1
|
Yang X, Zhang Y, Liu Y, Wang Y, Zhou N. Fluorescence imaging of peripheral nerve function and structure. J Mater Chem B 2023; 11:10052-10071. [PMID: 37846619 DOI: 10.1039/d3tb01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Peripheral nerve injuries are common and can cause catastrophic consequences. Although peripheral nerves have notable regenerative capacity, full functional recovery is often challenging due to a number of factors, including age, the type of injury, and delayed healing, resulting in chronic disorders that cause lifelong miseries and significant financial burdens. Fluorescence imaging, among the various techniques, may be the key to overcome these restrictions and improve the prognosis because of its feasibility and dynamic real-time imaging. Intraoperative dynamic fluorescence imaging allows the visualization of the morphological structure of the nerve so that surgeons can reduce the incidence of medically induced injury. Axoplasmic transport-based neuroimaging allows the visualization of the internal transport function of the nerve, facilitating early, objective, and accurate assessment of the degree of regenerative repair, allowing early intervention in patients with poor recovery, thereby improving prognosis. This review briefly discusses peripheral nerve fluorescent dyes that have been reported or could potentially be employed, with a focus on their role in visualizing the nerve's function and anatomy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| | - Yumin Zhang
- Department of Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Yadong Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
2
|
Dang Z, Liu X, Du Y, Wang Y, Zhou D, Zhang Y, Zhu S. Ultra-Bright Heptamethine Dye Clusters Based on a Self-Adaptive Co-Assembly Strategy for NIR-IIb Biomedical Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306773. [PMID: 37713682 DOI: 10.1002/adma.202306773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Despite the wide range of applications of bright NIR-II polymethine scaffolds in biomedical imaging, their solvatochromism and aggregation-caused quenching (ACQ) effects in aqueous solutions limit their inherent brightness using traditional encapsulation methods, and effective hydrophilization strategies are still scarce. Here, a new set of Flav dyes is synthesized and PEGylated, followed by manufacturing DSPE@FlavP2000 nanoparticles using a self-adaptive co-assembly strategy to overcome these limitations. FlavP2000 can autonomously adjust its conformation when co-assembled with DSPE-PEG2000 , resulting in high-efficiency luminescence (≈44.9% fluorescence of Flav in DMSO). DSPE@FlavP2000 enables NIR-IIb (>1500 nm) angiography with high signal-to-noise ratios. Notably, this co-assembly can occur in situ between FlavP2000 with proteins in the living body based on a novel mechanism of brightness activation induced by disassembly (BAD), achieving consistent brightness as DSPE@FlavP2000 in blood or serum. The self-adaptive co-assembly strategy can be enhanced by incorporating an IPA moiety, which dynamically binds to albumin to prolong the dye's blood circulation time. Thus, the "enhanced" BAD is successfully applied to long-term vascular imaging and sciatic nerve imaging. Both the self-adaptive co-assembly strategy and BAD phenomenon improve the selectivity and availability of the hydrophilization methods, paving the way for efficient biological applications of polymethine dyes.
Collapse
Affiliation(s)
- Zetao Dang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Xiangping Liu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yijing Du
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Yajun Wang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ding Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yuewei Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
3
|
Rich BS, Brown EG, Rothstein DH, Baertschiger RM, Jackson GA, Roach JP, Naik-Mathuria B, Tracy ET, Mattei P, Glick RD, Ehrlich PF, Aldrink JH, Rodeberg D, Lautz TB. The Utility of Intraoperative Neuromonitoring in Pediatric Surgical Oncology. J Pediatr Surg 2023; 58:1708-1714. [PMID: 36907768 DOI: 10.1016/j.jpedsurg.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Intraoperative nerve monitoring (IONM) is a technique used to decrease the possibility of nerve-associated morbidity and damage to nearby neural structures during complex surgical procedures. The use and potential benefits of IONM in pediatric surgical oncology are not well-described. METHODS An overview of the current literature was performed to elucidate the various techniques that may be useful to pediatric surgeons for resection of solid tumors in children. RESULTS The physiology and common types of IONM relevant to the pediatric surgeon are described. Important anesthetic considerations are reviewed. Specific applications for IONM that may be useful in pediatric surgical oncology are then summarized, including its use for monitoring the recurrent laryngeal nerve, the facial nerve, the brachial plexus, spinal nerves, and lower extremity nerves. Troubleshooting techniques regarding common pitfalls are then proposed. CONCLUSION IONM is a technique that may be beneficial in pediatric surgical oncology to minimize nerve injury during extensive tumor resections. This review aimed to elucidate the various techniques available. IONM should be considered as an adjunct for the safe resection of solid tumors in children in the proper setting with the appropriate level of expertise. A multidisciplinary approach is advised. Additional studies are necessary to further clarify the optimal use and outcomes in this patient population. LEVELS OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Barrie S Rich
- Division of Pediatric Surgery, Zucker School of Medicine at Hofstra/Northwell, Cohen Children's Medical Center, New Hyde Park, NY, USA.
