1
|
Mocking TAM, van Oostveen WM, van Veldhoven JPD, Minnee H, Fehres CM, Whitehurst CE, IJzerman AP, Heitman LH. Label-free detection of prostaglandin transporter (SLCO2A1) function and inhibition: insights by wound healing and TRACT assays. Front Pharmacol 2024; 15:1372109. [PMID: 38783936 PMCID: PMC11111933 DOI: 10.3389/fphar.2024.1372109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The prostaglandin transporter (PGT, SLCO2A1) mediates transport of prostanoids (a.o. prostaglandin E2 (PGE2)) into cells and thereby promotes their degradation. Overexpression of PGT leads to low extracellular PGE2 levels and has been linked to impaired wound healing of diabetic foot ulcers. Inhibition of PGT could thus be beneficial, however, no PGT inhibitors are currently on the market and drug discovery efforts are hampered by lack of high-through screening assays for this transporter. Here we report on a label-free impedance-based assay for PGT that measures transport activity through receptor activation (TRACT) utilizing prostaglandin E2 receptor subtype EP3 and EP4 that are activated by PGE2. We found that induction of PGT expression on HEK293-JumpIn-SLCO2A1 cells that also express EP3 and EP4 leads to an over 10-fold reduction in agonistic potency of PGE2. PGE2 potency could be recovered upon inhibition of PGT-mediated PGE2 uptake with PGT inhibitors olmesartan and T26A, the potency of which could be established as well. Moreover, the TRACT assay enabled the assessment of transport function of PGT natural variants. Lastly, HUVEC cells endogenously expressing prostanoid receptors and PGT were exploited to study wound healing properties of PGE2 and T26A in real-time using a novel impedance-based scratch-induced wound healing assay. These novel impedance-based assays will advance PGT drug discovery efforts and pave the way for the development of PGT-based therapies.
Collapse
Affiliation(s)
- Tamara A. M. Mocking
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | | | - Hugo Minnee
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Cynthia M. Fehres
- Department of Rheumatology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Charles E. Whitehurst
- Immunology and Respiratory Diseases, Boehringer-Ingelheim, Ridgefield, CT, United States
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Oncode Institute, Leiden, Netherlands
| |
Collapse
|
2
|
Yan P, Li K, Cao Y, Wu D, Li J, Qian J, Zhou W, Li J. What is the appropriate treatment strategy for cryptogenic multifocal ulcerative stenosing enteritis? A single-center experience from China. Front Med (Lausanne) 2022; 9:926800. [PMID: 36035430 PMCID: PMC9405664 DOI: 10.3389/fmed.2022.926800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThere are few reports on standard treatment and long-term prognosis in patients with cryptogenic multifocal ulcerative stenosing enteritis (CMUSE), particularly in patients in whom remission could not be induced by steroids. The aim of this study was to evaluate the treatment response and progression-free periods of patients with CMUSE and to identify the factors predictive of steroid resistance.MethodsThis was a retrospective cohort study that included 25 patients with clinically confirmed CMUSE between 1984 and 2021 from the enteropathy clinic of a tertiary care center. For statistical analyses, chi-square test or Fisher’s exact test were used for categorical variables. Survival curves were plotted using the Kaplan–Meier method.ResultsThe overall median progression-free period was 48 months (range, 1–108 months) after comprehensive therapy, and initial manifestation with severe bleeding rather than ileus was associated with the long-term efficacy. Patients with steroid resistance (N = 10, 55.6%) had poor prognosis, and non-responders had more favorable baseline clinical characteristics, with a higher percentage of female patients (60% vs. 12.5%), earlier disease onset (26.5 years vs. 39 years), rapid progression (42 vs. 108 months), severe anemia (80% vs. 50%), and hypoalbuminemia (50% vs. 0%), in accord with lymphangiectasia or angioectasia identified in pathology.ConclusionThere is no guaranteed treatment strategy in the maintenance of long-term clinical remission for CMUSE patients, particularly in whom with steroid resistance. Female patients with early symptoms onset, severe gastrointestinal hemorrhage and hypoalbuminemia seem to have poor long-term prognosis.
