationic anticancer peptide domain (HPRP-A1), was used to study the effect of targeted modification to enhance the peptide's specificity, penetration, and tumor accumulation ability. The iRGD domain exhibits tumor-targeting and tumor-penetrating activities by specifically binding to the neuropilin-1 receptor. Acting as a homing/penetration domain, iRGD contributed to enhancing the tumor selectivity, permeability, and targeting of HPRP-A1 by targeted receptor dependence. As the anticancer active domain, HPRP-A1 kills cancer cells by disrupting the cell membrane and inducing apoptosis. The in vitro membrane selectivity toward cancer cells, such as A549 and MDA-MB-23, and human umbilical vein endothelial cells (HUVECs), normal cells, the penetrability assessment in the A549 3D multiple cell sphere model, and the in vivo tumor-tissue accumulation test in the A549 xenograft model indicated that HPRP-A1-iRGD exhibited significant increases in the selectivity toward membranes that highly express NRP-1, the penetration distance in 3D multiple cell spheres, and the accumulation in tumor tissues after intravenous injection, compared with HPRP-A1 alone. The mechanism of the enhanced targeting ability of HPRP-A1-iRGD was demonstrated by the pull-down assay and biolayer interferometry test, which indicated that the chimeric peptide could specifically bind to the neuropilin-1 protein with high affinity. We believe that chemical conjugation with iRGD to increase the specificity, penetration, and tumor-tissue accumulation of HPRP-A1 is an effective and promising approach for the targeted modification of peptides as anticancer therapeutics.
Collapse
Affiliation(s)
- Cuihua Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130021 , China.,School of Life Sciences , Jilin University , Changchun 130021 , China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130021 , China.,School of Life Sciences , Jilin University , Changchun 130021 , China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130021 , China.,School of Life Sciences , Jilin University , Changchun 130021 , China
| |
Collapse
|
10
|
Yang J, Yin H, Yang J, Wei Y, Fang L, Chai D, Zhang Q, Zheng J. Tumor-Penetrating Peptide Enhances Antitumor Effects of IL-24 Against Prostate Cancer. Transl Oncol 2018; 12:453-461. [PMID: 30580153 PMCID: PMC6302246 DOI: 10.1016/j.tranon.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
The interleukin-24 (IL-24), a member of the IL-10-related cytokine gene family, is well known for its tumor suppressor activity in a broad spectrum of human tumors without damaging normal cells. However, poor tumor penetration remains a key problem for the efficacy of IL-24 as a treatment. iRGD is a novel tumor-specific peptide with unique tumor-penetrating and cell-internalizing properties. To enhance the tumor-penetrating and antitumor effects of IL-24, we engineered a recombinant protein consisting of the IL-24 fused to iRGD, which was named IL-24-iRGD. The aim of the present study was to investigate the antitumor effects of IL-24-iRGD in prostate cancer cells in vitro and in vivo. It was observed that IL-24-iRGD induced cell apoptosis, suppressed cell growth of PC-3 in vitro, and promoted protein penetration into tumors in vivo, whereas it had no effect on normal cell line RWPE-1. Then, PC-3 cells were subcutaneously injected into nude mice, and these tumor-bearing mice were administered with IL-24, IL-24-iRGD, or PBS via the tail vein. The IL-24- and IL-24-iRGD-treated groups exhibited tumor growth inhibition rates of 38.6% and 65.6%, respectively, when compared with the PBS-treated group. Besides, cell apoptosis was examined by TdT-mediated dUTP nick end labeling, and the expression of cleaved caspase-3 was analyzed by immunohistochemical staining. The results demonstrated that IL-24-iRGD induced apoptosis and inhibited the growth of PC-3 cells to a significantly greater extent when compared with IL-24 treatment alone. It may provide an improved strategy for antitumor therapy and the clinical treatment of prostate cancer.
Collapse
Affiliation(s)
- Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Hong Yin
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; Center of Radiotherapy of The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; Center of Radiotherapy of The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yanhong Wei
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; Center of Cancer of The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China.
