1
|
Abbasi H, Jourabchi-Ghadim N, Asgarzade A, Mirshekari M, Ebrahimi-Mameghani M. Unveiling the veil of adipokines: A meta-analysis and systematic review in amyotrophic lateral sclerosis. Neuroscience 2024; 563:1-9. [PMID: 39505137 DOI: 10.1016/j.neuroscience.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Adipokines are proposed to be associated with ALS progression through assorted pathways. Therefore, The present meta-analysis explored the link between various adipokines and ALS progression. METHOD International database like PubMed, Scopus, and Web of Science databases were searched to achieve eligible papers published before December 2023. The following PICO structure was utilized: Population (patients with ALS); Intervention (serum concentrations of ghrelin, leptin, and adiponectin), Comparison (with or without controls), and Outcome (ALS progression). the risk of bias of selected papers was assessed through the Newcastle-Ottawa Scale (NOS) tool. RESULTS 11 out of 240 papers were selected for this study which were published between 2010 and 2024. Lower serum leptin concentrations were detected in the ALS compared to control groups (WMD: -0.91, 95% CI:-1.77, -0.05). Serum concentrations of adiponectin were higher in ALS compared to control groups (WMD: 0.41, 95% CI:-0.7, 0.89). Ultimately, The serum concentrations of ghrelin in the ALS groups were lower than control groups (WMD: -1.21, 95% CI: -2.95, 0.53). CONCLUSION Our findings revealed that serum concentrations of ghrelin and leptin were higher in ALS patients compared to control, unlike adiponectin.
Collapse
Affiliation(s)
- Hamid Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Neda Jourabchi-Ghadim
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mobin Mirshekari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Maruyama T, Tanabe S, Uyeda A, Suzuki T, Muramatsu R. Free fatty acids support oligodendrocyte survival in a mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 2023; 17:1081190. [PMID: 37252191 PMCID: PMC10213402 DOI: 10.3389/fncel.2023.1081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the white matter degeneration. Although changes in blood lipids are involved in the pathogenesis of neurological diseases, the pathological role of blood lipids in ALS remains unclear. Methods and results We performed lipidome analysis on the plasma of ALS model mice, mutant superoxide dismutase 1 (SOD1G93A) mice, and found that the concentration of free fatty acids (FFAs), including oleic acid (OA) and linoleic acid (LA), decreased prior to disease onset. An in vitro study revealed that OA and LA directly inhibited glutamate-induced oligodendrocytes cell death via free fatty acid receptor 1 (FFAR1). A cocktail containing OA/LA suppressed oligodendrocyte cell death in the spinal cord of SOD1G93A mice. Discussion These results suggested that the reduction of FFAs in the plasma is a pathogenic biomarker for ALS in the early stages, and supplying a deficiency in FFAs is a potential therapeutic approach for ALS by preventing oligodendrocyte cell death.
Collapse
Affiliation(s)
- Takashi Maruyama
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Pharmacoscience, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shogo Tanabe
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Pharmacoscience, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
3
|
Ferecskó AS, Smallwood MJ, Moore A, Liddle C, Newcombe J, Holley J, Whatmore J, Gutowski NJ, Eggleton P. STING-Triggered CNS Inflammation in Human Neurodegenerative Diseases. Biomedicines 2023; 11:biomedicines11051375. [PMID: 37239045 DOI: 10.3390/biomedicines11051375] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Some neurodegenerative diseases have an element of neuroinflammation that is triggered by viral nucleic acids, resulting in the generation of type I interferons. In the cGAS-STING pathway, microbial and host-derived DNA bind and activate the DNA sensor cGAS, and the resulting cyclic dinucleotide, 2'3-cGAMP, binds to a critical adaptor protein, stimulator of interferon genes (STING), which leads to activation of downstream pathway components. However, there is limited work demonstrating the activation of the cGAS-STING pathway in human neurodegenerative diseases. METHODS Post-mortem CNS tissue from donors with multiple sclerosis (n = 4), Alzheimer's disease (n = 6), Parkinson's disease (n = 3), amyotrophic lateral sclerosis (n = 3) and non-neurodegenerative controls (n = 11) were screened by immunohistochemistry for STING and relevant protein aggregates (e.g., amyloid-β, α-synuclein, TDP-43). Human brain endothelial cells were cultured and stimulated with the STING agonist palmitic acid (1-400 μM) and assessed for mitochondrial stress (release of mitochondrial DNA into cytosol, increased oxygen consumption), downstream regulator factors, TBK-1/pIRF3 and inflammatory biomarker interferon-β release and changes in ICAM-1 integrin expression. RESULTS In neurodegenerative brain diseases, elevated STING protein was observed mainly in brain endothelial cells and neurons, compared to non-neurodegenerative control tissues where STING protein staining was weaker. Interestingly, a higher STING presence was associated with toxic protein aggregates (e.g., in neurons). Similarly high STING protein levels were observed within acute demyelinating lesions in multiple sclerosis subjects. To understand non-microbial/metabolic stress activation of the cGAS-STING pathway, brain endothelial cells were treated with palmitic acid. This evoked mitochondrial respiratory stress up to a ~2.5-fold increase in cellular oxygen consumption. Palmitic acid induced a statistically significant increase in cytosolic DNA leakage from endothelial cell mitochondria (Mander's coefficient; p < 0.05) and a significant increase in TBK-1, phosphorylated transcription factor IFN regulatory factor 3, cGAS and cell surface ICAM. In addition, a dose response in the secretion of interferon-β was observed, but it failed to reach statistical significance. CONCLUSIONS The histological evidence shows that the common cGAS-STING pathway appears to be activated in endothelial and neural cells in all four neurodegenerative diseases examined. Together with the in vitro data, this suggests that the STING pathway might be activated via perturbation of mitochondrial stress and DNA leakage, resulting in downstream neuroinflammation; hence, this pathway may be a target for future STING therapeutics.