Collapse
Affiliation(s)
- Pengguang Yan
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Kemin Li
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Cao
- Peking Union Medical College, Beijing, China
| | - Dong Wu
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaming Qian
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Jingnan Li
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jingnan Li,
| |
Collapse
|
3
|
Wang L, Wu Y, Jia Z, Yu J, Huang S. Roles of EP Receptors in the Regulation of Fluid Balance and Blood Pressure. Front Endocrinol (Lausanne) 2022; 13:875425. [PMID: 35813612 PMCID: PMC9262144 DOI: 10.3389/fendo.2022.875425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important prostanoid expressing throughout the kidney and cardiovascular system. Despite the diverse effects on fluid metabolism and blood pressure, PGE2 is implicated in sustaining volume and hemodynamics homeostasis. PGE2 works through four distinct E-prostanoid (EP) receptors which are G protein-coupled receptors. To date, pharmacological specific antagonists and agonists of all four subtypes of EP receptors and genetic targeting knockout mice for each subtype have helped in uncoupling the diverse functions of PGE2 and discriminating the respective characteristics of each receptor. In this review, we summarized the functions of individual EP receptor subtypes in the renal and blood vessels and the molecular mechanism of PGE2-induced fluid metabolism and blood pressure homeostasis.
Collapse
Affiliation(s)
- Lu Wang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqian Wu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| | - Songming Huang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| |
Collapse
|
4
|
Nakanishi T, Nakamura Y, Umeno J. Recent advances in studies of SLCO2A1 as a key regulator of the delivery of prostaglandins to their sites of action. Pharmacol Ther 2021; 223:107803. [PMID: 33465398 DOI: 10.1016/j.pharmthera.2021.107803] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (SLCO2A1, also known as PGT, OATP2A1, PHOAR2, or SLC21A2) is a plasma membrane transporter consisting of 12 transmembrane domains. It is ubiquitously expressed in tissues, and mediates the membrane transport of prostaglandins (PGs, mainly PGE2, PGF2α, PGD2) and thromboxanes (e.g., TxB2). SLCO2A1-mediated transport is electrogenic and is facilitated by an outwardly directed gradient of lactate. PGs imported by SLCO2A1 are rapidly oxidized by cytoplasmic 15-hydroxyprostaglandin dehydrogenase (15-PGDH, encoded by HPGD). Accumulated evidence suggests that SLCO2A1 plays critical roles in many physiological processes in mammals, and it is considered a potential pharmacological target for diabetic foot ulcer treatment, antipyresis, and non-hormonal contraception. Furthermore, whole-exome analyses suggest that recessive inheritance of SLCO2A1 mutations is associated with two refractory diseases, primary hypertrophic osteoarthropathy (PHO) and chronic enteropathy associated with SLCO2A1 (CEAS). Intriguingly, SLCO2A1 is also a key component of the Maxi-Cl channel, which regulates fluxes of inorganic and organic anions, including ATP. Further study of the bimodal function of SLCO2A1 as a transporter and ion channel is expected to throw new light on the complex pathology of human diseases. Here, we review and summarize recent information on the molecular functions of SLCO2A1, and we discuss its pathophysiological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan.
| | - Yoshinobu Nakamura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Inagaki M, Nishimura T, Nakanishi T, Shimada H, Noguchi S, Akanuma SI, Tachikawa M, Hosoya KI, Tamai I, Nakashima E, Tomi M. Contribution of Prostaglandin Transporter OATP2A1/SLCO2A1 to Placenta-to-Maternal Hormone Signaling and Labor Induction. iScience 2020; 23:101098. [PMID: 32408168 PMCID: PMC7225742 DOI: 10.1016/j.isci.2020.101098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/22/2020] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
We evaluated the contribution of organic anion transporting polypeptide 2A1 (OATP2A1/SLCO2A1), a high-affinity carrier for prostaglandins (PGs), to the parturition process. At gestational day (GD) 15.5, OATP2A1 is co-localized with 15-hydroxy-PG dehydrogenase in the mouse placental junctional zone and facilitates PG degradation by delivering PGs to the cytoplasm. Slco2a1 (+/-) females mated with Slco2a1 (-/-) males frequently showed elevated circulating progesterone at GD18.5 and delayed parturition. Progesterone receptor inhibition by RU486 treatment at GD18.5 blocked the delay of parturition. In the junctional zone, PGE2 stimulated placental lactogen II (PL-II) production, resulting in higher expression of PL-II in Slco2a1 (-/-) placenta at GD18.5. Indomethacin treatment at GD15.5 suppressed the PL-II overproduction at GD18.5 in Slco2a1 (-/-) embryo-bearing dams, which promoted progesterone withdrawal and corrected the delayed parturition. These results suggest that extracellular PGE2 reduction by OATP2A1 at mid-pregnancy would be associated with progesterone withdrawal by suppressing PL-II production, triggering parturition onset.
