1
|
Drobnik J, Pobrotyn P, Belovičová M, Madziarska K, Trocha M, Baran M. Mortality in clostridioides difficile infection among patients hospitalized at the university clinical hospital in Wroclaw, Poland - a 3-year observational study. BMC Infect Dis 2024; 24:625. [PMID: 38910242 PMCID: PMC11194962 DOI: 10.1186/s12879-024-09495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND In the last two decades, a significant increase in the number of Clostridioides difficile infection (CDI) cases has been observed. It is understandable to attempt to determine the factors that can predict the severity of the course of the infection and identify patients at risk of death. This study aimed to analyze the factors affecting the incidence and mortality of CDI in inpatient treatment at the University Clinical Hospital in Wrocław in 2016-2018. METHODS Statistical analysis of data obtained from patients' medical records was performed. Only patients with symptoms of infection and infection confirmed by laboratory tests were enrolled in the study. When analyzing the number of deaths, only adult patients who died in hospital wards were included. The quantitative data including laboratory tests, used antibiotics and Nutritional Risk Screening (NRS) were assessed. Also, the qualitative data such as sex, year of hospitalization, occurrence of diarrhoea on admission to the hospital, presence of additional diseases, as wee ad the use of antibacterial drugs or proton pump blockers and ranitidine during hospitalization were analyzed. RESULTS A total of 319 adult CDI patients (178 women and 141 men) were enrolled of which 80 people died (50 women and 30 men). The mean age of the patients was 72.08 ± 16.74 years. Over the entire period studied, the morbidity was 174 cases per 100,000 hospitalizations while mortality was 25.08%. The group of deceased patients was characterized by: older age (by 9.24 years), longer duration of hospitalization (by 10 days), reduced albumin levels (Rho = -0.235, p < 0.001), higher urea levels, use of more antibiotics, higher risk of malnutrition in NRS (Rho = 0.219, p < 0.001), higher incidence of sepsis, heart failure, stroke, hypothyroidism. Pneumonia was diagnosed twice as often. It was also shown that deceased patients were significantly more likely to take penicillin and fluoroquinolones. CONCLUSIONS In this study, the morbidity was lower, but mortality was higher compared to similar hospitals in Poland. CDI patients were characterized by older age, multimorbidity, extended hospitalization, and the use of broad-spectrum antibiotics. Risk factors for death included advanced age, prolonged hospital stays, lower albumin, higher urea, malnutrition, and comorbidities like heart failure, stroke, pneumonia, sepsis, and hypothyroidism. Increased antibiotic use, particularly penicillin and fluoroquinolones, was associated with a higher mortality risk.
Collapse
Affiliation(s)
- Jarosław Drobnik
- Department of Family Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Piotr Pobrotyn
- PULSANTIS Specialist and Rehabilitation Clinic Ltd, Ostrowskiego 3, Wrocław, 53-238, Poland.
| | - Mária Belovičová
- Faculty of Public Health Studies, Department of Preventive and Clinical Medicine, Slovak Medical University, Bratislava, Slovakia
- Internal Clinic for Liver Disease Diagnosis and Treatment, Bardejov Spa, Bardejov, Slovakia
- Slovak Society of Practical Obesitology, Bardejov, Slovakia
| | - Katarzyna Madziarska
- Clinical Department of Diabetology and Internal Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Trocha
- Clinical Department of Diabetology and Internal Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Mateusz Baran
- Individual Specialist Medical Practice, Wroclaw, Poland
| |
Collapse
|
2
|
Costa DVS, Pham N, Loureiro AV, Yang SE, Behm BW, Warren CA. Clostridioides difficile infection promotes gastrointestinal dysfunction in human and mice post-acute phase of the disease. Anaerobe 2024; 87:102837. [PMID: 38527650 PMCID: PMC11180562 DOI: 10.1016/j.anaerobe.2024.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES In the US, Clostridioides difficile (C. difficile) infection (CDI) is the 8th leading cause of hospital readmission and 7th for mortality among all gastrointestinal (GI) disorders. Here, we investigated GI dysfunction post-CDI in humans and mice post-acute infection. MATERIALS AND METHODS From March 2020 to July 2021, we reviewed the clinical records of 67 patients referred to the UVA Complicated C. difficile clinic for fecal microbiota transplantation (FMT) eligibility. C57BL/6 mice were infected with C. difficile and clinical scores were determined daily. Stool samples from mice were collected to measure the shedding of C. difficile and myeloperoxidase (MPO) levels. On day 21 post-infection, Evans's blue and FITC-70kDa methods were performed to evaluate GI motility in mice. RESULTS Of the 67 patients evaluated at the C. difficile clinic, 40 patients (59.7%) were confirmed to have CDI, and 22 patients (32.8%) with post-CDI IBS (diarrhea-type, constipation-type, and mixed-type). In infected mice, levels of MPO in stools and clinical score were higher on day 3. On day 21, mice recovered from body weight loss induced by CDI, and fecal MPO was undetectable. The total GI transit time (TGITT) and FITC-70kDa levels on the proximal colon were increased in infected mice (p = 0.002), suggesting a constipation phenotype post-acute phase of CDI. A positive correlation intestinal inflammation on day 3 and TGITT on day 21 was observed. CONCLUSION In conclusion, post-infection intestinal dysfunction occurs in humans and mice post-CDI. Importantly, we have validated in the mouse model that CDI causes abnormal GI transit in the recovery phase of the disease, indicating the potential utility of the model in exploring the underlying mechanisms of post-infectious IBS in humans.