Collapse
Affiliation(s)
- Alex S Ferecskó
- UCB Pharma, Slough SL1 3WE, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Miranda J Smallwood
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | | | - Corin Liddle
- Bioimaging Unit, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
| | - Jia Newcombe
- NeuroResource, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Janet Holley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Jacqueline Whatmore
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Nicholas J Gutowski
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Paul Eggleton
- UCB Pharma, Slough SL1 3WE, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
- Revolo Biotherapeutics, New Orleans, LA 70130, USA
| |
Collapse
|
4
|
Alessenko AV, Gutner UA, Shupik MA. Involvement of Lipids in the Pathogenesis of Amyotrophic Lateral Sclerosis. Life (Basel) 2023; 13:life13020510. [PMID: 36836867 PMCID: PMC9966871 DOI: 10.3390/life13020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons. To study its underlying mechanisms, a variety of models are currently used at the cellular level and in animals with mutations in multiple ALS associated genes, including SOD1, C9ORF72, TDP-43, and FUS. Key mechanisms involved in the disease include excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammatory, and immune reactions. In addition, significant metabolism alterations of various lipids classes, including phospholipids, fatty acids, sphingolipids, and others have been increasingly recognized. Recently, the mechanisms of programmed cell death (apoptosis), which may be responsible for the degeneration of motor neurons observed in the disease, have been intensively studied. In this context, sphingolipids, which are the most important sources of secondary messengers transmitting signals for cell proliferation, differentiation, and apoptosis, are gaining increasing attention in the context of ALS pathogenesis given their role in the development of neuroinflammatory and immune responses. This review describes changes in lipids content and activity of enzymes involved in their metabolism in ALS, both summarizing current evidence from animal models and clinical studies and discussing the potential of new drugs among modulators of lipid metabolism enzymes.
Collapse
|
5
|
Liu Y, Zhong X, Lin S, Xu H, Liang X, Wang Y, Xu J, Wang K, Guo X, Wang J, Yu M, Li C, Xie C. Limosilactobacillus reuteri and caffeoylquinic acid synergistically promote adipose browning and ameliorate obesity-associated disorders. MICROBIOME 2022; 10:226. [PMID: 36517893 PMCID: PMC9753294 DOI: 10.1186/s40168-022-01430-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE High intake of caffeoylquinic acid (CQA)-rich dietary supplements, such as green coffee bean extracts, offers health-promoting effects on maintaining metabolic homeostasis. Similar to many active herbal ingredients with high pharmacological activities but low bioavailability, CQA has been reported as a promising thermogenic agent with anti-obesity properties, which contrasts with its poor oral absorption. Intestinal tract is the first site of CQA exposure and gut microbes might react quickly to CQA. Thus, it is of interest to explore the role of gut microbiome and microbial metabolites in the beneficial effects of CQA on obesity-related disorders. RESULTS Oral CQA supplementation effectively enhanced energy expenditure by activating browning of adipose and thus ameliorated obesity-related metabolic dysfunctions in high fat diet-induced obese (DIO) mice. Here, 16S rRNA gene amplicon sequencing revealed that CQA treatment remodeled the gut microbiota to promote its anti-obesity actions, as confirmed by antibiotic treatment and fecal microbiota transplantation. CQA enriched the gut commensal species Limosilactobacillus reuteri (L. reuteri) and stimulated the production of short-chain fatty acids, especially propionate. Mono-colonization of L. reuteri or low-dose CQA treatment did not reduce adiposity in DIO mice, while their combination elicited an enhanced thermogenic response, indicating the synergistic effects of CQA and L. reuteri on obesity. Exogenous propionate supplementation mimicked the anti-obesity effects of CQA alone or when combined with L. reuteri, which was ablated by the monocarboxylate transporter (MCT) inhibitor 7ACC1 or MCT1 disruption in inguinal white adipose tissues to block propionate transport. CONCLUSIONS Our data demonstrate a functional axis among L. reuteri, propionate, and beige fat tissue in the anti-obesity action of CQA through the regulation of thermogenesis. These findings provide mechanistic insights into the therapeutic use of herbal ingredients with poor bioavailability via their interaction with the gut microbiota. Video Abstract.
