1
|
Liu Q, Zhu X, Guo S. From pancreas to lungs: The role of immune cells in severe acute pancreatitis and acute lung injury. Immun Inflamm Dis 2024; 12:e1351. [PMID: 39023414 PMCID: PMC11256889 DOI: 10.1002/iid3.1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a potentially lethal inflammatory pancreatitis condition that is usually linked to multiple organ failure. When it comes to SAP, the lung is the main organ that is frequently involved. Many SAP patients experience respiratory failure following an acute lung injury (ALI). Clinicians provide insufficient care for compounded ALI since the underlying pathophysiology is unknown. The mortality rate of SAP patients is severely impacted by it. OBJECTIVE The study aims to provide insight into immune cells, specifically their roles and modifications during SAP and ALI, through a comprehensive literature review. The emphasis is on immune cells as a therapeutic approach for treating SAP and ALI. FINDINGS Immune cells play an important role in the complicated pathophysiology ofSAP and ALI by maintaining the right balance of pro- and anti-inflammatory responses. Immunomodulatory drugs now in the market have low thepeutic efficacy because they selectively target one immune cell while ignoring immune cell interactions. Accurate management of dysregulated immune responses is necessary. A critical initial step is precisely characterizing the activity of the immune cells during SAP and ALI. CONCLUSION Given the increasing incidence of SAP, immunotherapy is emerging as a potential treatment option for these patients. Interactions among immune cells improve our understanding of the intricacy of concurrent ALI in SAP patients. Acquiring expertise in these domains will stimulate the development of innovative immunomodulation therapies that will improve the outlook for patients with SAP and ALI.
Collapse
Affiliation(s)
- Qi Liu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Xiaomei Zhu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| |
Collapse
|
2
|
Yang M, Wang P, Liu T, Zou X, Xia Y, Li C, Wang X. High throughput sequencing revealed enhanced cell cycle signaling in SLE patients. Sci Rep 2023; 13:159. [PMID: 36599883 DOI: 10.1038/s41598-022-27310-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
The multi-system involvement and high heterogeneity of systemic lupus erythematosus (SLE) pose great challenges to its diagnosis and treatment. The purpose of the current study is to identify genes and pathways involved in the pathogenesis of SLE. High throughput sequencing was performed on the PBMCs from SLE patients. We conducted differential gene analysis, gene ontology (GO) analysis, kyoto encyclopedia of genes and genomes (KEGG) analysis, and quantitative real-time PCR (qRT-PCR) verification. Protein-protein interaction (PPI) analysis, alternative splicing analysis, and disease correlation analysis were conducted on some key pathogenic genes as well. Furthermore, si-CDC6 was used for transfection and cell proliferation was monitored using a cell counting kit-8 (CCK-8) assay. We identified 2495 differential genes (1494 upregulated and 1001 downregulated) in SLE patients compared with healthy controls. The significantly upregulated genes were enriched in the biological process-related GO terms of the cell cycle, response to stress, and chromosome organization. KEGG enrichment analysis revealed 7 significantly upregulated pathways including SLE, alcoholism, viral carcinogenesis, cell cycle, proteasome, malaria, and transcriptional misregulation in cancer. We successfully verified some differential genes on the SLE pathway and the cell cycle pathway. CDC6, a key gene in the cell cycle pathway, had remarkably higher MXE alternative splicing events in SLE patients than that in controls, which may explain its significant upregulation in SLE patients. We found that CDC6 participates in the pathogenesis of many proliferation-related diseases and its levels are positively correlated with the severity of SLE. Knockdown of CDC6 suppressed the proliferation of Hela cells and PBMCs from SLE patients in vitro. We identified SLE-related genes and their alternative splicing events. The cell cycle pathway and the cell cycle-related biological processes are over-activated in SLE patients. We revealed a higher incidence of MXE events of CDC6, which may lead to its high expression in SLE patients. Upregulated cell cycle signaling and CDC6 may be related to the hyperproliferation and pathogenesis of SLE.