Collapse
Affiliation(s)
- Deiziane V S Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | - Natalie Pham
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Andrea V Loureiro
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Suemin E Yang
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Brian W Behm
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA, USA
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Yang H, Wu X, Li X, Zang W, Zhou Z, Zhou Y, Cui W, Kou Y, Wang L, Hu A, Wu L, Yin Z, Chen Q, Chen Y, Huang Z, Wang Y, Gu B. A commensal protozoan attenuates Clostridioides difficile pathogenesis in mice via arginine-ornithine metabolism and host intestinal immune response. Nat Commun 2024; 15:2842. [PMID: 38565558 PMCID: PMC10987486 DOI: 10.1038/s41467-024-47075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Antibiotic-induced dysbiosis is a major risk factor for Clostridioides difficile infection (CDI), and fecal microbiota transplantation (FMT) is recommended for treating CDI. However, the underlying mechanisms remain unclear. Here, we show that Tritrichomonas musculis (T.mu), an integral member of the mouse gut commensal microbiota, reduces CDI-induced intestinal damage by inhibiting neutrophil recruitment and IL-1β secretion, while promoting Th1 cell differentiation and IFN-γ secretion, which in turn enhances goblet cell production and mucin secretion to protect the intestinal mucosa. T.mu can actively metabolize arginine, not only influencing the host's arginine-ornithine metabolic pathway, but also shaping the metabolic environment for the microbial community in the host's intestinal lumen. This leads to a relatively low ornithine state in the intestinal lumen in C. difficile-infected mice. These changes modulate C. difficile's virulence and the host intestinal immune response, and thus collectively alleviating CDI. These findings strongly suggest interactions between an intestinal commensal eukaryote, a pathogenic bacterium, and the host immune system via inter-related arginine-ornithine metabolism in the regulation of pathogenesis and provide further insights for treating CDI.
Collapse
Affiliation(s)
- Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxiao Wu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanqing Zang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhou Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenwen Cui
- Xuzhou Center for Disease Control and Prevention, Xuzhou, Jiangsu, China
| | - Yanbo Kou
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ankang Hu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lianlian Wu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Quangang Chen
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhutao Huang
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yugang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Moore JH, Salahi A, Honrado C, Warburton C, Tate S, Warren CA, Swami NS. Correlating Antibiotic-Induced Dysbiosis to Clostridioides difficile Spore Germination and Host Susceptibility to Infection Using an Ex Vivo Assay. ACS Infect Dis 2023; 9:1878-1888. [PMID: 37756389 PMCID: PMC10581205 DOI: 10.1021/acsinfecdis.3c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 09/29/2023]
Abstract
Antibiotic-induced microbiota disruption and its persistence create conditions for dysbiosis and colonization by opportunistic pathogens, such as those causing Clostridioides difficile (C. difficile) infection (CDI), which is the most severe hospital-acquired intestinal infection. Given the wide differences in microbiota across hosts and in their recovery after antibiotic treatments, there is a need for assays to assess the influence of dysbiosis and its recovery dynamics on the susceptibility of the host to CDI. Germination of C. difficile spores is a key virulence trait for the onset of CDI, which is influenced by the level of primary vs secondary bile acids in the intestinal milieu that is regulated by the microbiota composition. Herein, the germination of C. difficile spores in fecal supernatant from mice that are subject to varying degrees of antibiotic treatment is utilized as an ex vivo assay to predict intestinal dysbiosis in the host based on their susceptibility to CDI, as determined by in vivo CDI metrics in the same mouse model. Quantification of spore germination down to lower detection limits than the colony-forming assay is achieved by using impedance cytometry to count single vegetative bacteria that are identified based on their characteristic electrical physiology for distinction vs aggregated spores and cell debris in the media. As a result, germination can be quantified at earlier time points and with fewer spores for correlation to CDI outcomes. This sets the groundwork for a point-of-care tool to gauge the susceptibility of human microbiota to CDI after antibiotic treatments.
Collapse
Affiliation(s)
- John H. Moore
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Armita Salahi
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Carlos Honrado
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Christopher Warburton
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Steven Tate
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Cirle A. Warren
- Infectious
Diseases, School of Medicine, University
of Virginia, Charlottesville, Virginia 22903, United States
| | - Nathan S. Swami
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
- Chemistry, University
of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
5
|
Drapkina OM, Lazebnik LB, Bakulin IG, Zhuravleva MS, Bakulina NV, Skazyvaeva EV, Sitkin SI, Skalinskaya MI, Solovyeva OI, Eremina EY, Tikhonov SV, Fil' TS, Pilat TL, Kuznetsova YG, Khanferyan RA, Livzan MA, Osipenko MF, Abdulganieva DI, Tarasova LV, Khavkin AI. <i>Clostridioides difficile</i> infection: diagnosis, treatment, and prevention Clinical guidelines of the Russian Scientific Medical Society of Internal Medicine, the Gastroenterological Scientific Society of Russia, and the North- West Society of Gastroenterologists and Hepatologists. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:4-32. [DOI: 10.31146/1682-8658-ecg-210-2-4-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Clostridioides difficile infection (CDI) is the most common cause of antibiotic-associated diarrhea, and an important cause of nosocomial infection. Since the publication of the National Guidelines (2016, 2017), new data have been accumulated on the genetic structure and pathogenic properties of the most common causative agent of severe forms of antibiotic- associated diarrhea, which has led to the reclassifi cation of the pathogen, formerly known as Clostridium diffi cile, to Clostridioides difficile. Laboratory algorithms have been developed to diagnose CDI and determine the toxigenicity of strains reliably. New data on the effectiveness of antibacterials have been published, monoclonal antibodies to toxin B (bezlotoxumab) have been introduced into clinical practice to prevent CDI recurrence, and fecal microbiota transplantation has been proposed. Over the past 5 years, many international guidelines on the management of adult patients with CDI have also been updated (USA, EU). In the last decade, including due to the COVID-19 pandemic, there has been an increase in CDI incidence. Considering therelevance of CDI, new data on the pathogen, and domestic features, the Russian Scientific Medical Society of Internal Medicine, the Gastroenterological Scientific Society of Russia, and the North-West Society of Gastroenterologists and Hepatologists developed these clinical guidelines.