| | - Erin G Brown
- Division of Pediatric Surgery, University of California, Davis Children's Hospital, Sacramento, CA, USA
| | - David H Rothstein
- Division of Pediatric Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Reto M Baertschiger
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - G Adam Jackson
- Division of Neurophysiology, BioTronic Neuro Network (BNN), St. Joseph's Hospital, Chicago, IL, USA
| | - Jonathan P Roach
- Division of Pediatric Surgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Elisabeth T Tracy
- Division of Pediatric Surgery, Duke Children's Hospital and Health Center, Durham NC, USA
| | - Peter Mattei
- General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Richard D Glick
- Division of Pediatric Surgery, Zucker School of Medicine at Hofstra/Northwell, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Peter F Ehrlich
- Section of Pediatric Surgery, C. S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer H Aldrink
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - David Rodeberg
- Division of Pediatric Surgery, Kentucky Children's Hospital, Lexington, KY, USA
| | - Timothy B Lautz
- Division of Pediatric Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, IL, USA
| |
Collapse
|
4
|
Wei J, Liu C, Liang W, Yang X, Han S. Advances in optical molecular imaging for neural visualization. Front Bioeng Biotechnol 2023; 11:1250594. [PMID: 37671191 PMCID: PMC10475611 DOI: 10.3389/fbioe.2023.1250594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Iatrogenic nerve injury is a significant complication in surgery, which can negatively impact patients' quality of life. Currently, the main clinical neuroimaging methods, such as computed tomography, magnetic resonance imaging, and high-resolution ultrasonography, do not offer precise real-time positioning images for doctors during surgery. The clinical application of optical molecular imaging technology has led to the emergence of new concepts such as optical molecular imaging surgery, targeted surgery, and molecular-guided surgery. These advancements have made it possible to directly visualize surgical target areas, thereby providing a novel method for real-time identification of nerves during surgery planning. Unlike traditional white light imaging, optical molecular imaging technology enables precise positioning and identifies the cation of intraoperative nerves through the presentation of color images. Although a large number of experiments and data support its development, there are few reports on its actual clinical application. This paper summarizes the research results of optical molecular imaging technology and its ability to realize neural visualization. Additionally, it discusses the challenges neural visualization recognition faces and future development opportunities.
Collapse
Affiliation(s)
- Jinzheng Wei
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chao Liu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenkai Liang
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shufeng Han
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Barth CW, Shah VM, Wang LG, Masillati AM, Al-Fatease A, Husain Rizvi SZ, Antaris AL, Sorger J, Rao DA, Alani AWG, Gibbs SL. A clinically relevant formulation for direct administration of nerve specific fluorophores to mitigate iatrogenic nerve injury. Biomaterials 2022; 284:121490. [PMID: 35395454 PMCID: PMC9064958 DOI: 10.1016/j.biomaterials.2022.121490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Iatrogenic nerve injury significantly affects surgical outcomes. Although intraoperative neuromonitoring is utilized, nerve identification remains challenging and the success of nerve sparing is strongly correlated with surgeon experience levels. Fluorescence guided surgery (FGS) offers a potential solution for improved nerve sparing by providing direct visualization of nerve tissue intraoperatively. However, novel probes for FGS face a long regulatory pathway to achieve clinical translation. Herein, we report on the development of a clinically-viable, gel-based formulation that enables direct administration of nerve-specific probes for nerve sparing FGS applications, facilitating clinical translation via the exploratory investigational new drug (eIND) guidance. The developed formulation possesses unique gelling characteristics, allowing it to be easily spread as a liquid followed by rapid gelling for subsequent tissue hold. Optimization of the direct administration protocol with our gel-based formulation enabled a total staining time of 1-2 min for compatibility with surgical procedures and successful clinical translation.