Collapse
Affiliation(s)
- Mingyue Yang
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Peisong Wang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Tao Liu
- Department of Rheumatology and Immunology, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaojuan Zou
- Department of Rheumatology and Immunology, First Hospital of Jilin University, Changchun, 130021, China
| | - Ying Xia
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Chenxu Li
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaosong Wang
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China.
- Institute of Translational Medicine, First Hospital of Jilin University, No.519 Dongminzhu Street, Changchun, 130021, China.
| |
Collapse
|
3
|
Cassidy MF, Herbert ZT, Moulton VR. Splicing factor SRSF1 controls autoimmune-related molecular pathways in regulatory T cells distinct from FoxP3. Mol Immunol 2022; 152:140-152. [PMID: 36368121 DOI: 10.1016/j.molimm.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Regulatory T cells (Tregs) are vital for maintaining immune self-tolerance, and their impaired function leads to autoimmune disease. Mutations in FoxP3, the master transcriptional regulator of Tregs, leads to immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in humans and the early lethal "scurfy" phenotype with multi-organ autoimmune disease in mice. We recently identified serine/arginine-rich splicing factor 1 (SRSF1) as an indispensable regulator of Treg homeostasis and function. Intriguingly, Treg-conditional SRSF1-deficient mice exhibit early lethal systemic autoimmunity with multi-organ inflammation reminiscent of the scurfy mice. Importantly, SRSF1 is decreased in T cells from patients with the autoimmune disease systemic lupus erythematosus (SLE), and low SRSF1 levels inversely correlate with disease severity. Given that the Treg-specific deficiency of SRSF1 causes similarly profound autoimmune disease outcomes in mice as the deficiency/mutation in FoxP3, we aimed to evaluate the genes and molecular pathways controlled by these two indispensable regulatory proteins. We performed comparative bioinformatic analyses of transcriptomic profiles of Tregs from Srsf1-knockout mice and two Foxp3 mutant mice--the FoxP3-deficient ΔFoxp3 and the Foxp3 M370I mutant mice. We identified 132 differentially expressed genes (DEGs) unique to Srsf1-ko Tregs, 503 DEGs unique to Foxp3 M370I Tregs, and 1367 DEGs unique to ΔFoxp3 Tregs. Gene set enrichment and pathway analysis of DEGs unique to Srsf1-ko Tregs indicate that SRSF1 controls cytokine and immune response pathways. Conversely, FoxP3 controls pathways involved in DNA replication and cell cycle. Besides the distinct gene signatures, we identified only 30 shared genes between all three Treg mutants, mostly contributing to cytokine and immune defense pathways. Prominent genes included the chemokines CXCR6 and CCL1 and the checkpoint inhibitors FASLG and PDCD1. Thus, we demonstrate that SRSF1 and FoxP3 control common and distinct molecular pathways implicated in autoimmunity. Our analyses suggest that SRSF1 controls crucial immune functions in Tregs contributing to immune tolerance, and perturbations in its levels lead to systemic autoimmunity via mechanisms that are largely distinct from FoxP3.
Collapse
Affiliation(s)
- Michael F Cassidy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Tufts University School of Medicine, Boston, MA, United States.
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Vaishali R Moulton
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Juarez I, Su S, Herbert ZT, Teijaro JR, Moulton VR. Splicing factor SRSF1 is essential for CD8 T cell function and host antigen-specific viral immunity. Front Immunol 2022; 13:906355. [PMID: 36189299 PMCID: PMC9523749 DOI: 10.3389/fimmu.2022.906355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cytotoxic CD8 T cells are crucial for the host antigen-specific immune response to viral pathogens. Here we report the identification of an essential role for the serine/arginine-rich splicing factor (SRSF) 1 in CD8 T cell homeostasis and function. Specifically, SRSF1 is necessary for the maintenance of normal CD8 T lymphocyte numbers in the lymphoid compartment, and for the proliferative capacity and cytotoxic function of CD8 T cells. Furthermore, SRSF1 is required for antigen-specific IFN-γ cytokine responses in a viral infection challenge in mice. Transcriptomics analyses of Srsf1-deficient T cells reveal that SRSF1 controls proliferation, MAP kinase signaling and IFN signaling pathways. Mechanistically, SRSF1 controls the expression and activity of the Mnk2/p38-MAPK axis at the molecular level. Our findings reveal previously unrecognized roles for SRSF1 in the physiology and function of cytotoxic CD8 T lymphocytes and a potential molecular mechanism in viral immunopathogenesis.