Collapse
Affiliation(s)
- O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - L. B. Lazebnik
- A. I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - I. G. Bakulin
- North-Western state medical University named after I. I. Mechnikov
| | - M. S. Zhuravleva
- North-Western state medical University named after I. I. Mechnikov
| | - N. V. Bakulina
- North-Western state medical University named after I. I. Mechnikov
| | - E. V. Skazyvaeva
- North-Western state medical University named after I. I. Mechnikov
| | - S. I. Sitkin
- North-Western state medical University named after I. I. Mechnikov; Almazov National Medical Research Centre
| | | | - O. I. Solovyeva
- North-Western state medical University named after I. I. Mechnikov
| | | | - S. V. Tikhonov
- North-Western state medical University named after I. I. Mechnikov
| | - T. S. Fil'
- North-Western state medical University named after I. I. Mechnikov
| | - T. L. Pilat
- Izmerov Research Institute of Occupational Health
| | | | | | | | | | | | | | - A. I. Khavkin
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University
| |
Collapse
|
6
|
Butyrate Differentiates Permissiveness to Clostridioides difficile Infection and Influences Growth of Diverse C. difficile Isolates. Infect Immun 2023; 91:e0057022. [PMID: 36692308 PMCID: PMC9933713 DOI: 10.1128/iai.00570-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A disrupted "dysbiotic" gut microbiome engenders susceptibility to the diarrheal pathogen Clostridioides difficile by impacting the metabolic milieu of the gut. Diet, in particular the microbiota-accessible carbohydrates (MACs) found in dietary fiber, is one of the most powerful ways to affect the composition and metabolic output of the gut microbiome. As such, diet is a powerful tool for understanding the biology of C. difficile and for developing alternative approaches for coping with this pathogen. One prominent class of metabolites produced by the gut microbiome is short-chain fatty acids (SCFAs), the major metabolic end products of MAC metabolism. SCFAs are known to decrease the fitness of C. difficile in vitro, and high intestinal SCFA concentrations are associated with reduced fitness of C. difficile in animal models of C. difficile infection (CDI). Here, we use controlled dietary conditions (8 diets that differ only by MAC composition) to show that C. difficile fitness is most consistently impacted by butyrate, rather than the other two prominent SCFAs (acetate and propionate), during murine model CDI. We similarly show that butyrate concentrations are lower in fecal samples from humans with CDI than in those from healthy controls. Finally, we demonstrate that butyrate impacts growth in diverse C. difficile isolates. These findings provide a foundation for future work which will dissect how butyrate directly impacts C. difficile fitness and will lead to the development of diverse approaches distinct from antibiotics or fecal transplant, such as dietary interventions, for mitigating CDI in at-risk human populations. IMPORTANCE Clostridioides difficile is a leading cause of infectious diarrhea in humans, and it imposes a tremendous burden on the health care system. Current treatments for C. difficile infection (CDI) include antibiotics and fecal microbiota transplant, which contribute to recurrent CDIs and face major regulatory hurdles, respectively. Therefore, there is an ongoing need to develop new ways to cope with CDI. Notably, a disrupted "dysbiotic" gut microbiota is the primary risk factor for CDI, but we incompletely understand how a healthy microbiota resists CDI. Here, we show that a specific molecule produced by the gut microbiota, butyrate, is negatively associated with C. difficile burdens in humans and in a mouse model of CDI and that butyrate impedes the growth of diverse C. difficile strains in pure culture. These findings help to build a foundation for designing alternative, possibly diet-based, strategies for mitigating CDI in humans.
Collapse
|
7
|
Costa DVS, Shin JH, Goldbeck SM, Bolick DT, Mesquita FS, Loureiro AV, Rodrigues-Jesus MJ, Brito GAC, Warren CA. Adenosine receptors differentially mediate enteric glial cell death induced by Clostridioides difficile Toxins A and B. Front Immunol 2023; 13:956326. [PMID: 36726986 PMCID: PMC9885079 DOI: 10.3389/fimmu.2022.956326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Increased risk of intestinal dysfunction has been reported in patients after Clostridioides difficile infection (CDI). Enteric glial cells (EGCs), a component of the enteric nervous system (ENS), contribute to gut homeostasis. Previous studies showed that adenosine receptors, A2A and A2B, modulate inflammation during CDI. However, it is unknown how these receptors can modulate the EGC response to the C. difficile toxins (TcdA and TcdB). We investigated the effects of these toxins on the expression of adenosine receptors in EGCs and the role of these receptors on toxin-induced EGC death. Rat EGCs line were incubated with TcdA or TcdB alone or in combination with adenosine analogues 1h prior to toxins challenge. After incubation, EGCs were collected to evaluate gene expression (adenosine receptors and proinflammatory markers) and cell death. In vivo, WT, A2A, and A2B KO mice were infected with C. difficile, euthanized on day 3 post-infection, and cecum tissue was processed. TcdA and TcdB increased A2A and A3 transcripts, as well as decreased A2B. A2A agonist, but not A2A antagonist, decreased apoptosis induced by TcdA and TcdB in EGCs. A2B blocker, but not A2B agonist, diminished apoptosis in EGCs challenged with both toxins. A3 agonist, but not A3 blocker, reduced apoptosis in EGCs challenged with TcdA and TcdB. Inhibition of protein kinase A (PKA) and CREB, both involved in the main signaling pathway driven by activation of adenosine receptors, decreased EGC apoptosis induced by both toxins. A2A agonist and A2B antagonist decreased S100B upregulation induced by C. difficile toxins in EGCs. In vivo, infected A2B KO mice, but not A2A, exhibited a decrease in cell death, including EGCs and enteric neuron loss, compared to infected WT mice, reduced intestinal damage and decreased IL-6 and S100B levels in cecum. Our findings indicate that upregulation of A2A and A3 and downregulation of A2B in EGCs and downregulation of A2B in intestinal tissues elicit a protective response against C. difficile toxins. Adenosine receptors appear to play a regulatory role in EGCs death and proinflammatory response induced by TcdA and TcdB, and thus may be potential targets of intervention to prevent post-CDI intestinal dysmotility.