Collapse
Affiliation(s)
- Connor W Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Vidhi M Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Lei G Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Anas M Masillati
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Adel Al-Fatease
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA; Department of Phamaceutics, College of Pharmacy, 62529, King Khalid University, Abha, Saudi Arabia
| | - Syed Zaki Husain Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | | | - Jonathan Sorger
- Intuitive Surgical, 1020 Kifer Road, Sunnyvale, CA, 94086, USA
| | - Deepa A Rao
- School of Pharmacy, Pacific University, Hillsboro, OR, 97123, USA
| | - Adam W G Alani
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA.
| |
Collapse
|
6
|
Patel MR, Jacob KC, Parsons AW, Chavez FA, Ribot MA, Munim MA, Vanjani NN, Pawlowski H, Prabhu MC, Singh K. Systematic Review: Applications of Intraoperative Ultrasound in Spinal Surgery. World Neurosurg 2022; 164:e45-e58. [PMID: 35259500 DOI: 10.1016/j.wneu.2022.02.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Due to increased practicality and decreased costs and radiation, interest has risen for intraoperative ultrasound (iUS) in spinal surgery applications; however, few studies have provided a robust overview of its use in spinal surgery. We synthesize findings of existing literature on usage of iUS in navigation, pedicle screw placement, and identification of anatomy during spinal interventions. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were utilized in this systematic review. Studies were identified through PubMed, Scopus, and Google Scholar databases using the search string. Abstracts mentioning iUS in spine applications were included. Upon full-text review, exclusion criteria were implemented, including outdated studies or those with weak topic relevance or statistical power. Upon elimination of duplicates, multi-reviewer screening for eligibility, and citation search, 44 manuscripts were analyzed. RESULTS Navigation using iUS is safe, effective, and economical. iUS registration accuracy and success is within clinically acceptable limits for image-guided navigation (Table 2). Pedicle screw instrumentation with iUS is precise with a favorable safety profile (Table 2). Anatomical landmarks are reliably identified with iUS, and surgeons are overwhelmingly successful in neural or vascular tissue identification with iUS modalities including standard B mode, doppler, and contrast-enhanced ultrasound (CE-US) (Table 3). iUS use in traumatic reduction of fractures properly identifies anatomical structures, intervertebral disc space, and vasculature (Table 3). CONCLUSION iUS eliminates radiation, decreases costs, and provides sufficient accuracy and reliability in identification of anatomical and neurovascular structures in various spinal surgery settings.
Collapse
Affiliation(s)
- Madhav R Patel
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St. Suite #300, Chicago, IL, 60612
| | - Kevin C Jacob
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St. Suite #300, Chicago, IL, 60612
| | - Alexander W Parsons
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St. Suite #300, Chicago, IL, 60612
| | - Frank A Chavez
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St. Suite #300, Chicago, IL, 60612
| | - Max A Ribot
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St. Suite #300, Chicago, IL, 60612
| | - Mohammed A Munim
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St. Suite #300, Chicago, IL, 60612
| | - Nisheka N Vanjani
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St. Suite #300, Chicago, IL, 60612
| | - Hanna Pawlowski
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St. Suite #300, Chicago, IL, 60612
| | - Michael C Prabhu
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St. Suite #300, Chicago, IL, 60612
| | - Kern Singh
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St. Suite #300, Chicago, IL, 60612.