Collapse
Affiliation(s)
- Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Xianchun Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Suqin Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Hualing Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xinyu Liang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yibin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jingyi Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Minjun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Cuina Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
6
|
Agrawal I, Lim YS, Ng SY, Ling SC. Deciphering lipid dysregulation in ALS: from mechanisms to translational medicine. Transl Neurodegener 2022; 11:48. [DOI: 10.1186/s40035-022-00322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractLipids, defined by low solubility in water and high solubility in nonpolar solvents, can be classified into fatty acids, glycerolipids, glycerophospholipids, sphingolipids, and sterols. Lipids not only regulate integrity and fluidity of biological membranes, but also serve as energy storage and bioactive molecules for signaling. Causal mutations in SPTLC1 (serine palmitoyltransferase long chain subunit 1) gene within the lipogenic pathway have been identified in amyotrophic lateral sclerosis (ALS), a paralytic and fatal motor neuron disease. Furthermore, lipid dysmetabolism within the central nervous system and circulation is associated with ALS. Here, we aim to delineate the diverse roles of different lipid classes and understand how lipid dysmetabolism may contribute to ALS pathogenesis. Among the different lipids, accumulation of ceramides, arachidonic acid, and lysophosphatidylcholine is commonly emerging as detrimental to motor neurons. We end with exploring the potential ALS therapeutics by reducing these toxic lipids.
Collapse
|
7
|
Goncharova PS, Davydova TK, Popova TE, Novitsky MA, Petrova MM, Gavrilyuk OA, Al-Zamil M, Zhukova NG, Nasyrova RF, Shnayder NA. Nutrient Effects on Motor Neurons and the Risk of Amyotrophic Lateral Sclerosis. Nutrients 2021; 13:3804. [PMID: 34836059 PMCID: PMC8622539 DOI: 10.3390/nu13113804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable chronic progressive neurodegenerative disease with the progressive degeneration of motor neurons in the motor cortex and lower motor neurons in the spinal cord and the brain stem. The etiology and pathogenesis of ALS are being actively studied, but there is still no single concept. The study of ALS risk factors can help to understand the mechanism of this disease development and, possibly, slow down the rate of its progression in patients and also reduce the risk of its development in people with a predisposition toward familial ALS. The interest of researchers and clinicians in the protective role of nutrients in the development of ALS has been increasing in recent years. However, the role of some of them is not well-understood or disputed. The objective of this review is to analyze studies on the role of nutrients as environmental factors affecting the risk of developing ALS and the rate of motor neuron degeneration progression. METHODS We searched the PubMed, Springer, Clinical keys, Google Scholar, and E-Library databases for publications using keywords and their combinations. We analyzed all the available studies published in 2010-2020. DISCUSSION We analyzed 39 studies, including randomized clinical trials, clinical cases, and meta-analyses, involving ALS patients and studies on animal models of ALS. This review demonstrated that the following vitamins are the most significant protectors of ALS development: vitamin B12, vitamin E > vitamin C > vitamin B1, vitamin B9 > vitamin D > vitamin B2, vitamin B6 > vitamin A, and vitamin B7. In addition, this review indicates that the role of foods with a high content of cholesterol, polyunsaturated fatty acids, urates, and purines plays a big part in ALS development. CONCLUSION The inclusion of vitamins and a ketogenic diet in disease-modifying ALS therapy can reduce the progression rate of motor neuron degeneration and slow the rate of disease progression, but the approach to nutrient selection must be personalized. The roles of vitamins C, D, and B7 as ALS protectors need further study.
Collapse
Affiliation(s)
- Polina S. Goncharova
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
| | - Tatiana K. Davydova
- Center of Neurogenerative Disorders, Yakut Science Centre of Complex Medical Problems, 677000 Yakutsk, Russia; (T.K.D.); (T.E.P.)
| | - Tatiana E. Popova
- Center of Neurogenerative Disorders, Yakut Science Centre of Complex Medical Problems, 677000 Yakutsk, Russia; (T.K.D.); (T.E.P.)
| | - Maxim A. Novitsky
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
| | - Marina M. Petrova
- Center for Collective Using “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (O.A.G.)
| | - Oksana A. Gavrilyuk
- Center for Collective Using “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (O.A.G.)
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Natalia G. Zhukova
- Department of Neurology and Neurosurgery, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Regina F. Nasyrova
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
| | - Natalia A. Shnayder
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
- Center for Collective Using “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (O.A.G.)
| |
Collapse
|
8
|
Lipidomics study of plasma from patients suggest that ALS and PLS are part of a continuum of motor neuron disorders. Sci Rep 2021; 11:13562. [PMID: 34193885 PMCID: PMC8245424 DOI: 10.1038/s41598-021-92112-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/14/2020] [Indexed: 12/04/2022] Open
Abstract
Motor neuron disorders (MND) include a group of pathologies that affect upper and/or lower motor neurons. Among them, amyotrophic lateral sclerosis (ALS) is characterized by progressive muscle weakness, with fatal outcomes only in a few years after diagnosis. On the other hand, primary lateral sclerosis (PLS), a more benign form of MND that only affects upper motor neurons, results in life-long progressive motor dysfunction. Although the outcomes are quite different, ALS and PLS present with similar symptoms at disease onset, to the degree that both disorders could be considered part of a continuum. These similarities and the lack of reliable biomarkers often result in delays in accurate diagnosis and/or treatment. In the nervous system, lipids exert a wide variety of functions, including roles in cell structure, synaptic transmission, and multiple metabolic processes. Thus, the study of the absolute and relative concentrations of a subset of lipids in human pathology can shed light into these cellular processes and unravel alterations in one or more pathways. In here, we report the lipid composition of longitudinal plasma samples from ALS and PLS patients initially, and after 2 years following enrollment in a clinical study. Our analysis revealed common aspects of these pathologies suggesting that, from the lipidomics point of view, PLS and ALS behave as part of a continuum of motor neuron disorders.