Collapse
Affiliation(s)
- Deiziane V S Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Jae H Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Sophia M Goldbeck
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - David T Bolick
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Flavio S Mesquita
- Department of Microbiology, University of Sao Paulo, Sao Paulo, Brazil
| | - Andrea V Loureiro
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Mônica J Rodrigues-Jesus
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Gerly A C Brito
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
8
|
Hashimoto-Hill S, Colapietro L, Woo V, Antonacci S, Whitt J, Engleman L, Alenghat T. Dietary phytate primes epithelial antibacterial immunity in the intestine. Front Immunol 2022; 13:952994. [PMID: 36341403 PMCID: PMC9627201 DOI: 10.3389/fimmu.2022.952994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Although diet has long been associated with susceptibility to infection, the dietary components that regulate host defense remain poorly understood. Here, we demonstrate that consuming rice bran decreases susceptibility to intestinal infection with Citrobacter rodentium, a murine pathogen that is similar to enteropathogenic E. coli infection in humans. Rice bran naturally contains high levels of the substance phytate. Interestingly, phytate supplementation also protected against intestinal infection, and enzymatic metabolism of phytate by commensal bacteria was necessary for phytate-induced host defense. Mechanistically, phytate consumption induced mammalian intestinal epithelial expression of STAT3-regulated antimicrobial pathways and increased phosphorylated STAT3, suggesting that dietary phytate promotes innate defense through epithelial STAT3 activation. Further, phytate regulation of epithelial STAT3 was mediated by the microbiota-sensitive enzyme histone deacetylase 3 (HDAC3). Collectively, these data demonstrate that metabolism of dietary phytate by microbiota decreases intestinal infection and suggests that consuming bran and other phytate-enriched foods may represent an effective dietary strategy for priming host immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Theresa Alenghat
- Division of Immunobiology, and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
9
|
Loureiro AV, Moura-Neto LI, Martins CS, Silva PIM, Lopes MB, Leitão RFC, Coelho-Aguiar JM, Moura-Neto V, Warren CA, Costa DV, Brito GAC. Role of Pannexin-1-P2X7R signaling on cell death and pro-inflammatory mediator expression induced by Clostridioides difficile toxins in enteric glia. Front Immunol 2022; 13:956340. [PMID: 36072579 PMCID: PMC9442043 DOI: 10.3389/fimmu.2022.956340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile (C. difficile) produces toxins A (TcdA) and B (TcdB), both associated with intestinal damage and diarrhea. Pannexin-1 (Panx1) channels allows the passage of messenger molecules, such as adenosine triphosphate (ATP), which in turn activate the P2X7 receptors (P2X7R) that regulate inflammation and cell death in inflammatory bowel diseases. The aim of this study was to verify the effect of C. difficile infection (CDI) in the expression of Panx1 and P2X7R in intestinal tissues of mice, as well as their role in cell death and IL-6 expression induced by TcdA and TcdB in enteric glial cells (EGCs). Male C57BL/6 mice (8 weeks of age) were infected with C. difficile VPI10463, and the control group received only vehicle per gavage. After three days post-infection (p.i.), cecum and colon samples were collected to evaluate the expression of Panx1 by immunohistochemistry. In vitro, EGCs (PK060399egfr) were challenged with TcdA or TcdB, in the presence or absence of the Panx1 inhibitor (10Panx trifluoroacetate) or P2X7R antagonist (A438079), and Panx1 and P2X7R expression, caspase-3/7 activity and phosphatidylserine binding to annexin-V, as well as IL-6 expression were assessed. CDI increased the levels of Panx1 in cecum and colon of mice compared to the control group. Panx1 inhibitor decreased caspase-3/7 activity and phosphatidylserine-annexin-V binding, but not IL-6 gene expression in TcdA and TcdB-challenged EGCs. P2X7 receptor antagonist accentually reduced caspase-3/7 activity, phosphatidylserine-annexin-V binding, and IL-6 gene expression in TcdA and TcdB-challenged EGCs. In conclusion, Panx1 is increased during CDI and plays an important role in the effects of C. difficile toxins in EGCs, participating in cell death induced by both toxins by promoting caspase-3/7 activation via P2X7R, which is also involved in IL-6 expression induced by both toxins.
Collapse
Affiliation(s)
- Andrea V. Loureiro
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lauro I. Moura-Neto
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Conceição S. Martins
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Pedro I. M. Silva
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Matheus B.S. Lopes
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Renata F. C. Leitão
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Juliana M. Coelho-Aguiar
- Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cirle A. Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Deiziane V.S. Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Gerly A. C. Brito, ; Deiziane V.S. Costa,
| | - Gerly A. C. Brito
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
- *Correspondence: Gerly A. C. Brito, ; Deiziane V.S. Costa,
| |
Collapse
|
10
|
Gao Y, Ma L, Su J. Host and microbial-derived metabolites for Clostridioides difficile infection: Contributions, mechanisms and potential applications. Microbiol Res 2022; 263:127113. [PMID: 35841835 DOI: 10.1016/j.micres.2022.127113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/23/2022]
Abstract
Clostridioides difficile infection (CDI), which mostly occurs in hospitalized patients, is the most common and costly health care-associated disease. However, the biology of C. difficile remains incompletely understood. Current therapeutics are still challenged by the frequent recurrence of CDI. Advances in metabolomics facilitate our understanding of the etiology of CDI, which is not merely an alteration in the structure of the gut microbial community but also a dysbiosis metabolic setting promoting the germination, expansion and virulence of C. difficile. Therefore, we summarized the gut microbial and metabolic profiles for CDI under different conditions, such as those of postantibiotic treatment and postfecal microbiota transplantation. The current understanding of the role of host and gut microbial-derived metabolites as well as other nutrients in preventing or alleviating the disease symptoms of CDI will also be provided in this review. We hope that a specific nutrient-centric dietary strategy or the administration of certain nutrients to the colon could serve as an alternate line of investigation for the prophylaxis and mitigation of CDI in the future. Nevertheless, rigorously designed basic studies and randomized controlled trials need to be conducted to assess the functional mechanisms and effects of such therapeutics.
Collapse
Affiliation(s)
- Yan Gao
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Liyan Ma
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianrong Su
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
11
|
Hazleton KZ, Martin CG, Orlicky DJ, Arnolds KL, Nusbacher NM, Moreno-Huizar N, Armstrong M, Reisdorph N, Lozupone CA. Dietary fat promotes antibiotic-induced Clostridioides difficile mortality in mice. NPJ Biofilms Microbiomes 2022; 8:15. [PMID: 35365681 PMCID: PMC8975876 DOI: 10.1038/s41522-022-00276-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea, and emerging evidence has linked dietary components with CDI pathogenesis, suggesting that dietary modulation may be an effective strategy for prevention. Here, we show that mice fed a high-fat/low-fiber “Western-type” diet (WD) had dramatically increased mortality in a murine model of antibiotic-induced CDI compared to a low-fat/low-fiber (LF/LF) diet and standard mouse chow controls. We found that the WD had a pro- C. difficile bile acid composition that was driven in part by higher levels of primary bile acids that are produced to digest fat, and a lower level of secondary bile acids that are produced by the gut microbiome. This lack of secondary bile acids was associated with a greater disturbance to the gut microbiome with antibiotics in both the WD and LF/LF diet compared to mouse chow. Mice fed the WD also had the highest level of toxin TcdA just prior to the onset of mortality, but not of TcdB or increased inflammation. These findings indicate that dietary intervention to decrease fat may complement previously proposed dietary intervention strategies to prevent CDI in high-risk individuals.