| |
Collapse
|
7
|
Wei B, Su H, Chen P, Tan HL, Li N, Qin ZE, Huang P, Chang S. Recent advancements in peripheral nerve-specific fluorescent compounds. Biomater Sci 2021; 9:7799-7810. [PMID: 34747953 DOI: 10.1039/d1bm01256h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nerve injury is a common complication of surgery. Accidental nerve damage or transection can lead to severe clinical symptoms including pain, numbness, paralysis and even expiratory dyspnoea. In recent years, with the rise of the field of fluorescence-guided surgery, researchers have discovered that nerve-specific fluorescent agents can serve as nerve markers in animals and can be used to guide surgical procedures and reduce the incidence of intraoperative nerve damage. Currently, researchers have begun to focus on biochemistry, materials chemistry and other fields to produce more neuro-specific fluorescent agents with physiological relevance and they are expected to have clinical applications. This review discusses the agents with potential to be used in fluorescence-guided nerve imaging during surgery.
Collapse
Affiliation(s)
- Bo Wei
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Huo Su
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Hai-Long Tan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Ning Li
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Zi-En Qin
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China. .,National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, P.R. China.,Clinical Research Center for Thyroid Diseases in Hunan Province, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
8
|
Barth CW, Shah VM, Wang LG, Antaris AL, Klaassen A, Sorger J, Rao DA, Kerr DA, Henderson ER, Alani AW, Gibbs SL. Clinically translatable formulation strategies for systemic administration of nerve-specific probes. ADVANCED THERAPEUTICS 2021; 4:2100002. [PMID: 34423111 PMCID: PMC8372234 DOI: 10.1002/adtp.202100002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nerves are extremely difficult to identify and are often accidently damaged during surgery, leaving patients with lasting pain and numbness. Herein, a novel near-infrared (NIR) nerve-specific fluorophore, LGW01-08, was utilized for enhanced nerve identification using fluorescence guided surgery (FGS), formulated using clinical translatable strategies. Formulated LGW01-08 was examined for toxicology, pharmacokinetics (PK), and pharmacodynamics (PD) parameters in preparation for future clinical translation. Optimal LGW01-08 imaging doses were identified in each formulation resulting in a 10x difference between the toxicity to imaging dose window. Laparoscopic swine surgery completed using the da Vinci surgical robot (Intuitive Surgical) demonstrated the efficacy of formulated LGW01-08 for enhanced nerve identification. NIR fluorescence imaging enabled clear identification of nerves buried beneath ~3 mm of tissue that were unidentifiable by white light imaging. These studies provide a strong basis for future clinical translation of NIR nerve-specific fluorophores for utility during FGS to improve patient outcomes.
Collapse
Affiliation(s)
- Connor W. Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Vidhi M. Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, 97201
| | - Lei G. Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | | | | | | | - Deepa A. Rao
- School of Pharmacy, Pacific University, Hillsboro, OR 97123
| | - Darcy A. Kerr
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756.,Geisel School of Mdicine at Dartmouth College, Hanover, NH 03755
| | - Eric R. Henderson
- Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Adam W.G. Alani
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201.,Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, 97201
| | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201.,Corresponding Author: Summer L. Gibbs, Ph.D., Oregon Health & Science University, Collaborative Life Sciences Building, 2730 S Moody Ave, Mail Code: CL3SG, Portland, OR 97201, , Phone: 503-494-8940
| |
Collapse
|
9
|
Wu Y, Zhang F. Exploiting molecular probes to perform near‐infrared fluorescence‐guided surgery. VIEW 2020. [DOI: 10.1002/viw.20200068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yifan Wu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai China
| |
Collapse
|
10
|
Wang LG, Barth CW, Kitts CH, Mebrat MD, Montaño AR, House BJ, McCoy ME, Antaris AL, Galvis SN, McDowall I, Sorger JM, Gibbs SL. Near-infrared nerve-binding fluorophores for buried nerve tissue imaging. Sci Transl Med 2020; 12:12/542/eaay0712. [DOI: 10.1126/scitranslmed.aay0712] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/24/2019] [Accepted: 03/17/2020] [Indexed: 01/06/2023]
Abstract
Nerve-binding fluorophores with near-infrared (NIR; 650 to 900 nm) emission could reduce iatrogenic nerve injury rates by providing surgeons precise, real-time visualization of the peripheral nervous system. Unfortunately, current systemically administered nerve contrast agents predominantly emit at visible wavelengths and show nonspecific uptake in surrounding tissues such as adipose, muscle, and facia, thus limiting detection to surgically exposed surface-level nerves. Here, a focused NIR fluorophore library was synthesized and screened through multi-tiered optical and pharmacological assays to identify nerve-binding fluorophore candidates for clinical translation. NIR nerve probes enabled micrometer-scale nerve visualization at the greatest reported tissue depths (~2 to 3 mm), a feat unachievable with previous visibly emissive contrast agents. Laparoscopic fluorescent surgical navigation delineated deep lumbar and iliac nerves in swine, most of which were invisible in conventional white-light endoscopy. Critically, NIR oxazines generated contrast against all key surgical tissue classes (muscle, adipose, vasculature, and fascia) with nerve signal-to-background ratios ranging from ~2 (2- to 3-mm depth) to 25 (exposed nerve). Clinical translation of NIR nerve-specific agents will substantially reduce comorbidities associated with surgical nerve damage.