Collapse
Affiliation(s)
- Ignacio Juarez
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Immunology, Ophthalmology and ENT, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Shi Su
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Zachary T. Herbert
- Molecular Biology Core Facilities at Dana-Farber Cancer Institute, Boston, MA, United States
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Vaishali R. Moulton
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Zhang J, Wang S, Guo X, Lu Y, Liu X, Jiang M, Li X, Qin B, Luo Z, Liu H, Li Q, Du YZ, Luo L, You J. Arginine Supplementation Targeting Tumor-Killing Immune Cells Reconstructs the Tumor Microenvironment and Enhances the Antitumor Immune Response. ACS NANO 2022; 16:12964-12978. [PMID: 35968927 DOI: 10.1021/acsnano.2c05408] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The tumor microenvironment (TME) is characterized by several immunosuppressive factors, of which weak acidity and l-arginine (l-arg) deficiency are two common features. A weak acidic environment threatens the survival of immune cells, and insufficient l-arg will severely restrain the effect of antitumor immune responses, both of which affect the efficiency of cancer treatments (especially immunotherapy). Meanwhile, l-arg is essential for tumor progression. Thus, two strategies, l-arg supplementation and l-arg deprivation, are developed for cancer treatment. However, these strategies have the potential risk of promoting tumor growth and impairing immune responses, which might lead to a paradoxical therapeutic effect. It is optimal to limit the l-arg availability of tumor cells from the microenvironment while supplying l-arg for immune cells. In this study, we designed a multivesicular liposome technology to continuously supply alkaline l-arg, which simultaneously changed the acidity and l-arg deficiency in the TME, and by selectively knocking down the CAT-2 transporter, l-arg starvation of tumors was maintained while tumor-killing immune cells were enriched in the TME. The results showed that our strategy promoted the infiltration and activation of CD8+ T cells in tumor, increased the proportion of M1 macrophages, inhibited melanoma growth, and prolonged survival. In combination with anti-PD-1 antibody, our strategy reversed the low tumor response to immune checkpoint blockade therapy, showing a synergistic antitumor effect. Our work provided a reference for improving the TME combined with regulating nutritional competitiveness to achieve the sensitization of immunotherapy.
Collapse
Affiliation(s)
- Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Huihui Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
6
|
Su S, Katopodi XL, Pita-Juarez YH, Maverakis E, Vlachos IS, Adamopoulos IE. Serine and arginine rich splicing factor 1 deficiency alters pathways involved in IL-17A expression and is implicated in human psoriasis. Clin Immunol 2022; 240:109041. [PMID: 35613697 PMCID: PMC10797199 DOI: 10.1016/j.clim.2022.109041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022]
Abstract
Serine and Arginine Rich Splicing Factor 1 (SRSF1) is a splicing factor that binds to exonic enhancers and stimulates splicing and is previously implicated with autoimmunity. Herein, we investigate the role of SRSF1 in regulating innate immune functions that are pertinent in the pathogenesis of auto-inflammatory diseases. Specifically, we show that conditional deletion of SRSF1 in mature lymphocytes resulted in higher expression of il-17a and il-17 f and an expansion of IL17A+ CD8 T cells. Mechanistically, the aberrant expression of IL-17A in SRSF1 cKO mice could not be attributed to alternative splicing of il-17a or il-17 f genes but possibly to defective CD11B+LY6C+ myeloid derived suppressor function in the spleen. Finally, meta-analysis of RNA-Seq collected from psoriasis patients demonstrate a clear correlation between SRSF1 and psoriasis that suggests a putative role of SRSF1 in IL-17A-induced psoriasis.
