1
|
Wu T, Chen Z, Liu X, Wu X, Wang Z, Guo W. Targeting RSK2 in Cancer Therapy: A Review of Natural Products. Anticancer Agents Med Chem 2025; 25:35-41. [PMID: 39248063 DOI: 10.2174/0118715206329546240830055233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
P90 ribosomal S6 kinase 2 (RSK2) is an important member of the RSK family, functioning as a kinase enzyme that targets serine and threonine residues and contributes to regulating cell growth. RSK2 comprises two major functional domains: the N-terminal kinase domain (NTKD) and the C-terminal kinase domain (CTKD). RSK2 is situated at the lower end of the Mitogen-activated protein kinases (MAPK) signaling pathway and is phosphorylated by the direct regulation of Extracellular signal-regulating kinase (ERK). RSK2 has been found to play a pivotal role in regulating cell proliferation, apoptosis, metastasis, and invasion in various cancer cells, including breast cancer and melanoma. Consequently, RSK2 has emerged as a potential target for the development of anti-cancer drugs. Presently, several inhibitors are undergoing clinical trials, such as SL0101. Current inhibitors of RSK2 mainly bind to its NTK or CTK domains and inhibit their activity. Natural products serve as an important resource for drug development and screening and with the potential to identify RSK2 inhibitors. This article discusses how RSK2 influences tumor cell proliferation, prevents apoptosis, arrests the cell cycle process, and promotes cancer metastasis through its regulation of downstream pathways or interaction with other biological molecules. Additionally, the paper also covers recent research progress on RSK2 inhibitors and the mechanisms of action of natural RSK2 inhibitors on tumors. This review emphasizes the significance of RSK2 as a potential therapeutic target in cancer and offers a theoretical basis for the clinical application of RSK2 inhibitors.
Collapse
Affiliation(s)
- Tianhui Wu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ziming Chen
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Xin Liu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Xinyan Wu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Zhaobo Wang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Weiqiang Guo
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
2
|
Muthumanickam S, Ramachandran B, Jeyakanthan J, Jegatheswaran S, Pandi B. Designing a novel drug-drug conjugate as a prodrug for breast cancer therapy: in silico insights. Mol Divers 2024:10.1007/s11030-024-10886-w. [PMID: 38833125 DOI: 10.1007/s11030-024-10886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/06/2024]
Abstract
Breast cancer (BC) poses a significant global health threat, necessitating innovative therapeutic approaches. The ribosomal s6 kinase 2 (RSK2) has emerged as a promising target due to its roles in cell proliferation and survival. This study proposes a drug-drug conjugate prodrug comprising Methotrexate (hydrophobic) and Capecitabine (hydrophilic) for BC treatment. In silico approaches, including Molecular Docking, Molecular Dynamics Simulations, MM-PBSA, ADME, and DFT calculations were employed to evaluate the prodrug's potential. The designed MET-CAP ligand exhibits a robust docking score (-8.980 kcal/mol), superior binding affinity (-53.16 kcal/mol), and stable dynamic behavior (0.62 nm) compared to native ligands. The DFT results reveal intramolecular charge transfer in MET-CAP (HLG = 0.09 eV), indicating its potential as a BC inhibitor. ADME analysis suggests satisfactory pharmaceutically relevant properties. The results indicate that the conjugated MET-CAP ligand exhibits favorable binding characteristics, stability, and pharmaceutically relevant properties, making it a potential RSK2 inhibitor for BC therapy. The multifaceted approach provides insights into binding interactions, stability, and pharmacokinetic properties, laying the foundation for further experimental validation and potential clinical development.
Collapse
Affiliation(s)
| | - Balajee Ramachandran
- Department of Pharmacology, Saveetha Institute of Technical and Medical Sciences (SIMATS), Chennai, 600 077, India
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | | - Boomi Pandi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
3
|
In Silico Studies of Tumor Targeted Peptide-Conjugated Natural Products for Targeting Over-Expressed Receptors in Breast Cancer Cells Using Molecular Docking, Molecular Dynamics and MMGBSA Calculations. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, in silico studies were carried out for the design of diterpene and polyphenol-peptide conjugates to potentially target over-expressed breast tumor cell receptors. Four point mutations were induced into the known tumor-targeting peptide sequence YHWYGYTPQN at positions 1, 2, 8 and 10, resulting in four mutated peptides. Each peptide was separately conjugated with either chlorogenate, carnosate, gallate, or rosmarinate given their known anti-tumor activities, creating dual targeting compounds. Molecular docking studies were conducted with the epidermal growth factor receptor (EGFR), to which the original peptide sequence is known to bind, as well as the estrogen receptor (ERα) and peroxisome proliferator-activated receptor (PPARα) using both Autodock Vina and FireDock. Based on docking results, peptide conjugates and peptides were selected and subjected to molecular dynamics simulations. MMGBSA calculations were used to further probe the binding energies. ADME studies revealed that the compounds were not CYP substrates, though most were Pgp substrates. Additionally, most of the peptides and conjugates showed MDCK permeability. Our results indicated that several of the peptide conjugates enhanced binding interactions with the receptors and resulted in stable receptor-ligand complexes; Furthermore, they may successfully target ERα and PPARα in addition to EGFR and may be further explored for synthesis and biological studies for therapeutic applications.