Collapse
Affiliation(s)
- Lei G. Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Connor W. Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Catherine H. Kitts
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Mubark D. Mebrat
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Antonio R. Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Broderick J. House
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Meaghan E. McCoy
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | | | | | | | | | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
11
|
Real-time, functional intra-operative localization of rat cavernous nerve network using near-infrared cyanine voltage-sensitive dye imaging. Sci Rep 2020; 10:6618. [PMID: 32313132 PMCID: PMC7171155 DOI: 10.1038/s41598-020-63588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/27/2020] [Indexed: 12/02/2022] Open
Abstract
Despite current progress achieved in the surgical technique of radical prostatectomy, post-operative complications such as erectile dysfunction and urinary incontinence persist at high incidence rates. In this paper, we present a methodology for functional intra-operative localization of the cavernous nerve (CN) network for nerve-sparing radical prostatectomy using near-infrared cyanine voltage-sensitive dye (VSD) imaging, which visualizes membrane potential variations in the CN and its branches (CNB) in real time. As a proof-of-concept experiment, we demonstrate a functioning complex nerve network in response to electrical stimulation of the CN, which was clearly differentiated from surrounding tissues in an in vivo rat prostate model. Stimulation of an erection was confirmed by correlative intracavernosal pressure (ICP) monitoring. Within 10 minutes, we performed trans-fascial staining of the CN by direct VSD administration. Our findings suggest the applicability of VSD imaging for real-time, functional imaging guidance during nerve-sparing radical prostatectomy.
Collapse
|
12
|
Barth CW, Gibbs SL. Fluorescence Image-Guided Surgery - a Perspective on Contrast Agent Development. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11222:112220J. [PMID: 32255887 PMCID: PMC7115043 DOI: 10.1117/12.2545292] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past several decades, a number of novel fluorescence image-guided surgery (FGS) contrast agents have been under development, with many in clinical translation and undergoing clinical trials. In this review, we have identified and summarized the contrast agents currently undergoing clinical translation. In total, 39 novel FGS contrast agents are being studied in 85 clinical trials. Four FGS contrast agents are currently being studied in phase III clinical trials and are poised to reach FDA approval within the next two to three years. Among all novel FGS contrast agents, a wide variety of probe types, targeting mechanisms, and fluorescence properties exists. Clinically available FGS imaging systems have been developed for FDA approved FGS contrast agents, and thus further clinical development is required to yield FGS imaging systems tuned for the variety of contrast agents in the clinical pipeline. Additionally, study of current FGS contrast agents for additional disease types and development of anatomy specific contrast agents is required to provide surgeons FGS tools for all surgical specialties and associated comorbidities. The work reviewed here represents a significant effort from many groups and further development of this promising technology will have an enormous impact on surgical outcomes across all specialties.