Collapse
Affiliation(s)
- Shi Su
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xanthi-Lida Katopodi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yered H Pita-Juarez
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Iannis E Adamopoulos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Xiu CD, Ying LX, Chun HY, Fu LJ. Advances in CD247. Scand J Immunol 2022; 96:e13170. [PMID: 35388926 DOI: 10.1111/sji.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
CD247, which is also known as CD3ζ, CD3H, CD3Q, CD3Z, IMD25, T3Z, and TCRZ, encodes CD3ζ protein, which is expressed primarily in natural killer (NK) and T cells. Since the discovery of the ζ peptide in 1986, it has been continuously investigated. In this paper, we review the composition, molecular mechanisms and regulatory factors of CD247 expression in T cells; and review the autoimmune diseases, tumors and inflammatory diseases associated with CD247, providing a detailed and comprehensive reference for further research on the mechanism of CD247 and related diseases.
Collapse
Affiliation(s)
- Chen De Xiu
- Department of Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lei Xian Ying
- Department of Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hu Ying Chun
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Jia Fu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Cassidy MF, Herbert ZT, Moulton VR. Splicing factor SRSF1 controls distinct molecular programs in regulatory and effector T cells implicated in systemic autoimmune disease. Mol Immunol 2022; 141:94-103. [PMID: 34839165 PMCID: PMC10797198 DOI: 10.1016/j.molimm.2021.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/15/2021] [Accepted: 11/07/2021] [Indexed: 12/30/2022]
Abstract
Systemic autoimmune diseases are characterized by hyperactive effector T cells (Teffs), aberrant cytokines and chemokines, and dysfunctional regulatory T cells (Tregs). We previously uncovered new roles for serine/arginine-rich splicing factor 1 (SRSF1) in the control of genes involved in T cell signaling and cytokine production in human T cells. SRSF1 levels are decreased in T cells from patients with systemic lupus erythematosus (SLE), and low levels correlate with severe disease. Moreover, T cell-conditional Srsf1-deficient mice recapitulate the autoimmune phenotype, exhibiting CD4 T cell hyperactivity, dysfunctional Tregs, systemic autoimmunity, and tissue inflammation. However, the role of SRSF1 in controlling molecular programs in Teffs and Tregs and how these pathways are implicated in autoimmunity is not known. Here, by comparative bioinformatics analysis, we demonstrate that SRSF1 controls largely distinct gene programs in Tregs and Teffs in vivo. SRSF1 regulates 189 differentially expressed genes (DEGs) unique to Tregs, 582 DEGs unique to Teffs, and 29 DEGs shared between both. Shared genes included IL-17A, IL-17F, CSF1, CXCL10, and CXCR4, and were highly enriched for inflammatory response and cytokine-cytokine receptor interaction pathways. SRSF1 controls distinct pathways in Tregs, which include chemokine signaling and immune cell differentiation, compared with pathways in Teffs, which include cytokine production, T cell homeostasis, and activation. We identified putative mRNA binding targets of SRSF1 which include CSF1, CXCL10, and IL-17F. Finally, comparisons with transcriptomics profiles from lupus-prone MRL/lpr mice reveal that SRSF1 controls genes and pathways implicated in autoimmune disease. The target genes of SRSF1 and putative binding targets we discovered, have known roles in systemic autoimmunity. Our findings suggest that SRSF1 controls distinct molecular pathways in Tregs and Teffs and aberrant SRSF1 levels may contribute to their dysfunction and immunopathogenesis of systemic autoimmune disease.