Collapse
|
9
|
Cheng Y, Chen Y, Shang H. Aberrations of biochemical indicators in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:3. [PMID: 33419478 PMCID: PMC7792103 DOI: 10.1186/s40035-020-00228-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has suggested that the pathological changes in amyotrophic lateral sclerosis (ALS) are not only confined to the central nervous system but also occur in the peripheral circulating system. Here, we performed a meta-analysis based on the PubMed, EMBASE, EBSCO, and CNKI databases, to find out biochemical indicators associated with energy metabolism, iron homeostasis, and muscle injury that are altered in ALS patients and their correlations with ALS phenotypes. Forty-six studies covering 17 biochemical indicators, representing 5454 ALS patients and 7986 control subjects, were included in this meta-analysis. Four indicators, including fasting blood glucose level (weighted mean difference [WMD] = 0.13, 95% CI [0.06–0.21], p = 0.001), serum ferritin level (WMD = 63.42, 95% CI [48.12–78.73], p < 0.001), transferrin saturation coefficient level (WMD = 2.79, 95% CI [1.52–4.05], p < 0.001), and creatine kinase level (WMD = 80.29, 95% CI [32.90–127.67], p < 0.001), were significantly higher in the ALS patients, whereas the total iron-binding capacity (WMD = − 2.42, 95% CI [− 3.93, − 0.90], p = 0.002) was significantly lower in ALS patients than in the control subjects. In contrast, the other 12 candidates did not show significant differences between ALS patients and controls. Moreover, pooled hazard ratios (HR) showed significantly reduced survival (HR = 1.38, 95% CI [1.02–1.88], p = 0.039) of ALS patients with elevated serum ferritin levels. These findings suggest that abnormalities in energy metabolism and disruption of iron homeostasis are involved in the pathogenesis of ALS. In addition, the serum ferritin level is negatively associated with the overall survival of ALS patients.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
FernÁndez-Eulate G, Ruiz-Sanz JI, Riancho J, ZufirÍa M, GereÑu G, FernÁndez-TorrÓn R, Poza-Aldea JJ, Ondaro J, Espinal JB, GonzÁlez-ChinchÓn G, Zulaica M, Ruiz-Larrea MB, LÓpez De Munain A, Gil-Bea FJ. A comprehensive serum lipidome profiling of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:252-262. [PMID: 32106710 DOI: 10.1080/21678421.2020.1730904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: To perform a comprehensive lipid profiling to evaluate potential lipid metabolic differences between patients with amyotrophic lateral sclerosis (ALS) and controls, and to provide a more profound understanding of the metabolic abnormalities in ALS. Methods: Twenty patients with ALS and 20 healthy controls were enrolled in a cross-sectional study. Untargeted lipidomics profiling in fasting serum samples were performed by optimized UPLC-MS platforms for broad lipidome coverage. Datasets were analyzed by univariate and a variety of multivariate procedures. Results: We provide the most comprehensive blood lipid profiling of ALS to date, with a total of 416 lipids measured. Univariate analysis showed that 28 individual lipid features and two lipid classes, triacylglycerides and oxidized fatty acids (FAs), were altered in patients with ALS, although none of these changes remained significant after multiple comparison adjustment. Most of these changes remained constant after removing from the analysis individuals treated with lipid-lowering drugs. The non-supervised principal component analysis did not identify any lipid clustering of patients with ALS and controls. Despite this, we performed a variety of linear and non-linear supervised multivariate models to select the most reliable features that discriminate the lipid profile of patients with ALS from controls. These were the monounsaturated FAs C24:1n-9 and C14:1, the triglyceride TG(51:4) and the sphingomyelin SM(36:2). Conclusions: Peripheral alterations of lipid metabolism are poorly defined in ALS, triacylglycerides and certain types of FAs could contribute to the different lipid profile of patients with ALS. These findings should be validated in an independent cohort.