Collapse
Affiliation(s)
- Mai Inagaki
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | | | - Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan; Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Shimada
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Saki Noguchi
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Shin-Ichi Akanuma
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Ken-Ichi Hosoya
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Emi Nakashima
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
6
|
Marín-Ocampo L, Veloza LA, Abonia R, Sepúlveda-Arias JC. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur J Med Chem 2018; 162:435-447. [PMID: 30469039 DOI: 10.1016/j.ejmech.2018.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Triazines are heterocyclic compounds with a variety of biological activities that have been increasingly studied in recent years due to their versatile structure (three isoforms) and the different derivatives that can be synthesized from them to ensure functional motifs. This systematic review provides the evidence in the literature of the in vitro and in vivo anti-inflammatory activity of triazine derivatives from 2008 to June 2018. Four bibliographical databases were consulted (PubMed, Web of Science, EMBASE and Scopus), and a total of 48 studies were included in this paper based on our eligibility criteria. Although 35.17% of evaluated triazines were demonstrated to be promising anti-inflammatory agents, further studies need to be conducted to explore their pharmacological profiles in the medical research of drug discovery to control the risk factors and pathophysiology of several chronic inflammation-based diseases.
Collapse
Affiliation(s)
- Laura Marín-Ocampo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Rodrigo Abonia
- Department of Chemistry, Universidad del Valle, Cali, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
7
|
Nakanishi T, Tamai I. Roles of Organic Anion Transporting Polypeptide 2A1 (OATP2A1/SLCO2A1) in Regulating the Pathophysiological Actions of Prostaglandins. AAPS JOURNAL 2017; 20:13. [PMID: 29204966 DOI: 10.1208/s12248-017-0163-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (OATP2A1, encoded by the SLCO2A1 gene), which was initially identified as prostaglandin transporter (PGT), is expressed ubiquitously in tissues and mediates the distribution of prostanoids, such as PGE2, PGF2α, PGD2 and TxB2. It is well known to play a key role in the metabolic clearance of prostaglandins, which are taken up into the cell by OATP2A1 and then oxidatively inactivated by 15-ketoprostaglandin dehydrogenase (encoded by HPGD); indeed, OATP2A1-mediated uptake is the rate-limiting step of PGE2 catabolism. Consequently, since OATP2A1 activity is required for termination of prostaglandin signaling via prostanoid receptors, its inhibition can enhance such signaling. On the other hand, OATP2A1 can also function as an organic anion exchanger, mediating efflux of prostaglandins in exchange for import of anions such as lactate, and in this context, it plays a role in the release of newly synthesized prostaglandins from cells. These different functions likely operate in different compartments within the cell. OATP2A1 is reported to function at cytoplasmic vesicle/organelle membranes. As a regulator of the levels of physiologically active prostaglandins, OATP2A1 is implicated in diverse physiological and pathophysiological processes in many organs. Recently, whole exome analysis has revealed that recessive mutations in SLCO2A1 cause refractory diseases in humans, including primary hypertrophic osteoarthropathy (PHO) and chronic non-specific ulcers in small intestine (CNSU). Here, we review and summarize recent information on the molecular functions of OATP2A1 and on its physiological and pathological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
8
|
Pluchart H, Khouri C, Blaise S, Roustit M, Cracowski JL. Targeting the Prostacyclin Pathway: Beyond Pulmonary Arterial Hypertension. Trends Pharmacol Sci 2017; 38:512-523. [DOI: 10.1016/j.tips.2017.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
|
9
|
Kamo S, Nakanishi T, Aotani R, Nakamura Y, Gose T, Tamai I. Impact of FDA-Approved Drugs on the Prostaglandin Transporter OATP2A1/SLCO2A1. J Pharm Sci 2017; 106:2483-2490. [PMID: 28479361 DOI: 10.1016/j.xphs.2017.04.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 01/25/2023]