Collapse
Affiliation(s)
- Michael F Cassidy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Tufts University School of Medicine, Boston, MA, United States
| | - Zachary T Herbert
- Molecular Biology Core Facilities at Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vaishali R Moulton
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
9
|
Ren P, Lu L, Cai S, Chen J, Lin W, Han F. Alternative Splicing: A New Cause and Potential Therapeutic Target in Autoimmune Disease. Front Immunol 2021; 12:713540. [PMID: 34484216 PMCID: PMC8416054 DOI: 10.3389/fimmu.2021.713540] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a complex coordinated transcriptional regulatory mechanism. It affects nearly 95% of all protein-coding genes and occurs in nearly all human organs. Aberrant alternative splicing can lead to various neurological diseases and cancers and is responsible for aging, infection, inflammation, immune and metabolic disorders, and so on. Though aberrant alternative splicing events and their regulatory mechanisms are widely recognized, the association between autoimmune disease and alternative splicing has not been extensively examined. Autoimmune diseases are characterized by the loss of tolerance of the immune system towards self-antigens and organ-specific or systemic inflammation and subsequent tissue damage. In the present review, we summarized the most recent reports on splicing events that occur in the immunopathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) and attempted to clarify the role that splicing events play in regulating autoimmune disease progression. We also identified the changes that occur in splicing factor expression. The foregoing information might improve our understanding of autoimmune diseases and help develop new diagnostic and therapeutic tools for them.
Collapse
Affiliation(s)
- Pingping Ren
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Luying Lu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shasha Cai
- Department of Nephrology, The First People's Hospital of Wenling, Taizhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University of Medicine, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Katsuyama T, Li H, Krishfield SM, Kyttaris VC, Moulton VR. Splicing factor SRSF1 limits IFN-γ production via RhoH and ameliorates experimental nephritis. Rheumatology (Oxford) 2021; 60:420-429. [PMID: 32810232 DOI: 10.1093/rheumatology/keaa300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE CD4 T helper 1 (Th1) cells producing IFN-γ contribute to inflammatory responses in the pathogenesis of SLE and lupus nephritis. Moreover, elevated serum type II IFN levels precede the appearance of type I IFNs and autoantibodies in patient years before clinical diagnosis. However, the molecules and mechanisms that control this inflammatory response in SLE remain unclear. Serine/arginine-rich splicing factor 1 (SRSF1) is decreased in T cells from SLE patients, and restrains T cell hyperactivity and systemic autoimmunity. Our objective here was to evaluate the role of SRSF1 in IFN-γ production, Th1 differentiation and experimental nephritis. METHODS T cell-conditional Srsf1-knockout mice were used to study nephrotoxic serum-induced nephritis and evaluate IFN-γ production and Th1 differentiation by flow cytometry. RNA sequencing was used to assess transcriptomics profiles. RhoH was silenced by siRNA transfections in human T cells by electroporation. RhoH and SRSF1 protein levels were assessed by immunoblots. RESULTS Deletion of Srsf1 in T cells led to increased Th1 differentiation and exacerbated nephrotoxic serum nephritis. The expression levels of RhoH are decreased in Srsf1-deficient T cells, and silencing RhoH in human T cells leads to increased production of IFN-γ. Furthermore, RhoH expression was decreased and directly correlated with SRSF1 in T cells from SLE patients. CONCLUSION Our study uncovers a previously unrecognized role of SRSF1 in restraining IFN-γ production and Th1 differentiation through the control of RhoH. Reduced expression of SRSF1 may contribute to pathogenesis of autoimmune-related nephritis through these molecular mechanisms.
Collapse
Affiliation(s)
- Takayuki Katsuyama
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Suzanne M Krishfield
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vasileios C Kyttaris
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vaishali R Moulton
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Paz S, Ritchie A, Mauer C, Caputi M. The RNA binding protein SRSF1 is a master switch of gene expression and regulation in the immune system. Cytokine Growth Factor Rev 2020; 57:19-26. [PMID: 33160830 DOI: 10.1016/j.cytogfr.2020.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Serine/Arginine splicing factor 1 (SRSF1) is an RNA binding protein abundantly expressed in most tissues. The pleiotropic functions of SRSF1 exert multiple roles in gene expression by regulating major steps in transcription, processing, export through the nuclear pores and translation of nascent RNA transcripts. The aim of this review is to highlight recent findings in the functions of this protein and to describe its role in immune system development, functions and regulation.