Collapse
Affiliation(s)
- Gorka FernÁndez-Eulate
- Neurology Department, Donostia University Hospital, San Sebastián, Spain.,Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| | - JosÉ Ignacio Ruiz-Sanz
- Physiology Department, Medicine and Nursing School, University of the Basque Country UPV/EHU, Lejona, Spain
| | - Javier Riancho
- Neurology Department, Sierrallana Hospital, Torrelavega, Spain.,CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Carlos III Institute of Health, Madrid, Spain
| | - Monica ZufirÍa
- Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Carlos III Institute of Health, Madrid, Spain
| | - Gorka GereÑu
- Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Carlos III Institute of Health, Madrid, Spain
| | - Roberto FernÁndez-TorrÓn
- Neurology Department, Donostia University Hospital, San Sebastián, Spain.,Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| | | | - Jon Ondaro
- Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Carlos III Institute of Health, Madrid, Spain
| | | | | | - Miren Zulaica
- Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Carlos III Institute of Health, Madrid, Spain
| | - Maria BegoÑa Ruiz-Larrea
- Physiology Department, Medicine and Nursing School, University of the Basque Country UPV/EHU, Lejona, Spain
| | - Adolfo LÓpez De Munain
- Neurology Department, Donostia University Hospital, San Sebastián, Spain.,Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Carlos III Institute of Health, Madrid, Spain.,Neurosciences Department, Medicine and Nursing School, University of the Basque Country UPV/EHU, San Sebastian, Spain
| | - Francisco Javier Gil-Bea
- Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
11
|
Alessenko A, Gutner U, Nebogatikov V, Shupik M, Ustyugov A. The role of lipids in the pathogenesis of lateral amyotrophic sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:108-117. [DOI: 10.17116/jnevro2020120101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Yang ZH, Shi CH, Zhou LN, Li YS, Yang J, Liu YT, Mao CY, Luo HY, Xu GW, Xu YM. Metabolic Profiling Reveals Biochemical Pathways and Potential Biomarkers of Spinocerebellar Ataxia 3. Front Mol Neurosci 2019; 12:159. [PMID: 31316347 PMCID: PMC6611058 DOI: 10.3389/fnmol.2019.00159] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia 3, also known as Machado-Joseph disease (SCA3/MJD), is a rare autosomal-dominant neurodegenerative disease caused by an abnormal expansion of CAG repeats in the ATXN3 gene. In the present study, we performed a global metabolomic analysis to identify pathogenic biochemical pathways and novel biomarkers implicated in SCA3 patients. Metabolic profiling of serum samples from 13 preclinical SCA3 patients, 13 symptomatic SCA3 patients, and 15 healthy controls were mapped using ultra-high-performance liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry techniques. The symptomatic SCA3 patients showed a metabolic profile significantly distinct from those of the preclinical SCA3 patients and healthy controls. The principal differential metabolites were involved in the amino acid (AA) metabolism and fatty acid metabolism pathways. In addition, four candidate serum biomarkers, FFA 16:1 (palmitoleic acid), FFA 18:3 (linolenic acid), L-Proline and L-Tryptophan, were selected to discriminate between symptomatic SCA3 patients and healthy controls by receiver operator curve analysis with an area under the curve of 0.979. Our study demonstrates that symptomatic SCA3 patients present distinct metabolic profiles with perturbed AA metabolism and fatty acid metabolism, and FFA 16:1, FFA 18:3, L-Proline and L-Tryptophan are identified as potential disease biomarkers.
Collapse
Affiliation(s)
- Zhi-Hua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Li-Na Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yu-Sheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Cheng-Yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hai-Yang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guo-Wang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
González De Aguilar JL. Lipid Biomarkers for Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:284. [PMID: 31019485 PMCID: PMC6458258 DOI: 10.3389/fneur.2019.00284] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal degenerative disease primarily characterized by the selective loss of upper and lower motor neurons. To date, there is still an unmet need for robust and practical biomarkers that could estimate the risk of the disease and its progression. Based on metabolic modifications observed at the level of the whole body, different classes of lipids have been proposed as potential biomarkers. This review summarizes investigations carried out over the last decade that focused on changes in three major lipid species, namely cholesterol, triglycerides and fatty acids. Despite some contradictory findings, it is becoming increasingly accepted that dyslipidemia, and related aberrant energy homeostasis, must be considered as essential components of the pathological process. Therefore, it is tempting to envisage dietary interventions as a means to counterbalance the metabolic disturbances and ameliorate the patient's quality of life.
Collapse
Affiliation(s)
- Jose-Luis González De Aguilar
- Université de Strasbourg, UMR_S1118, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénerescence, Strasbourg, France
| |
Collapse
|
14
|
Ning P, Yang B, Li S, Mu X, Shen Q, Hu F, Tang Y, Yang X, Xu Y. Systematic review of the prognostic role of body mass index in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:356-367. [PMID: 30931632 DOI: 10.1080/21678421.2019.1587631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Pingping Ning
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China,
| | - Baiyuan Yang
- Department of Neurology, Seventh People’s Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China,
| | - Shuangjiang Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China,
| | - Xin Mu
- Department of Neurology, Chengdu First People’s Hospital, Chengdu, Sichuan Province, P.R. China and
| | - Qiuyan Shen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China,
| | - Fayun Hu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China,
| | - Yao Tang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China,
| | - Xinglong Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, P.R. China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China,
| |
Collapse
|
15
|