Collapse
|
4
|
Role of Phytochemicals in Cancer Prevention. Int J Mol Sci 2019; 20:ijms20204981. [PMID: 31600949 PMCID: PMC6834187 DOI: 10.3390/ijms20204981] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
The use of synthetic, natural, or biological agents to minimize the occurrence of cancer in healthy individuals is defined as cancer chemoprevention. Chemopreventive agents inhibit the development of cancer either by impeding DNA damage, which leads to malignancy or by reversing or blocking the division of premalignant cells with DNA damage. The benefit of this approach has been demonstrated in clinical trials of breast, prostate, and colon cancer. The continuous increase in cancer cases, failure of conventional chemotherapies to control cancer, and excessive toxicity of chemotherapies clearly demand an alternative approach. The first trial to show benefit of chemoprevention was undertaken in breast cancer patients with the use of tamoxifen, which demonstrated a significant decrease in invasive breast cancer. The success of using chemopreventive agents for protecting the high risk populations from cancer indicates that the strategy is rational and promising. Dietary components such as capsaicin, cucurbitacin B, isoflavones, catechins, lycopenes, benzyl isothiocyanate, phenethyl isothiocyanate, and piperlongumine have demonstrated inhibitory effects on cancer cells indicating that they may serve as chemopreventive agents. In this review, we have addressed the mechanism of chemopreventive and anticancer effects of several natural agents.
Collapse
|
5
|
Nakano S, Megro SI, Hase T, Suzuki T, Isemura M, Nakamura Y, Ito S. Computational Molecular Docking and X-ray Crystallographic Studies of Catechins in New Drug Design Strategies. Molecules 2018; 23:E2020. [PMID: 30104534 PMCID: PMC6222539 DOI: 10.3390/molecules23082020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 12/16/2022] Open
Abstract
Epidemiological and laboratory studies have shown that green tea and green tea catechins exert beneficial effects on a variety of diseases, including cancer, metabolic syndrome, infectious diseases, and neurodegenerative diseases. In most cases, (-)-epigallocatechin gallate (EGCG) has been shown to play a central role in these effects by green tea. Catechins from other plant sources have also shown health benefits. Many studies have revealed that the binding of EGCG and other catechins to proteins is involved in its action mechanism. Computational docking analysis (CMDA) and X-ray crystallographic analysis (XCA) have provided detailed information on catechin-protein interactions. Several of these studies have revealed that the galloyl moiety anchors it to the cleft of proteins through interactions with its hydroxyl groups, explaining the higher activity of galloylated catechins such as EGCG and epicatechin gallate than non-galloylated catechins. In this paper, we review the results of CMDA and XCA of EGCG and other plant catechins to understand catechin-protein interactions with the expectation of developing new drugs with health-promoting properties.
Collapse
Affiliation(s)
- Shogo Nakano
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| | - Shin-Ichi Megro
- Biological Science Research, Kao Corporation, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | - Tadashi Hase
- Research and Development, Core Technology, Kao Corporation, Sumida, Tokyo 131-8501, Japan.
| | - Takuji Suzuki
- Faculty of Education, Art and Science, Yamagata University, Yamagata 990-8560, Japan.
| | - Mamoru Isemura
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| | - Yoriyuki Nakamura
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| | - Sohei Ito
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| |
Collapse
|
6
|
Yao K, Peng C, Zhang Y, Zykova TA, Lee MH, Lee SY, Rao E, Chen H, Ryu J, Wang L, Zhang Y, Gao G, He W, Ma WY, Liu K, Bode AM, Dong Z, Li B, Dong Z. RSK2 phosphorylates T-bet to attenuate colon cancer metastasis and growth. Proc Natl Acad Sci U S A 2017; 114:12791-12796. [PMID: 29133416 PMCID: PMC5715759 DOI: 10.1073/pnas.1710756114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metastasis is a major cause of cancer-related deaths. Approximately 80% of patients with colorectal cancer develop liver metastasis and 20% develop lung metastasis. We found that at different stages of colon cancer, IFNγ secretion from peripheral blood mononuclear cells was decreased compared with healthy controls. The ribosomal S6 kinase (RSK) family of kinases has multiple cellular functions, and we examined their roles in this observed IFNγ decrease. Flow cytometry analysis of wild-type (WT) and RSK2 knockout (KO) mice revealed significantly lower levels of IFNγ in the RSK2 KO mice compared with the WT mice. Since IFNγ is a component of immunity, which contributes to protection against metastatic carcinomas, we conducted a colon cancer liver metastasis experiment. We found significantly greater metastasis in RSK2 KO mice compared with WT mice. Transcription factor T-bet can directly activate Ifnγ gene transcription. In vitro kinase assay results showed that RSK2 phosphorylated T-bet at serines 498 and 502. We show that phosphorylation of T-bet by RSK2 is required for IFNγ expression, because knockdown of RSK2 expression or overexpression of mutant T-bet reduces IFNγ mRNA expression. To verify the function of the phosphorylation sites, we overexpressed a constitutively active mutant T-bet (S498E/S502E) in bone marrow. Mutant T-bet restored the IFNγ mRNA levels and dramatically reduced the metastasis rate in these mice. Overall, these results indicate that phosphorylation of T-bet is required for the inhibition of colon cancer metastasis and growth through a positive regulation of RSK2/T-bet/IFNγ signaling.