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; Center of Radiotherapy of The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
11
|
Hu C, Chen X, Huang Y, Chen Y. Co‐administration of kla‐TAT peptide and iRGD to enhance the permeability on A549 3D multiple sphere cells and accumulation on xenograft mice. Chem Biol Drug Des 2018; 92:1567-1575. [DOI: 10.1111/cbdd.13323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Cuihua Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of EducationJilin University Changchun China
- College of Life SciencesJilin University Changchun China
| | - Xiaolong Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of EducationJilin University Changchun China
- College of Life SciencesJilin University Changchun China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of EducationJilin University Changchun China
- College of Life SciencesJilin University Changchun China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of EducationJilin University Changchun China
- College of Life SciencesJilin University Changchun China
| |
Collapse
|
12
|
Doxorubicin-triggered self-assembly of native amphiphilic peptides into spherical nanoparticles. Oncotarget 2018; 7:58445-58458. [PMID: 27533248 PMCID: PMC5295442 DOI: 10.18632/oncotarget.11213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/19/2016] [Indexed: 01/30/2023] Open
Abstract
In this study, we designed and fabricated self-assembly nanospheres, which consisted of a P45 peptide and doxorubicin (Dox). P45 is a hybrid peptide composed of an Arg-Gly-Asp motif linked to the human matrilin-1 C-terminal domain by a serine linker. The fabricated nanospheres had a uniform mulberry-like spherical shape, a diameter of 63 nm, excellent polydispersity, and high Dox drug-loading efficiency. In the presence of the RGD motif, the Dox/P45 nanospheres could specifically target A549 cells, which have high integrin αvβ3 expression. Confocal laser scanning microscopy and flow cytometry results showed the enhanced cellular uptake of Dox/P45, and the CCK8 assay indicated the low cytotoxicity of the nanospheres to normal human embryonic kidney 293 cells. Furthermore, the fabricated nanospheres were stable in a physiological environment, but they disassembled and exhibited a rapid Dox release in an acidic atmosphere, allowing for a specific pH-sensitive release into cytosol after cellular uptake. These results suggest that natural amphiphilic peptides can be used as carriers of nanodrugs for targeting delivery as well as controlled drug release for cancer therapy.
Collapse
|
13
|
Hu C, Chen X, Huang Y, Chen Y. Co-administration of iRGD with peptide HPRP-A1 to improve anticancer activity and membrane penetrability. Sci Rep 2018; 8:2274. [PMID: 29396568 PMCID: PMC5797073 DOI: 10.1038/s41598-018-20715-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/22/2018] [Indexed: 02/08/2023] Open
Abstract
To improve the specificity and penetration of anticancer peptides against tumors, in this study, we examined the effects of co-administration of the membrane-active peptide HPRP-A1 and the tumor homing/penetrating peptide iRGD. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide targeting to αvβ3 integrins and neuropilin-1 (NRP-1) receptors, which show high expression in many tumor cells. The anticancer activity, cancer specificity and penetration activity in vitro and in vivo of the co-administered peptides were examined on 2D monolayer cells, 3D multi-cellular spheroids (MCS) and xenograft nude mice. Co-administration of iRGD and HPRP-A1 exhibited stronger anticancer activity and tumor specificity against A549 non-small cell lung cancer cells with NRP-1 receptor overexpression compared with HPRP-A1 alone. A549 cells showed uptake of the peptide combination and destruction of the integrity of the cell membrane, as well as adherence to the mitochondrial net, resulting in induction of apoptosis by a caspase-dependent pathway. The iRGD peptide dramatically increased the penetration depth of HPRP-A1 on A549 MCS and anticancer efficacy in an A549 xenograft mouse model. Our results suggest that the co-administration strategy of anticancer and penetrating peptides could be a potential therapeutic approach for cancer treatment in clinical practice.
Collapse
Affiliation(s)
- Cuihua Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China
- College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Xiaolong Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China
- College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China
- College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China.
- College of Life Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
14
|
Ghosh D, Peng X, Leal J, Mohanty R. Peptides as drug delivery vehicles across biological barriers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018; 48:89-111. [PMID: 29963321 PMCID: PMC6023411 DOI: 10.1007/s40005-017-0374-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/25/2017] [Indexed: 12/15/2022]
Abstract
Peptides are small biological molecules that are attractive in drug delivery and materials engineering for applications including therapeutics, molecular building blocks and cell-targeting ligands. Peptides are small but can possess complexity and functionality as larger proteins. Due to their intrinsic properties, peptides are able to overcome the physiological and transport barriers presented by diseases. In this review, we discuss the progress of identifying and using peptides to shuttle across biological barriers and facilitate transport of drugs and drug delivery systems for improved therapy. Here, the focus of this review is on rationally designed, phage display peptides, and even endogenous peptides as carriers to penetrate biological barriers, specifically the blood-brain barrier(BBB), the gastrointestinal tract (GI), and the solid tumor microenvironment (T). We will discuss recent advances of peptides as drug carriers in these biological environments. From these findings, challenges and potential opportunities to iterate and improve peptide-based approaches will be discussed to translate their promise towards the clinic to deliver drugs for therapeutic efficacy.