Ahmed RM, Highton-Williamson E, Caga J, Thornton N, Ramsey E, Zoing M, Kim WS, Halliday GM, Piguet O, Hodges JR, Farooqi IS, Kiernan MC. Lipid Metabolism and Survival Across the Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Spectrum: Relationships to Eating Behavior and Cognition. J Alzheimers Dis 2019; 61:773-783. [PMID: 29254092 DOI: 10.3233/jad-170660] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) exhibit changes in eating behavior that could potentially affect lipid levels. OBJECTIVE This study aimed to document changes in lipid metabolism across the ALS-FTD spectrum to identify potential relationships to eating behavior (including fat intake), cognitive change, body mass index (BMI), and effect on survival. METHODS One hundred and twenty-eight participants were recruited: 37 ALS patients, 15 ALS patients with cognitive and behavioral change (ALS-Plus), 13 ALS-FTD, 31 behavioral variant FTD, and 32 healthy controls. Fasting total cholesterol, low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL) and triglyceride levels were measured and correlated to eating behavior (caloric, fat intake), cognitive change, and BMI; effect on survival was examined using cox regression analyses. RESULTS There was a spectrum of lipid changes from ALS to FTD with increased triglyceride (p < 0.001), total cholesterol/HDL ratio (p < 0.001), and lower HDL levels (p = 0.001) in all patient groups compared to controls. While there was no increase in total cholesterol levels, a higher cholesterol level was found to correlate with 3.25 times improved survival (p = 0.008). Triglyceride and HDL cholesterol levels correlated to fat intake, BMI, and measures of cognition and disease duration. CONCLUSION A spectrum of changes in lipid metabolism has been identified in ALS-FTD, with total cholesterol levels found to potentially impact on survival. These changes were mediated by changes in fat intake, and BMI, and may also be mediated by the neurodegenerative process, offering the potential to modify these factors to slow disease progression and improve survival.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| | | | - Jashelle Caga
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Nicolette Thornton
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Eleanor Ramsey
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Margaret Zoing
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Woojin Scott Kim
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,Neuroscience Research Australia and the University of NSW, Faculty of Medicine, Sydney, Australia
| | - Olivier Piguet
- ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,Neuroscience Research Australia and the University of NSW, Faculty of Medicine, Sydney, Australia.,The University of Sydney, School of Psychology and Brain and Mind Centre, Sydney, Australia
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,Neuroscience Research Australia and the University of NSW, Faculty of Medicine, Sydney, Australia
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Matthew C Kiernan
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
16
|
Hussain G, Anwar H, Rasul A, Imran A, Qasim M, Zafar S, Imran M, Kamran SKS, Aziz N, Razzaq A, Ahmad W, Shabbir A, Iqbal J, Baig SM, Ali M, Gonzalez de Aguilar JL, Sun T, Muhammad A, Muhammad Umair A. Lipids as biomarkers of brain disorders. Crit Rev Food Sci Nutr 2019; 60:351-374. [DOI: 10.1080/10408398.2018.1529653] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ghulam Hussain
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shamaila Zafar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Syed Kashif Shahid Kamran
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Nimra Aziz
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Waseem Ahmad
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, Strasbourg, France
- Mécanismes Centraux et Péripheriques de la Neurodégénérescence, INSERM, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, China
| | - Atif Muhammad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | |
Collapse
|
17
|
Overview of Lipid Biomarkers in Amyotrophic Lateral Sclerosis (ALS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:233-241. [PMID: 31562633 DOI: 10.1007/978-3-030-21735-8_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease involving motor neuron (MN) degeneration in the spinal cord, brain stem and primary motor cortex. The existence of inflammatory processes around MN and axonal degeneration in ALS has been shown. Unfortunately, none of the successful therapies in ALS animal models has improved clinical outcomes in patients with ALS. Therefore, the detection of blood biomarkers to be used as screening tools for disease onset and progression has been an expanding research area with few advances in the development of drugs for the treatment of ALS. In this review, we will address the available data analyzing regarding the relationship of lipid metabolism and lipid derived- products with ALS. We will address the advances on the studies about the role that lipids plays at the onset, progression and lifespan extension of ALS patients.
Collapse
|
18
|
Theme 6 Tissue biomarkers. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:198-216. [DOI: 10.1080/21678421.2018.1510573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Dardiotis E, Siokas V, Sokratous M, Tsouris Z, Aloizou AM, Florou D, Dastamani M, Mentis AFA, Brotis AG. Body mass index and survival from amyotrophic lateral sclerosis: A meta-analysis. Neurol Clin Pract 2018; 8:437-444. [PMID: 30564498 DOI: 10.1212/cpj.0000000000000521] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Background Several studies have examined the relationship between body mass index (BMI) and survival from amyotrophic lateral sclerosis (ALS). Many indicate that low BMI at diagnosis or during follow-up may be associated with accelerated progression and shortened survival. This study systematically evaluated the relationship between BMI and survival in patients with ALS. Methods The PubMed database was searched to identify all available studies reporting time-to-event data. Eight studies with 6,098 patients fulfilled the eligibility criteria. BMI was considered a continuous and ordered variable. Interstudy heterogeneity was assessed by the Cochran Q test and quantified by the I2 metric. Fixed- or random-effects odds ratios summarized pooled effects after taking interstudy variability into account. Significance was set at p < 0.05. Results The ALS survival hazard ratio (HR) decreased approximately by 3% (95% confidence interval [CI]: 2%-5%) for each additional BMI unit when BMI was considered a continuous variable. When BMI was considered a categorical variable, the HRs for "normal" BMI vs "overweight" BMI and "obese" BMI were estimated to be as high as 0.91 (95% CI: 0.79-1.04) and 0.78 (95% CI: 0.60-1.01), respectively. The HR for the comparison of the "normal" BMI vs "underweight" BMI was estimated to be as high as 1.94 (95% CI: 1.42-2.65). Conclusions BMI is significantly and inversely associated with ALS survival.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Maria Sokratous
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Desponia Florou
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Metaxia Dastamani
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexios-Fotios A Mentis
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexandros G Brotis
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
20
|
Trostchansky A, Mastrogiovanni M, Miquel E, Rodríguez-Bottero S, Martínez-Palma L, Cassina P, Rubbo H. Profile of Arachidonic Acid-Derived Inflammatory Markers and Its Modulation by Nitro-Oleic Acid in an Inherited Model of Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2018; 11:131. [PMID: 29760648 PMCID: PMC5936757 DOI: 10.3389/fnmol.2018.00131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