Collapse
Affiliation(s)
- Keith Z Hazleton
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition. University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, 80045, USA.,Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, 80045, USA.,Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Arizona, Tucson, AZ, 85719, USA
| | - Casey G Martin
- Department of Immunology and Microbiology, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kathleen L Arnolds
- Department of Immunology and Microbiology, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nichole M Nusbacher
- Department of Medicine, Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nancy Moreno-Huizar
- Department of Medicine, Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michael Armstrong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Catherine A Lozupone
- Department of Medicine, Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Costa DVS, Moura-Neto V, Bolick DT, Guerrant RL, Fawad JA, Shin JH, Medeiros PHQS, Ledwaba SE, Kolling GL, Martins CS, Venkataraman V, Warren CA, Brito GAC. S100B Inhibition Attenuates Intestinal Damage and Diarrhea Severity During Clostridioides difficile Infection by Modulating Inflammatory Response. Front Cell Infect Microbiol 2021; 11:739874. [PMID: 34568098 PMCID: PMC8461106 DOI: 10.3389/fcimb.2021.739874] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of the enteric nervous system, which is a source of S100B, in Clostridioides difficile (C. difficile) infection (CDI) is poorly understood although intestinal motility dysfunctions are known to occur following infection. Here, we investigated the role of S100B in CDI and examined the S100B signaling pathways activated in C. difficile toxin A (TcdA)- and B (TcdB)-induced enteric glial cell (EGC) inflammatory response. The expression of S100B was measured in colon tissues and fecal samples of patients with and without CDI, as well as in colon tissues from C. difficile-infected mice. To investigate the role of S100B signaling in IL-6 expression induced by TcdA and TcdB, rat EGCs were used. Increased S100B was found in colonic biopsies from patients with CDI and colon tissues from C. difficile-infected mice. Patients with CDI-promoted diarrhea exhibited higher levels of fecal S100B compared to non-CDI cases. Inhibition of S100B by pentamidine reduced the synthesis of IL-1β, IL-18, IL-6, GMCSF, TNF-α, IL-17, IL-23, and IL-2 and downregulated a variety of NFκB-related genes, increased the transcription (SOCS2 and Bcl-2) of protective mediators, reduced neutrophil recruitment, and ameliorated intestinal damage and diarrhea severity in mice. In EGCs, TcdA and TcdB upregulated S100B-mediated IL-6 expression via activation of RAGE/PI3K/NFκB. Thus, CDI appears to upregulate colonic S100B signaling in EGCs, which in turn augment inflammatory response. Inhibition of S100B activity attenuates the intestinal injury and diarrhea caused by C. difficile toxins. Our findings provide new insight into the role of S100B in CDI pathogenesis and opens novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Deiziane V S Costa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States.,Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Vivaldo Moura-Neto
- Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - David T Bolick
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Jibraan A Fawad
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Jae H Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Pedro H Q S Medeiros
- Department of Microbiology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Solanka E Ledwaba
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Glynis L Kolling
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Conceição S Martins
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Venkat Venkataraman
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.,Department of Rehabilitation Medicine, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Gerly A C Brito
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
13
|
Jannuzzi LB, Pereira-Acacio A, Ferreira BSN, Silva-Pereira D, Veloso-Santos JPM, Alves-Bezerra DS, Lopes JA, Costa-Sarmento G, Lara LS, Vieira LD, Abadie-Guedes R, Guedes RCA, Vieyra A, Muzi-Filho H. Undernutrition - thirty years of the Regional Basic Diet: the legacy of Naíde Teodósio in different fields of knowledge. Nutr Neurosci 2021; 25:1973-1994. [PMID: 33871318 DOI: 10.1080/1028415x.2021.1915631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Undernutrition is characterized by an imbalance of essential nutrients with an insufficient nutritional intake, a disorder in which the clinical manifestations in most cases are the result of the economic and social context in which the individual lives. In 1990, the study by the medical and humanitarian Naíde Teodósio (1915-2005) and coworkers, which formulated the Regional Basic Diet (RBD) model for inducing undernutrition, was published. This diet model took its origin from the observation of the dietary habits of families that inhabited impoverished areas from the Pernambuco State. RBD mimics an undernutrition framework that extends not only to the Brazilian population, but to populations in different regions worldwide. The studies based on RBD-induced deficiencies provide a better understanding of the impact of undernutrition on the pathophysiological mechanisms underlying the most diverse prevalent diseases. Indexed papers that are analyzed in this review focus on the importance of using RBD in different areas of knowledge. These papers reflect a new paradigm in translational medicine: they show how the study of pathology using the RBD model in animals over the past 30 years has and still can help scientists today, shedding light on the mechanisms of prevalent diseases that affect impoverished populations.
Collapse
Affiliation(s)
- Larissa B Jannuzzi
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amaury Pereira-Acacio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna S N Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Silva-Pereira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P M Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danilo S Alves-Bezerra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jarlene A Lopes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ricardo Abadie-Guedes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Rubem C A Guedes
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology of Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Shin JH, Pawlowski SW, Warren CA. Teaching old mice new tricks: the utility of aged mouse models of C. difficile infection to study pathogenesis and rejuvenate immune response. Gut Microbes 2021; 13:1966255. [PMID: 34432545 PMCID: PMC8405153 DOI: 10.1080/19490976.2021.1966255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Clostridioides difficile is a serious problem for the aging population. Aged mouse model of C. difficile infection (CDI) has emerged as a valuable tool to evaluate the mechanism of aging in CDI. METHODS We reviewed five published studies utilizing aged mice (7-28 months) for CDI model for findings that may advance our understanding of how aging influences outcome from CDI. RESULTS Aged mouse models of CDI uniformly demonstrated more severe disease in the old compared to young mice. Diminished neutrophil recruitment to intestinal tissue in aged mice is the most consistent finding. Differences in innate and humoral immune responses were also observed. The effects of aging on the outcome of infection were reversed by pharmacologic or microbiota-targeted interventions. CONCLUSION The aged mouse presents an important in vivo model to study CDI and elucidate the mechanisms underlying advanced age as an important risk factor for severe disease.