Abstract
To understand interaction of drugs with the prostaglandin transporter OATP2A1/SLCO2A1 that regulates disposition of prostaglandins, we explored the impact of 636 drugs in an FDA-approved drug library on 6-carboxyfluorescein (6-CF) uptake by OATP2A1-expressing HEK293 cells (HEK/2A1). Fifty-one and 10 drugs were found to inhibit and enhance 6-CF uptake by more than 50%, respectively. Effect of the 51 drugs on 6-CF uptake was positively correlated with that on PGE2 uptake (r = 0.64, p < 0.001). Among those, 5 drugs not structurally related to prostaglandins, suramin, pranlukast, zafirlukast, olmesartan medoxomil, and losartan potassium, exhibited more than 90% PGE2 uptake inhibition. Inhibitory affinity of suramin to OATP2A1 was the highest (IC50,2A1 of 0.17 μM), and its IC50 values to MRP4-mediated PGE2 transport (IC50,MRP4) and PGE2 synthesis in human U-937 cells treated with phorbol 12-myristate 13-acetate (IC50,Syn) were 73.6 and 336.7 times higher than IC50,2A1, respectively. Moreover, structure-activity relationship study in 29 nonsteroidal anti-inflammatory drugs contained in the library displayed inhibitory activities of anthranilic acid derivatives, but enhancing effects of propionic acid derivatives. These results demonstrate that suramin is a potent selective inhibitor of OATP2A1, providing a comprehensive information about drugs in clinical use that interact with OATP2A1.
Collapse
Affiliation(s)
- Shunsuke Kamo
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Rika Aotani
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshinobu Nakamura
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tomoka Gose
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
10
|
Liu Z, Benard O, Syeda MM, Schuster VL, Chi Y. Inhibition of Prostaglandin Transporter (PGT) Promotes Perfusion and Vascularization and Accelerates Wound Healing in Non-Diabetic and Diabetic Rats. PLoS One 2015; 10:e0133615. [PMID: 26230411 PMCID: PMC4521828 DOI: 10.1371/journal.pone.0133615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/29/2015] [Indexed: 01/29/2023] Open
Abstract
Peripheral ischemia, resulting from diminished arterial flow and defective local vascularization, is one of the main causes of impaired wound healing in diabetes. Vasodilatory prostaglandins (PGs), including PGE2 and PGI2, regulate blood flow in peripheral tissues. PGs also stimulate angiogenesis by inducing vascular endothelial growth factor. However, PG levels are reduced in diabetes mainly due to enhanced degradation. We hypothesized that inhibition of the prostaglandin transporter (PGT) (SLCO2A1), which mediates the degradation of PGs, would increase blood flow and stimulate vascularization, thereby mitigating peripheral ischemia and accelerating wound healing in diabetes. Here we report that inhibiting PGT with intravenously injected PGT inhibitor, T26A, increased blood flow in ischemic hind limbs created in non-diabetic rats and streptozotocin induced diabetic rats. Systemic, or combined with topical, T26A accelerated closure of cutaneous wounds. Immunohistochemical examination revealed that inhibition of PGT enhanced vascularization (marked by larger numbers of vessels formed by CD34+ cells), and accelerated re-epithelialization of cutaneous wounds. In cultured primary human bone marrow CD34+ cells and human epidermal keratinocytes (HEKs) either inhibiting or silencing PGT increased migration in both cell lines. Thus PGT directly regulates mobilization of endothelial progenitor cells (EPCs) and HEKs, which could contribute to PGT-mediated vascularization and re-epithelialization. At the molecular level, systemic inhibition of PGT raised circulating PGE2. Taken together, our data demonstrate that PGT modulates arterial blood flow, mobilization of EPCs and HEKs, and vascularization and epithelialization in wound healing by regulating vasodilatory and pro-angiogenic PGs.
Collapse
Affiliation(s)
- Zhongbo Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
| | - Outhiriaradjou Benard
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
| | - Mahrukh M. Syeda
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
| | - Victor L. Schuster
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
| | - Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
- * E-mail:
| |
Collapse
|