Collapse
Affiliation(s)
- Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Xiujuan Peng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Rashmi Mohanty
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| |
Collapse
|
15
|
Kim SM, Faix PH, Schnitzer JE. Overcoming key biological barriers to cancer drug delivery and efficacy. J Control Release 2017; 267:15-30. [PMID: 28917530 PMCID: PMC8756776 DOI: 10.1016/j.jconrel.2017.09.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
Abstract
Poor delivery efficiency continues to hamper the effectiveness of cancer therapeutics engineered to destroy solid tumors using different strategies such as nanocarriers, targeting agents, and matching treatments to specific genetic mutations. All contemporary systemic anti-cancer agents are dependent upon passive transvascular mechanisms for their delivery into solid tumors. The therapeutic efficacies of our current drug arsenal could be significantly improved with an active delivery strategy. Here, we discuss how drug delivery and therapeutic efficacy are greatly hindered by barriers presented by the vascular endothelial cell layer and by the aberrant nature of tumor blood vessels in general. We describe mechanisms by which molecules cross endothelial cell (EC) barriers in normal tissues and in solid tumors, including paracellular and transcellular pathways that enable passive or active transport. We also discuss specific obstacles to drug delivery that make solid tumors difficult to treat, as well strategies to overcome them and enhance drug penetration. Finally, we describe the caveolae pumping system, a promising active transport alternative to passive drug delivery across the endothelial cell barrier. Each strategy requires further testing to define its therapeutic applicability and clinical utilities.
Collapse
Affiliation(s)
- Susy M Kim
- Proteogenomics Research Institute for Systems Medicine, 505 Coast Blvd. South, La Jolla, CA 92037, United States
| | - Peggy H Faix
- Proteogenomics Research Institute for Systems Medicine, 505 Coast Blvd. South, La Jolla, CA 92037, United States
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, 505 Coast Blvd. South, La Jolla, CA 92037, United States.
| |
Collapse
|
16
|
Xu J, Tian K, Zhang H, Li L, Liu H, Liu J, Zhang Q, Zheng J. Chimeric antigen receptor-T cell therapy for solid tumors require new clinical regimens. Expert Rev Anticancer Ther 2017; 17:1099-1106. [PMID: 29048935 DOI: 10.1080/14737140.2017.1395285] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Chimeric antigen receptor modified T cell (CAR-T) therapy has achieved encouraging breakthroughs in the treatment of hematological malignancies. Nevertheless, this success has not yet been extrapolated to solid tumors. This review focuses on new clinical regimens that could improve the therapeutic efficacy of CAR-T in solid tumors. Areas covered: Herein, the authors reviewed recent clinical trials using CAR-T therapies for the treatment of solid tumors. Specifically, this review covered the following areas: (1) the current status of CAR-T cells in the treatment of solid tumors; (2) the major factors constraining the efficacy of CAR-T cells in solid tumors; and (3) opinions regarding the future of CAR-T as a treatment for solid tumors. Expert commentary: While some recent studies have shown promising results, the ultimate success of CAR-T therapies in solid tumor patients will require the following improvements to clinical regimens: (1) local delivery of CAR-T cells; (2) combination of CAR-T cells with chemotherapeutic drugs to treat metastatic tumors; (3) combination of CAR-T with immune checkpoint inhibitors; (4) combination therapy using CAR-T cells targeting two different antigens; and (5) the use of CAR-T as a strategy to prevent tumor recurrence and metastasis after radical resection.