Collapse
Affiliation(s)
- Jae Hyun Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Cirle A. Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
15
|
Mefferd CC, Bhute SS, Phan JR, Villarama JV, Do DM, Alarcia S, Abel-Santos E, Hedlund BP. A High-Fat/High-Protein, Atkins-Type Diet Exacerbates Clostridioides ( Clostridium) difficile Infection in Mice, whereas a High-Carbohydrate Diet Protects. mSystems 2020; 5:e00765-19. [PMID: 32047064 PMCID: PMC7018531 DOI: 10.1128/msystems.00765-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection (CDI) can result from the disruption of the resident gut microbiota. Western diets and popular weight-loss diets drive large changes in the gut microbiome; however, the literature is conflicted with regard to the effect of diet on CDI. Using the hypervirulent strain C. difficile R20291 (RT027) in a mouse model of antibiotic-induced CDI, we assessed disease outcome and microbial community dynamics in mice fed two high-fat diets in comparison with a high-carbohydrate diet and a standard rodent diet. The two high-fat diets exacerbated CDI, with a high-fat/high-protein, Atkins-like diet leading to severe CDI and 100% mortality and a high-fat/low-protein, medium-chain-triglyceride (MCT)-like diet inducing highly variable CDI outcomes. In contrast, mice fed a high-carbohydrate diet were protected from CDI, despite the high levels of refined carbohydrate and low levels of fiber in the diet. A total of 28 members of the Lachnospiraceae and Ruminococcaceae decreased in abundance due to diet and/or antibiotic treatment; these organisms may compete with C. difficile for amino acids and protect healthy animals from CDI in the absence of antibiotics. Together, these data suggest that antibiotic treatment might lead to loss of C. difficile competitors and create a favorable environment for C. difficile proliferation and virulence with effects that are intensified by high-fat/high-protein diets; in contrast, high-carbohydrate diets might be protective regardless of the source of carbohydrate or of antibiotic-driven loss of C. difficile competitors.IMPORTANCE The role of Western and weight-loss diets with extreme macronutrient composition in the risk and progression of CDI is poorly understood. In a longitudinal study, we showed that a high-fat/high-protein, Atkins-type diet greatly exacerbated antibiotic-induced CDI, whereas a high-carbohydrate diet protected, despite the high monosaccharide and starch content. Our study results, therefore, suggest that popular high-fat/high-protein weight-loss diets may enhance CDI risk during antibiotic treatment, possibly due to the synergistic effects of a loss of the microorganisms that normally inhibit C. difficile overgrowth and an abundance of amino acids that promote C. difficile overgrowth. In contrast, a high-carbohydrate diet might be protective, despite reports on the recent evolution of enhanced carbohydrate metabolism in C. difficile.
Collapse
Affiliation(s)
| | - Shrikant S Bhute
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Jacqueline R Phan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Jacob V Villarama
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Dung M Do
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Stephanie Alarcia
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
16
|
Pike VL, Lythgoe KA, King KC. On the diverse and opposing effects of nutrition on pathogen virulence. Proc Biol Sci 2019; 286:20191220. [PMID: 31288706 PMCID: PMC6650706 DOI: 10.1098/rspb.2019.1220] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Climate change and anthropogenic activity are currently driving large changes in nutritional availability across ecosystems, with consequences for infectious disease. An increase in host nutrition could lead to more resources for hosts to expend on the immune system or for pathogens to exploit. In this paper, we report a meta-analysis of studies on host-pathogen systems across the tree of life, to examine the impact of host nutritional quality and quantity on pathogen virulence. We did not find broad support across studies for a one-way effect of nutrient availability on pathogen virulence. We thus discuss a hypothesis that there is a balance between the effect of host nutrition on the immune system and on pathogen resources, with the pivot point of the balance differing for vertebrate and invertebrate hosts. Our results suggest that variation in nutrition, caused by natural or anthropogenic factors, can have diverse effects on infectious disease outcomes across species.
Collapse
Affiliation(s)
| | | | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
17
|
Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1300-1310. [PMID: 31100210 DOI: 10.1016/j.ajpath.2019.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Mammals have coevolved with a large community of symbiotic, commensal, and some potentially pathogenic microbes. The trillions of bacteria and hundreds of species in our guts form a relatively stable community that resists invasion by outsiders, including pathogens. This powerful protective force is referred to as colonization resistance. We discuss the variety of proposed or demonstrated mechanisms that can mediate colonization resistance and some potential ways to manipulate them for improved human health. Instances in which certain bacterial pathogens can overcome colonization resistance are also discussed.
Collapse
|
18
|
Mau T, Eckley SS, Bergin IL, Saund K, Villano JS, Vendrov KC, Snitkin ES, Young VB, Yung R. Outbreak of Murine Infection with Clostridium difficile Associated with the Administration of a Pre- and Perinatal Methyl Donor Diet. mSphere 2019; 4:e00138-19. [PMID: 30894434 PMCID: PMC6429045 DOI: 10.1128/mspheredirect.00138-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Between October 2016 and June 2017, a C57BL/6J mouse colony that was undergoing a pre- and perinatal methyl donor supplementation diet intervention to study the impact of parental nutrition on offspring susceptibility to disease was found to suffer from an epizootic of unexpected deaths. Necropsy revealed the presence of severe colitis, and further investigation linked these outbreak deaths to a Clostridium difficile strain of ribotype 027 that we term 16N203. C. difficile infection (CDI) is associated with antibiotic use in humans. Current murine models of CDI rely on antibiotic pretreatment to establish clinical phenotypes. In this report, the C. difficile outbreak occurs in F1 mice linked to alterations in the parental diet. The diagnosis of CDI in the affected mice was confirmed by cecal/colonic histopathology, the presence of C. difficile bacteria in fecal/colonic culture, and detection of C. difficile toxins. F1 mice from parents fed the methyl supplementation diet also had significantly reduced survival (P < 0.0001) compared with F1 mice from parents fed the control diet. When we tested the 16N203 outbreak strain in an established mouse model of antibiotic-induced CDI, we confirmed that this strain is pathogenic. Our serendipitous observations from this spontaneous outbreak of C. difficile in association with a pre- and perinatal methyl donor diet suggest the important role that diet may play in host defense and CDI risk factors.IMPORTANCEClostridium difficile infection (CDI) has become the leading cause of infectious diarrhea in hospitals worldwide, owing its preeminence to the emergence of hyperendemic strains, such as ribotype 027 (RT027). A major CDI risk factor is antibiotic exposure, which alters gut microbiota, resulting in the loss of colonization resistance. Current murine models of CDI also depend on pretreatment of animals with antibiotics to establish disease. The outbreak that we report here is unique in that the CDI occurred in mice with no antibiotic exposure and is associated with a pre- and perinatal methyl supplementation donor diet intervention study. Our investigation subsequently reveals that the outbreak strain that we term 16N203 is an RT027 strain, and this isolated strain is also pathogenic in an established murine model of CDI (with antibiotics). Our report of this spontaneous outbreak offers additional insight into the importance of environmental factors, such as diet, and CDI susceptibility.