Collapse
Affiliation(s)
- Connor W Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201
| |
Collapse
|
13
|
Abstract
OBJECTIVE This review details the agents for fluorescence-guided nerve imaging in both preclinical and clinical use to identify factors important in selecting nerve-specific fluorescent agents for surgical procedures. BACKGROUND Iatrogenic nerve injury remains a significant cause of morbidity in patients undergoing surgical procedures. Current real-time identification of nerves during surgery involves neurophysiologic nerve stimulation, which has practical limitations. Intraoperative fluorescence-guided imaging provides a complimentary means of differentiating tissue types and pathology. Recent advances in fluorescence-guided nerve imaging have shown promise, but the ideal agent remains elusive. METHODS In February 2018, PubMed was searched for articles investigating peripheral nerve fluorescence. Key terms used in this search include: "intraoperative, nerve, fluorescence, peripheral nerve, visualization, near infrared, and myelin." Limits were set to exclude articles exclusively dealing with central nervous system targets or written in languages other than English. References were cross-checked for articles not otherwise identified. RESULTS Of the nonspecific agents, tracers that rely on axonal transport showed the greatest tissue specificity; however, neurovascular dyes already enjoy wide clinical use. Fluorophores specific to nerve moieties result in excellent nerve to background ratios. Although noteworthy findings on tissue specificity, toxicity, and route of administration specific to each fluorescent agent were reported, significant data objectively quantifying nerve-specific fluorescence and toxicity are lacking. CONCLUSIONS Fluorescence-based nerve enhancement has advanced rapidly over the past 10 years with potential for continued utilization and progression in translational research. An ideal agent would be easily administered perioperatively, would not cross the blood-brain barrier, and would fluoresce in the near-infrared spectrum. Agents administered systemically that target nerve-specific moieties have shown the greatest promise. Based on the heterogeneity of published studies and methods for reporting outcomes, it appears that the development of an optimal nerve imaging agent remains challenging.
Collapse
|
14
|
Luzhansky ID, Sudlow LC, Brogan DM, Wood MD, Berezin MY. Imaging in the repair of peripheral nerve injury. Nanomedicine (Lond) 2019; 14:2659-2677. [PMID: 31612779 PMCID: PMC6886568 DOI: 10.2217/nnm-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.
Collapse
Affiliation(s)
- Igor D Luzhansky
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
15
|
Hingorani DV, Whitney MA, Friedman B, Kwon JK, Crisp JL, Xiong Q, Gross L, Kane CJ, Tsien RY, Nguyen QT. Nerve-targeted probes for fluorescence-guided intraoperative imaging. Theranostics 2018; 8:4226-4237. [PMID: 30128049 PMCID: PMC6096382 DOI: 10.7150/thno.23084] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
Abstract
A fundamental goal of many surgeries is nerve preservation, as inadvertent injury can lead to patient morbidity including numbness, pain, localized paralysis and incontinence. Nerve identification during surgery relies on multiple parameters including anatomy, texture, color and relationship to surrounding structures using white light illumination. We propose that fluorescent labeling of nerves can enhance the contrast between nerves and adjacent tissue during surgery which may lead to improved outcomes. Methods: Nerve binding peptide sequences including HNP401 were identified by phage display using selective binding to dissected nerve tissue. Peptide dye conjugates including FAM-HNP401 and structural variants were synthesized and screened for nerve binding after topical application on fresh rodent and human tissue and in-vivo after systemic IV administration into both mice and rats. Nerve to muscle contrast was quantified by measuring fluorescent intensity after topical or systemic administration of peptide dye conjugate. Results: Peptide dye conjugate FAM-HNP401 showed selective binding to human sural nerve with 10.9x fluorescence signal intensity (1374.44 ± 425.96) compared to a previously identified peptide FAM-NP41 (126.17 ± 61.03). FAM-HNP401 showed nerve-to-muscle contrast of 3.03 ± 0.57. FAM-HNP401 binds and highlight multiple human peripheral nerves including lower leg sural, upper arm medial antebrachial as well as autonomic nerves isolated from human prostate. Conclusion: Phage display has identified a novel peptide that selectively binds to ex-vivo human nerves and in-vivo using rodent models. FAM-HNP401 or an optimized variant could be translated for use in a clinical setting for intraoperative identification of human nerves to improve visualization and potentially decrease the incidence of intra-surgical nerve injury.