Collapse
Affiliation(s)
- Jinjing Xu
- a Cancer Institute , Xuzhou Medical University , Xuzhou , Jiangsu , China.,b Galactophore Department , Jiangsu Huai'an Maternity and Children Hospital , Huai'an , Jiangsu , China
| | - Kang Tian
- a Cancer Institute , Xuzhou Medical University , Xuzhou , Jiangsu , China
| | - Haixu Zhang
- a Cancer Institute , Xuzhou Medical University , Xuzhou , Jiangsu , China
| | - Liantao Li
- a Cancer Institute , Xuzhou Medical University , Xuzhou , Jiangsu , China
| | - Hongyan Liu
- a Cancer Institute , Xuzhou Medical University , Xuzhou , Jiangsu , China
| | - Jingjie Liu
- a Cancer Institute , Xuzhou Medical University , Xuzhou , Jiangsu , China
| | - Qing Zhang
- a Cancer Institute , Xuzhou Medical University , Xuzhou , Jiangsu , China
| | - Junnian Zheng
- a Cancer Institute , Xuzhou Medical University , Xuzhou , Jiangsu , China.,c Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute , Xuzhou Medical University , Xuzhou , Jiangsu , China
| |
Collapse
|
17
|
Liu L, Zhang C, Li Z, Wang C, Bi J, Yin S, Wang Q, Yu R, Liu Y, Su Z. Albumin Binding Domain Fusing R/K-X-X-R/K Sequence for Enhancing Tumor Delivery of Doxorubicin. Mol Pharm 2017; 14:3739-3749. [PMID: 28950700 DOI: 10.1021/acs.molpharmaceut.7b00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For the purpose of improving the tumor delivery of doxorubicin (DOX), a kind of peptide-DOXO conjugate was designed and prepared, in which the peptide composed of an albumin-binding domain (ABD) and a tumor-specific internalizing sequence (RGDK or RPARPAR) was conjugated to a (6-maleimidocaproyl) hydrazone derivative of doxorubicin (DOXO-EMCH). The doxorubicin uptake by lung cancer cell line of A549 evidenced that the conjugates are capable of being internalized through a tumor-specific sequence mediated manner, and the intracellular imaging of distribution in A549 cell demonstrated that the conjugated doxorubicin can be delivered to the cell nucleus. The A549 cell cytotoxicity of peptide-DOXO conjugates was presented with IC50 values and shown in the range of about 9-11 μM. Pharmacokinetics study revealed that both conjugates exhibited nearly 5.5 times longer half-time than DOX, and about 4 times than DOXO-EMCH. The in vivo growth inhibitions of the two peptide-DOXO conjugates on BALB/c nude mice bearing A549 tumor (47.78% for ABD-RGDK-DOXO and 47.09% for ABD-RPARPAR-DOXO) were much stronger than that of doxorubicin and DOXO-EMCH (24.28% and 25.67% respectively) at a doxorubicin equivalent dose. Besides, the in vivo fluorescence imaging study confirmed that the peptide markedly increased the payload accumulation in tumor tissues and indicated that albumin binding domain fusing tumor-specific sequence effectively enhanced the tumor delivery of doxorubicin and thus improved its therapeutic potency.
Collapse
Affiliation(s)
- Liping Liu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Chun Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Zenglan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Chunyue Wang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Jingxiu Bi
- School of Chemical Engineering, The University of Adelaide , Adelaide, SA 5005, Australia
| | - Shuang Yin
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China.,School of Chemical Engineering, The University of Adelaide , Adelaide, SA 5005, Australia
| | - Qi Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Rong Yu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Yongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
18
|
Ma L, Chen Q, Ma P, Han MK, Xu Z, Kang Y, Xiao B, Merlin D. iRGD-functionalized PEGylated nanoparticles for enhanced colon tumor accumulation and targeted drug delivery. Nanomedicine (Lond) 2017; 12:1991-2006. [PMID: 28745123 DOI: 10.2217/nnm-2017-0107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To enhance the tumor accumulation and targeted drug delivery for colon cancer therapy, iRGD peptide was introduced to the surface of PEGylated camptothecin-loaded nanoparticles (NPs). METHODS Cellular uptake, targeting specificity, biodistribution and antitumor capacity were evaluated. RESULTS The functionalization of iRGD facilitated tumor accumulation and cellular uptake of NPs by Colon-26 cells. Furthermore, the resultant iRGD-PEG-NPs remarkably improved the therapeutic efficacy of camptothecin in vitro and in vivo by inducing a higher degree of tumor cell apoptosis compared with PEG-NPs. CONCLUSION iRGD-PEG-NP is a desired drug delivery system to facilitate the drug accumulation in orthotopic colon tumor tissues and further drug internalization by colon cancer cells.
Collapse
Affiliation(s)
- Lijun Ma
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Qiubing Chen
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Panpan Ma
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Zhigang Xu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Yuejun Kang
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Bo Xiao
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China.,Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
19
|
Yin H, Yang J, Zhang Q, Yang J, Wang H, Xu J, Zheng J. iRGD as a tumor‑penetrating peptide for cancer therapy (Review). Mol Med Rep 2017; 15:2925-2930. [PMID: 28358432 DOI: 10.3892/mmr.2017.6419] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
As a tumor-targeting and ‑penetrating peptide, iRGD binds to αv integrins and neuropilin‑1 receptors, which are expressed at high levels on tumor cells and the surfaces of vasculature. Subsequently, iRGD penetrates deep into the tumor parenchyma with antitumor drugs, imaging agents, immune modulators and biological products. These substances are either chemically linked to the peptide or co‑injected with the peptide. The iRGD peptide can be readily synthesized, exhibits significantly improved penetration, compared with traditional peptides, and can effectively inhibit tumor metastasis. Therefore, the peptide is now used widely for the diagnosis and treatment of cancer. However, whether the peptide is able to promote the entry of drugs into non‑targeted cells remains to be fully elucidated. In this review, an overview of iRGD is presented, focusing on its identification, mechanism of action and previous studies on its roles in various types of cancer. Studies in previous years have demonstrated the potential of the iRGD protein for tumors diagnosis and targeted treatment, which warrants further investigation.