Collapse
Affiliation(s)
- Theresa Mau
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha S Eckley
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- In-Vivo Animal Core, University of Michigan, Ann Arbor, Michigan, USA
| | - Katie Saund
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Villano
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly C Vendrov
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatric Research, Education, and Clinical Care Center, VA Ann Arbor Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically-relevant faecal environment, with implications for pathogenicity. Sci Rep 2018; 8:16691. [PMID: 30420658 PMCID: PMC6232153 DOI: 10.1038/s41598-018-35050-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility.
Collapse
|
20
|
Korcz E, Kerényi Z, Varga L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food Funct 2018; 9:3057-3068. [PMID: 29790546 DOI: 10.1039/c8fo00118a] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gastrointestinal (GIT) microbiota, which plays a crucial role in human health, is influenced by a number of factors including diet. Consumption of specific dietary ingredients, such as dietary fibers and prebiotics, is an avenue by which the microbiota can be positively modulated. These substances may also reduce serum cholesterol levels through various mechanisms. Interest has increased in methods of reducing blood cholesterol level, because dyslipidemia is recognized as a contributory risk factor for the development of cardiovascular diseases. Several drugs have been developed for the treatment of hypercholesterolemia; however, undesirable side effects were observed, which have caused concerns about their long-term therapeutic use. Alternatively, many nonpharmacological approaches were tested to reduce elevated serum cholesterol levels. Dietary fibers and prebiotics have particularly beneficial effects on the GIT microbiome, and can also reduce serum cholesterol level through various mechanisms. Lactic acid bacteria (LAB) are potentially capable of synthesizing different polysaccharides, e.g. exopolysaccharides (EPS), which may play a role as prebiotics. LAB-based EPS have the potential to affect the gastrointestinal microbiome and reduce cholesterol. However, as dietary fibers comprise a complex group of substances with remarkably diverse structures, properties, and impacts, EPS also differ greatly and show a multitude of beneficial health effects. This review discusses the current knowledge related to the effects of dietary fibers and prebiotics on the human GIT microbiome, the prebiotic properties of EPS produced by LAB, and the health-promoting benefits of these polymers with special emphasis being given to cholesterol lowering.
Collapse
Affiliation(s)
- E Korcz
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, Mosonmagyaróvár, Hungary.
| | | | | |
Collapse
|
21
|
Baktash A, Terveer EM, Zwittink RD, Hornung BVH, Corver J, Kuijper EJ, Smits WK. Mechanistic Insights in the Success of Fecal Microbiota Transplants for the Treatment of Clostridium difficile Infections. Front Microbiol 2018; 9:1242. [PMID: 29946308 PMCID: PMC6005852 DOI: 10.3389/fmicb.2018.01242] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Fecal microbiota transplantation has proven to be an effective treatment for infections with the gram-positive enteropathogen Clostridium difficile. Despite its effectiveness, the exact mechanisms that underlie its success are largely unclear. In this review, we highlight the pleiotropic effectors that are transferred during fecal microbiota transfer and relate this to the C. difficile lifecycle. In doing so, we show that it is likely that multiple factors contribute to the elimination of symptoms of C. difficile infections after fecal microbiota transplantation.
Collapse
Affiliation(s)
- Amoe Baktash
- Clinical Microbiology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elisabeth M Terveer
- Clinical Microbiology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden, Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Bastian V H Hornung
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen Corver
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Ed J Kuijper
- Clinical Microbiology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Hryckowian AJ, Van Treuren W, Smits SA, Davis NM, Gardner JO, Bouley DM, Sonnenburg JL. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat Microbiol 2018; 3:662-669. [PMID: 29686297 PMCID: PMC6126909 DOI: 10.1038/s41564-018-0150-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022]
Abstract
Clostridium difficile is an opportunistic diarrhoeal pathogen, and C. difficile infection (CDI) represents a major health care concern, causing an estimated 15,000 deaths per year in the United States alone 1 . Several enteric pathogens, including C. difficile, leverage inflammation and the accompanying microbial dysbiosis to thrive in the distal gut 2 . Although diet is among the most powerful available tools for affecting the health of humans and their relationship with their microbiota, investigation into the effects of diet on CDI has been limited. Here, we show in mice that the consumption of microbiota-accessible carbohydrates (MACs) found in dietary plant polysaccharides has a significant effect on CDI. Specifically, using a model of antibiotic-induced CDI that typically resolves within 12 days of infection, we demonstrate that MAC-deficient diets perpetuate CDI. We show that C. difficile burdens are suppressed through the addition of either a diet containing a complex mixture of MACs or a simplified diet containing inulin as the sole MAC source. We show that switches between these dietary conditions are coincident with changes to microbiota membership, its metabolic output and C. difficile-mediated inflammation. Together, our data demonstrate the outgrowth of MAC-utilizing taxa and the associated end products of MAC metabolism, namely, the short-chain fatty acids acetate, propionate and butyrate, are associated with decreased C. difficile fitness despite increased C. difficile toxin expression in the gut. Our findings, when placed into the context of the known fibre deficiencies of a human Western diet, provide rationale for pursuing MAC-centric dietary strategies as an alternate line of investigation for mitigating CDI.
Collapse
Affiliation(s)
- Andrew J Hryckowian
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - William Van Treuren
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Samuel A Smits
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jackson O Gardner
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Greenhalgh K, Meyer KM, Aagaard KM, Wilmes P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ Microbiol 2017; 18:2103-16. [PMID: 27059297 PMCID: PMC7387106 DOI: 10.1111/1462-2920.13318] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With technological advances in culture-independent molecular methods, we are uncovering a new facet of our natural history by accounting for the vast diversity of microbial life which colonizes the human body. The human microbiome contributes functional genes and metabolites which affect human physiology and are, therefore, considered an important factor for maintaining health. Much has been described in the past decade based primarily on 16S rRNA gene amplicon sequencing regarding the diversity, structure, stability and dynamics of human microbiota in their various body habitats, most notably within the gastrointestinal tract (GIT). Relatively high levels of variation have been described across different stages of life and geographical locations for the GIT microbiome. These observations may prove helpful for the future contextualization of patterns in other body habitats especially in relation to identifying generalizable trends over human lifetime. Given the large degree of complexity and variability, a key challenge will be how to define baseline healthy microbiomes and how to identify features which reflect deviations therefrom in the future. In this context, metagenomics and functional omics will likely play a central role as they will allow resolution of microbiome-conferred functionalities associated with health. Such information will be vital for formulating therapeutic interventions aimed at managing microbiota-mediated health particularly in the GIT over the course of a human lifetime.