Collapse
Affiliation(s)
- Sean Paz
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States
| | - Anastasia Ritchie
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States
| | - Christopher Mauer
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States.
| |
Collapse
|
12
|
Chen H, Diao X, Wang H, Zhou H. An integrated metabolomic and proteomic study of toxic effects of Benzo[a]pyrene on gills of the pearl oyster Pinctada martensii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:330-336. [PMID: 29573723 DOI: 10.1016/j.ecoenv.2018.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Benzo[a]pyrene (BaP) is one of the most important polycyclic aromatic hydrocarbons (PAHs), which are widely present in the marine environment. Because of its teratogenic, mutagenic, and carcinogenic effects on various organisms, the toxicity of BaP is of great concern. In this study, we focused on the toxic effects of BaP (1 µg/L and 10 µg/L) on gills of the pearl oyster Pinctada martensii using combined metabolomic and proteomic approaches. At the metabolome level, the high concentration of BaP mainly caused abnormal energy metabolism, osmotic regulation and immune response marked by significantly altered metabolites in gills. At the proteome level, both concentrations of BaP mainly induced signal transduction, transcription regulation, cell growth, stress response, and energy metabolism. Overall, the research demonstrated that the combination of proteomic and metabolomic approaches could provide a significant way to elucidate toxic effects of BaP on P. martensii.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
13
|
Katsuyama T, Tsokos GC, Moulton VR. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus. Front Immunol 2018; 9:1088. [PMID: 29868033 PMCID: PMC5967272 DOI: 10.3389/fimmu.2018.01088] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to "self" leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field.
Collapse
Affiliation(s)
| | | | - Vaishali R. Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Hu ZY, Wang XY, Guo WB, Xie LY, Huang YQ, Liu YP, Xiao LW, Li SN, Zhu HF, Li ZG, Kan H. Long non-coding RNA MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation in colorectal cancer cells. Oncotarget 2017; 7:11733-43. [PMID: 26887056 PMCID: PMC4905507 DOI: 10.18632/oncotarget.7367] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/23/2016] [Indexed: 01/17/2023] Open
Abstract
Our earlier findings indicate that the long non-coding RNA MALAT1 promotes colorectal cancer (CRC) cell proliferation, invasion and metastasis in vitro and in vivo by increasing expression of AKAP-9. In the present study, we investigated the molecular mechanism by which MALAT1 enhances AKAP9 expression in CRC SW480 cells. We found that MALAT1 interacts with both SRPK1 and SRSF1. MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation. Following MALAT1 knockdown, overexpression of SRPK1 was sufficient to restore SRSF1 phosphorylation and AKAP-9 expression to a level that promoted cell proliferation, invasion and migration in vitro. Conversely, SRPK1 knockdown after overexpression of MALAT1 in SW480 cells diminished SRSF1 phosphorylation and AKAP-9 expression and suppressed cell proliferation, invasion and migration in vitro. These findings suggest MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation in CRC cells. These results reveal a novel molecular mechanism by which MALAT1 regulates AKAP-9 expression in CRC cells.
Collapse
Affiliation(s)
- Zhi-Yan Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Southern Medical University, Guangzhou, China
| | - Xiao-Yan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Southern Medical University, Guangzhou, China
| | - Wen-Bin Guo
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Urology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Lin-Ying Xie
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Southern Medical University, Guangzhou, China
| | - Yu-Qi Huang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Ping Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Southern Medical University, Guangzhou, China
| | - Li-Wei Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Southern Medical University, Guangzhou, China
| | - Sheng-Nan Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Southern Medical University, Guangzhou, China
| | - Hui-Fang Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Southern Medical University, Guangzhou, China
| | - Zu-Guo Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Southern Medical University, Guangzhou, China
| | - Heping Kan
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|