Collapse
Affiliation(s)
- Hong Yin
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Haiyu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jinjing Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
20
|
Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 2017; 110-111:3-12. [PMID: 27040947 PMCID: PMC5045823 DOI: 10.1016/j.addr.2016.03.008] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/03/2023]
Abstract
In vivo screening of phage libraries in tumor-bearing mice has been used to identify peptides that direct phage homing to a tumor. The power of in vivo phage screening is illustrated by the recent discovery of peptides with unique tumor-penetrating properties. These peptides activate an endocytic transport pathway related to but distinct from macropinocytosis. They do so through a complex process that involves binding to a primary, tumor-specific receptor, followed by a proteolytic cleavage, and binding to a second receptor. The second receptor, neuropilin-1 (or neuropilin-2) activates the transport pathway. This trans-tissue pathway, dubbed the C-end Rule (CendR) pathway, mediates the extravasation transport through extravascular tumor tissue of payloads ranging from small molecule drugs to nanoparticles. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. Targeted delivery with tumor-penetrating peptides has been shown to specifically increase the accumulation of drugs, antibodies and nanotherapeutics in experimental tumors in vivo, and in human tumors ex vivo. Remarkably the payload does not have to be coupled to the peptide; the peptide activates a bulk transport system that sweeps along a drug present in the blood. Treatment studies in mice have shown improved anti-tumor efficacy and less damage to normal tissues with drugs ranging from traditional chemotherapeutics to antibodies, and to nanoparticle drugs.
Collapse
Affiliation(s)
- Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
21
|
Mantis C, Kandela I, Aird F. Replication Study: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. eLife 2017; 6:e17584. [PMID: 28100395 PMCID: PMC5245960 DOI: 10.7554/elife.17584] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/30/2016] [Indexed: 11/13/2022] Open
Abstract
In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Kandela et al., 2015) that described how we intended to replicate selected experiments from the paper "Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs" (Sugahara et al., 2010). Here we report the results of those experiments. We found that coadministration with iRGD peptide did not have an impact on permeability of the chemotherapeutic agent doxorubicin (DOX) in a xenograft model of prostate cancer, whereas the original study reported that it increased the penetrance of this cancer drug (Figure 2B; Sugahara et al., 2010). Further, in mice bearing orthotopic 22Rv1 human prostate tumors, we did not find a statistically significant difference in tumor weight for mice treated with DOX and iRGD compared to DOX alone, whereas the original study reported a decrease in tumor weight when DOX was coadministered with iRGD (Figure 2C; Sugahara et al., 2010). In addition, we did not find a statistically significant difference in TUNEL staining in tumor tissue between mice treated with DOX and iRGD compared to DOX alone, while the original study reported an increase in TUNEL positive staining with iRGD coadministration (Figure 2D; Sugahara et al., 2010). Similar to the original study (Supplemental Figure 9A; Sugahara et al., 2010), we did not observe an impact on mouse body weight with DOX and iRGD treatment. Finally, we report meta-analyses for each result.
Collapse
Affiliation(s)
- Christine Mantis
- Developmental Therapeutics Core, Northwestern University, Evanston, United States
| | - Irawati Kandela
- Developmental Therapeutics Core, Northwestern University, Evanston, United States
| | - Fraser Aird
- Developmental Therapeutics Core, Northwestern University, Evanston, United States
| |
Collapse
|
22
|
Song J, Feng L, Zhong R, Xia Z, Zhang L, Cui L, Yan H, Jia X, Zhang Z. Icariside II inhibits the EMT of NSCLC cells in inflammatory microenvironment via down-regulation of Akt/NF-κB signaling pathway. Mol Carcinog 2016; 56:36-48. [DOI: 10.1002/mc.22471] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine; Nanjing University of Chinese Medicine; Jiangsu Nanjing China
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Liang Feng
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Rongling Zhong
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Zhi Xia
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Li Zhang
- Clinical Laboratory; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Li Cui
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Hongmei Yan
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine; Nanjing University of Chinese Medicine; Jiangsu Nanjing China
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Zhenhai Zhang
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| |
Collapse
|