The lack of current treatments for amyotrophic lateral sclerosis (ALS) highlights the need of a comprehensive understanding of the biological mechanisms of the disease. A consistent neuropathological feature of ALS is the extensive inflammation around motor neurons and axonal degeneration, evidenced by accumulation of reactive astrocytes and activated microglia. Final products of inflammatory processes may be detected as a screening tool to identify treatment response. Herein, we focus on (a) detection of arachidonic acid (AA) metabolization products by lipoxygenase (LOX) and prostaglandin endoperoxide H synthase in SOD1G93A mice and (b) evaluate its response to the electrophilic nitro-oleic acid (NO2-OA). Regarding LOX-derived products, a significant increase in 12-hydroxyeicosatetraenoic acid (12-HETE) levels was detected in SOD1G93A mice both in plasma and brain whereas no changes were observed in age-matched non-Tg mice at the onset of motor symptoms (90 days-old). In addition, 15-hydroxyeicosatetraenoic acid (15-HETE) levels were greater in SOD1G93A brains compared to non-Tg. Prostaglandin levels were also increased at day 90 in plasma from SOD1G93A compared to non-Tg being similar in both types of animals at later stages of the disease. Administration of NO2-OA 16 mg/kg, subcutaneously (s/c) three times a week to SOD1G93A female mice, lowered the observed increase in brain 12-HETE levels compared to the non-nitrated fatty acid condition, and modified many others inflammatory markers. In addition, NO2-OA significantly improved grip strength and rotarod performance compared to vehicle or OA treated animals. These beneficial effects were associated with increased hemeoxygenase 1 (HO-1) expression in the spinal cord of treated mice co-localized with reactive astrocytes. Furthermore, significant levels of NO2-OA were detected in brain and spinal cord from NO2-OA -treated mice indicating that nitro-fatty acids (NFA) cross brain–blood barrier and reach the central nervous system to induce neuroprotective actions. In summary, we demonstrate that LOX-derived oxidation products correlate with disease progression. Overall, we are proposing that key inflammatory mediators of AA-derived pathways may be useful as novel footprints of ALS onset and progression as well as NO2-OA as a promising therapeutic compound.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Ernesto Miquel
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Rodríguez-Bottero
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Martínez-Palma
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Patricia Cassina
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
21
|
Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci 2018; 11:10. [PMID: 29410613 PMCID: PMC5787076 DOI: 10.3389/fnmol.2018.00010] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS.
Collapse
Affiliation(s)
- Timothy J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Henriques A, Croixmarie V, Bouscary A, Mosbach A, Keime C, Boursier-Neyret C, Walter B, Spedding M, Loeffler JP. Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2018; 10:433. [PMID: 29354030 PMCID: PMC5758557 DOI: 10.3389/fnmol.2017.00433] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Lipid metabolism is drastically dysregulated in amyotrophic lateral sclerosis and impacts prognosis of patients. Animal models recapitulate alterations in the energy metabolism, including hypermetabolism and severe loss of adipose tissue. To gain insight into the molecular mechanisms underlying disease progression in amyotrophic lateral sclerosis, we have performed RNA-sequencing and lipidomic profiling in spinal cord of symptomatic SOD1G86R mice. Spinal transcriptome of SOD1G86R mice was characterized by differential expression of genes related to immune system, extracellular exosome, and lysosome. Hypothesis-driven identification of metabolites showed that lipids, including sphingomyelin(d18:0/26:1), ceramide(d18:1/22:0), and phosphatidylcholine(o-22:1/20:4) showed profound altered levels. A correlation between disease severity and gene expression or metabolite levels was found for sphingosine, ceramide(d18:1/26:0), Sgpp2, Sphk1, and Ugt8a. Joint-analysis revealed a significant enrichment of glycosphingolipid metabolism in SOD1G86R mice, due to the down-regulation of ceramide, glucosylceramide, and lactosylceramide and the overexpression of genes involved in their recycling in the lysosome. A drug-gene interaction database was interrogated to identify potential drugs able to modulate the dysregulated genes from the signaling pathway. Our results suggest that complex lipids are pivotally changed during the first phase of motor symptoms in an animal model of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Alexandre Henriques
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Spedding Research Solutions SAS, Le Vesinet, France
| | | | - Alexandra Bouscary
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | - Althéa Mosbach
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch, France
| | | | | | | | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| |
Collapse
|
23
|
Martínez HR, Escamilla-Ocañas CE, Camara-Lemarroy CR, González-Garza MT, Tenorio-Pedraza JM, Hernández-Torre M. CSF concentrations of adipsin and adiponectin in patients with amyotrophic lateral sclerosis. Acta Neurol Belg 2017; 117:879-883. [PMID: 28550440 DOI: 10.1007/s13760-017-0798-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/20/2017] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is described as a neurodegenerative disorder. However, neuroinflammation and chemokine expression are prominent pathological finding at sites of injury. Adipsin and adiponectin are molecules that are implicated in the pathogenesis of neurodegenerative and neuroimmune disorders. Adipsin and adiponectin concentrations were determined in the CSF of ALS patients and controls and the relationship of these chemokines with clinical severity and disease duration in ALS was determined. Seventy-seven ALS patients (mean age 49.5 ± 10.4 years) (mean body mass index 23.5 ± 4.5) were included. Twenty patients had bulbar, 53 spinal, and four bulbospinal onset ALS. Median adipsin CSF level was 12,650.94 pg/ml in ALS patients and 3290.98 pg/ml in controls (p < 0.001). Median adiponectin CSF level was 4608 pg/ml in ALS patients and 3453 pg/ml in controls (p = 0.1). No differences were observed in disease duration, progression rate or disease severity. There was a significant positive correlation between adipsin and adiponectin concentrations (r = 0.379, p = 0.01). No correlation with age, body mass index or ALFRS-R score was found. Adipsin was significantly elevated in CSF, suggesting that this chemokine might have a role in ALS pathogenesis. Adiponectin showed a trend towards higher concentrations, but failed to reach statistical significance. Due to the clinical heterogeneity in our cohort, these chemokines do not appear to be associated with disease duration or severity.