Collapse
|
16
|
Barth CW, Gibbs SL. Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy. Am J Cancer Res 2017; 7:573-593. [PMID: 28255352 PMCID: PMC5327635 DOI: 10.7150/thno.17433] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022] Open
Abstract
Nerve damage remains a major morbidity following nerve sparing radical prostatectomy, significantly affecting quality of life post-surgery. Nerve-specific fluorescence guided surgery offers a potential solution by enhancing nerve visualization intraoperatively. However, the prostate is highly innervated and only the cavernous nerve structures require preservation to maintain continence and potency. Systemic administration of a nerve-specific fluorophore would lower nerve signal to background ratio (SBR) in vital nerve structures, making them difficult to distinguish from all nervous tissue in the pelvic region. A direct administration methodology to enable selective nerve highlighting for enhanced nerve SBR in a specific nerve structure has been developed herein. The direct administration methodology demonstrated equivalent nerve-specific contrast to systemic administration at optimal exposure times. However, the direct administration methodology provided a brighter fluorescent nerve signal, facilitating nerve-specific fluorescence imaging at video rate, which was not possible following systemic administration. Additionally, the direct administration methodology required a significantly lower fluorophore dose than systemic administration, that when scaled to a human dose falls within the microdosing range. Furthermore, a dual fluorophore tissue staining method was developed that alleviates fluorescence background signal from adipose tissue accumulation using a spectrally distinct adipose tissue specific fluorophore. These results validate the use of the direct administration methodology for specific nerve visualization with fluorescence image-guided surgery, which would improve vital nerve structure identification and visualization during nerve sparing radical prostatectomy.
Collapse
|
17
|
Barth CW, Gibbs SL. Visualizing Oxazine 4 nerve-specific fluorescence ex vivo in frozen tissue sections. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9696. [PMID: 32255889 DOI: 10.1117/12.2214204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Nerve damage plagues surgical outcomes and remains a major burden for patients, surgeons, and the healthcare system. Fluorescence image-guided surgery using nerve specific small molecule fluorophores offers a solution to diminish surgical nerve damage through improved intraoperative nerve identification and visualization. Oxazine 4 has shown superior nerve specificity in initial testing in vivo, while exhibiting a red shifted excitation and emission spectra compared to other nerve-specific fluorophores. However, Oxazine 4 does not exhibit near-infrared (NIR) excitation and emission, which would be ideal to improve penetration depth and nerve signal to background ratios for in vivo imaging. Successful development of a NIR nerve-specific fluorophore will require understanding of the molecular target of fluorophore nerve specificity. While previous small molecule nerve-specific fluorophores have demonstrated excellent ex vivo nerve specificity, Oxazine 4 ex vivo nerve specific fluorescence has been difficult to visualize. In the present study, we examined each step of the ex vivo fluorescence microscopy sample preparation procedure to discover how in vivo nerve-specific fluorescence is changed during ex vivo tissue sample preparation. Through step-by-step examination we found that Oxazine 4 fluorescence was significantly diminished by washing and mounting tissue sections for microscopy. A method to preserve Oxazine 4 nerve specific fluorescence ex vivo was determined, which can be utilized for visualization by fluorescence microscopy.
Collapse
Affiliation(s)
- Connor W Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201.,OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201
| |
Collapse
|
18
|
The quest for precision in transanal total mesorectal excision. Tech Coloproctol 2015; 20:11-8. [PMID: 26611358 DOI: 10.1007/s10151-015-1405-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
Abstract
Transanal total mesorectal excision (TME) is an emerging minimally invasive approach to rectal cancer, with encouraging preliminary results. However, the new surgical anatomy of the bottom-up approach complicates surgical understanding and increases the risks of inadvertent injuries to crucial anatomical structures, including nerves. Key elements to improve the safety and stimulate interest in such a complex technique might be robotics and image guidance, to enhance the level of precision. In this editorial, some of the technologies that could be used for precision TME are outlined, in light of the experience of our Institute for Image-Guided Surgery.
Collapse
|