Collapse
Affiliation(s)
- Ke Yao
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Cong Peng
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuwen Zhang
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | | | - Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Sung-Young Lee
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Enyu Rao
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Lei Wang
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Yi Zhang
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Gao
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wei He
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Wei-Ya Ma
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Kangdong Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Ziming Dong
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Li
- The Hormel Institute, University of Minnesota, Austin, MN 55912;
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912;
| |
Collapse
|
7
|
Molecular aspects of cancer chemopreventive and therapeutic efficacies of tea and tea polyphenols. Nutrition 2017; 43-44:8-15. [DOI: 10.1016/j.nut.2017.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
|
8
|
Kim JE, Heo YS, Lee KW. Osajin Inhibits Solar UV-Induced Cyclooxygenase-2 Expression Through Direct Inhibition of RSK2. J Cell Biochem 2017; 118:4080-4087. [PMID: 28409880 DOI: 10.1002/jcb.26063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/13/2017] [Indexed: 01/10/2023]
Abstract
Solar ultraviolet light (sUV) has been shown to promote the development of skin disorders including inflammation, photoaging, and skin carcinogenesis. Osajin is the major bioactive isoflavone present in the fruit of Maclura pomifera, commonly referred to as the Osage orange. In this study, we observed that osajin inhibited sUV-induced cyclooxygenase (COX)-2 protein expression in both HaCaT and JB6 cells. COX-2 is a major mediator of skin inflammation. sUV activated the transcription factors nuclear factor-κB and activator protein-1 which, in turn, induces COX-2 expression. Osajin inhibited transactivation of these transcription factors. We identified RSK2 as an inhibitory target of osajin by screening against 68 kinases related to inflammation. Osajin binds with RSK2 directly in an ATP-competitive manner. Computer modeling simulated a plausible binding orientation between osajin and RSK2. Osajin inhibited sUV-induced phosphorylation of histone H3, a substrate of RSK2. However, sUV-induced phosphorylation of extracellular signal-regulated kinases, p38 kinase, c-Jun N-terminal kinase and Akt, which are signaling factors upstream of RSK2, was unchanged in the presence of osajin. The anti-inflammatory effects and molecular mechanism of osajin suggest that it may have utility as a functional food for skin health and cosmetic ingredient. J. Cell. Biochem. 118: 4080-4087, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jong-Eun Kim
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang, Republic of Korea.,WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.,Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, Seoul, Republic of Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
(-)-Epigallocatechin Gallate Inhibits Asymmetric Dimethylarginine-Induced Injury in Human Brain Microvascular Endothelial Cells. Neurochem Res 2016; 41:1868-76. [PMID: 27038929 DOI: 10.1007/s11064-016-1898-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
(-)-Epigallocatechin gallate (EGCG) is the main polyphenol component of green tea (leaves of the Camellia sinensis plant). EGCG has been reported to protect human brain microvascular endothelial cells (HBMECs) against injury in several models. However, the exact mechanism is still unclear. In the current study we found that EGCG protected against asymmetric dimethylarginine (ADMA)-induced HBMEC injury, and inhibited ADMA-induced reactive oxygen species production and malondialdehyde expression. At the same time, we found that pretreatment with EGCG attenuated the upregulation of Bax and the downregulation of Bcl-2, thus confirming the cellular protective properties of EGCG against ADMA-induced apoptosis. Furthermore, we found that EGCG inhibited ADMA-induced phosphorylation of ERK1/2 and p-38, whose inhibitors relieved HBMEC injury. In conclusion, EGCG can protect against ADMA-induced HBMEC injury via the ERK1/2 and p38 MAPK pathways, which are involved in the underlying mechanisms of HBMEC injury in cerebral infarction.
Collapse
|