Collapse
Affiliation(s)
- Héctor R Martínez
- Instituto de Neurología y Neurocirugía, Centro Medico Zambrano Hellion, Tecnológico de Monterrey, Monterrey, Mexico
- Servicio de Neurología, Hospital Universitario UANL, Av. Gonzalitos y Av. Madero SN, 64600, Monterrey, Nuevo Leon, Mexico
| | - César E Escamilla-Ocañas
- Instituto de Neurología y Neurocirugía, Centro Medico Zambrano Hellion, Tecnológico de Monterrey, Monterrey, Mexico
- Terapia Celular, CITES, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, Mexico
| | - Carlos R Camara-Lemarroy
- Instituto de Neurología y Neurocirugía, Centro Medico Zambrano Hellion, Tecnológico de Monterrey, Monterrey, Mexico.
- Servicio de Neurología, Hospital Universitario UANL, Av. Gonzalitos y Av. Madero SN, 64600, Monterrey, Nuevo Leon, Mexico.
| | - María T González-Garza
- Terapia Celular, CITES, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, Mexico
| | - Juan M Tenorio-Pedraza
- Terapia Celular, CITES, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, Mexico
| | - Martín Hernández-Torre
- Instituto de Medicina Interna, Centro Medico Zambrano Hellion, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
24
|
Henriques A, Croixmarie V, Priestman DA, Rosenbohm A, Dirrig-Grosch S, D'Ambra E, Huebecker M, Hussain G, Boursier-Neyret C, Echaniz-Laguna A, Ludolph AC, Platt FM, Walther B, Spedding M, Loeffler JP, Gonzalez De Aguilar JL. Amyotrophic lateral sclerosis and denervation alter sphingolipids and up-regulate glucosylceramide synthase. Hum Mol Genet 2015; 24:7390-405. [PMID: 26483191 PMCID: PMC4664174 DOI: 10.1093/hmg/ddv439] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease characterized by upper and lower motor neuron degeneration, muscle wasting and paralysis. Growing evidence suggests a link between changes in lipid metabolism and ALS. Here, we used UPLC/TOF-MS to survey the lipidome in SOD1(G86R) mice, a model of ALS. Significant changes in lipid expression were evident in spinal cord and skeletal muscle before overt neuropathology. In silico analysis also revealed appreciable changes in sphingolipids including ceramides and glucosylceramides (GlcCer). HPLC analysis showed increased amounts of GlcCer and downstream glycosphingolipids (GSLs) in SOD1(G86R) muscle compared with wild-type littermates. Glucosylceramide synthase (GCS), the enzyme responsible for GlcCer biosynthesis, was up-regulated in muscle of SOD1(G86R) mice and ALS patients, and in muscle of wild-type mice after surgically induced denervation. Conversely, inhibition of GCS in wild-type mice, following transient peripheral nerve injury, reversed the overexpression of genes in muscle involved in oxidative metabolism and delayed motor recovery. GCS inhibition in SOD1(G86R) mice also affected the expression of metabolic genes and induced a loss of muscle strength and morphological deterioration of the motor endplates. These findings suggest that GSLs may play a critical role in ALS muscle pathology and could lead to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Alexandre Henriques
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France
| | | | | | | | - Sylvie Dirrig-Grosch
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France
| | - Eleonora D'Ambra
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France
| | | | - Ghulam Hussain
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Department of Physiology, GC University, Faisalabad, Pakistan
| | | | - Andoni Echaniz-Laguna
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Hôpitaux Universitaires, Département de Neurologie, Strasbourg, France
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Michael Spedding
- Les Laboratoires Servier, Suresnes, France and Spedding Research Solutions SARL, Le Vesinet, France
| | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France
| | - Jose-Luis Gonzalez De Aguilar
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France,
| |
Collapse
|
25
|
The interplay between metabolic homeostasis and neurodegeneration: insights into the neurometabolic nature of amyotrophic lateral sclerosis. CELL REGENERATION 2015; 4:5. [PMID: 26322226 PMCID: PMC4551561 DOI: 10.1186/s13619-015-0019-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/23/2015] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that is characterized by the selective degeneration of upper motor neurons and lower spinal motor neurons, resulting in the progressive paralysis of all voluntary muscles. Approximately 10 % of ALS cases are linked to known genetic mutations, with the remaining 90 % of cases being sporadic. While the primary pathology in ALS is the selective death of upper and lower motor neurons, numerous studies indicate that an imbalance in whole body and/or cellular metabolism influences the rate of progression of disease. This review summarizes current research surrounding the impact of impaired metabolic physiology in ALS. We extend ideas to consider prospects that lie ahead in terms of how metabolic alterations may impact the selective degeneration of neurons in ALS and how targeting of adenosine triphosphate-sensitive potassium (KATP) channels may represent a promising approach for obtaining neuroprotection in ALS.
Collapse
|