Collapse
Affiliation(s)
- Kacy Greenhalgh
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Kristen M Meyer
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
24
|
Bartelt LA, Bolick DT, Mayneris-Perxachs J, Kolling GL, Medlock GL, Zaenker EI, Donowitz J, Thomas-Beckett RV, Rogala A, Carroll IM, Singer SM, Papin J, Swann JR, Guerrant RL. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli. PLoS Pathog 2017; 13:e1006471. [PMID: 28750066 PMCID: PMC5549954 DOI: 10.1371/journal.ppat.1006471] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/14/2017] [Indexed: 12/17/2022] Open
Abstract
Diverse enteropathogen exposures associate with childhood malnutrition. To
elucidate mechanistic pathways whereby enteric microbes interact during
malnutrition, we used protein deficiency in mice to develop a new model of
co-enteropathogen enteropathy. Focusing on common enteropathogens in
malnourished children, Giardia lamblia and enteroaggregative
Escherichia coli (EAEC), we provide new insights into
intersecting pathogen-specific mechanisms that enhance malnutrition. We show for
the first time that during protein malnutrition, the intestinal microbiota
permits persistent Giardia colonization and simultaneously
contributes to growth impairment. Despite signals of intestinal injury, such as
IL1α, Giardia-infected mice lack pro-inflammatory intestinal
responses, similar to endemic pediatric Giardia infections.
Rather, Giardia perturbs microbial host co-metabolites of
proteolysis during growth impairment, whereas host nicotinamide utilization
adaptations that correspond with growth recovery increase. EAEC promotes
intestinal inflammation and markers of myeloid cell activation. During
co-infection, intestinal inflammatory signaling and cellular recruitment
responses to EAEC are preserved together with a
Giardia-mediated diminishment in myeloid cell activation.
Conversely, EAEC extinguishes markers of host energy expenditure regulatory
responses to Giardia, as host metabolic adaptations appear
exhausted. Integrating immunologic and metabolic profiles during co-pathogen
infection and malnutrition, we develop a working mechanistic model of how
cumulative diet-induced and pathogen-triggered microbial perturbations result in
an increasingly wasted host. Malnourished children are exposed to multiple sequential, and oftentimes,
persistent enteropathogens. Intestinal microbial disruption and inflammation are
known to contribute to the pathogenesis of malnutrition, but how co-pathogens
interact with each other, with the resident microbiota, or with the host to
alter these pathways is unknown. Using a new model of enteric co-infection with
Giardia lamblia and enteroaggregative Escherichia
coli in mice fed a protein deficient diet, we identify host growth
and intestinal immune responses that are differentially mediated by
pathogen-microbe interactions, including parasite-mediated changes in intestinal
microbial host co-metabolism, and altered immune responses during co-infection.
Our data model how early life cumulative enteropathogen exposures progressively
disrupt intestinal immunity and host metabolism during crucial developmental
periods. Furthermore, studies in this co-infection model reveal new insights
into environmental and microbial determinants of pathogenicity for presently
common, but poorly understood enteropathogens like Giardia
lamblia, that may not conform to existing paradigms of microbial
pathogenesis based on single pathogen-designed models.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases, Department of Medicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of
America
- Center for Gastrointestinal Biology and Disease, Department of Medicine,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United
States of America
- * E-mail:
| | - David T. Bolick
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| | - Jordi Mayneris-Perxachs
- Division of Computational and Systems Medicine, Department of Surgery and
Cancer, Imperial College London, United Kingdom
| | - Glynis L. Kolling
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| | - Gregory L. Medlock
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, Virginia, United States of America
| | - Edna I. Zaenker
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| | - Jeffery Donowitz
- Division of Pediatric Infectious Diseases, Children’s Hospital of
Richmond at Virginia Commonwealth University, Richmond, Virginia, United States
of America
| | - Rose Viguna Thomas-Beckett
- Division of Infectious Diseases, Department of Medicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of
America
| | - Allison Rogala
- Center for Gastrointestinal Biology and Disease, Department of Medicine,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United
States of America
| | - Ian M. Carroll
- Center for Gastrointestinal Biology and Disease, Department of Medicine,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United
States of America
| | - Steven M. Singer
- Department of Biology, Georgetown University, Washington, DC, United
States of America
| | - Jason Papin
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, Virginia, United States of America
| | - Jonathan R. Swann
- Division of Computational and Systems Medicine, Department of Surgery and
Cancer, Imperial College London, United Kingdom
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| |
Collapse
|
25
|
Hryckowian AJ, Pruss KM, Sonnenburg JL. The emerging metabolic view of Clostridium difficile pathogenesis. Curr Opin Microbiol 2017; 35:42-47. [PMID: 27997854 PMCID: PMC5474191 DOI: 10.1016/j.mib.2016.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
It is widely accepted that Clostridium difficile exploits dysbiosis and leverages inflammation to thrive in the gut environment, where it can asymptomatically colonize humans or cause a toxin-mediated disease ranging in severity from frequent watery diarrhea to pseudomembranous colitis or toxic megacolon. Here, we synthesize recent findings from the gut microbiota and enteric pathogenesis fields to inform the next steps toward a better understanding of C. difficile infection (CDI). In this review, we present a model in which the lifestyle of C. difficile is dictated by the metabolic state of the distal gut ecosystem. Contributions by C. difficile (specifically the production and action of the large glycosylating toxins TcdA and TcdB), the microbiota, and the host dictate whether the gut environment is supportive to the pathogen. Mechanistic, metabolic pathway-focused approaches encompassing the roles of all of these players are helping to elucidate the molecular ecology of the distal gut underlying a diseased or healthy ecosystem. A new generation of therapeutic strategies that are more targeted (and palatable) than fecal microbiota transplants or broad-spectrum antibiotics will be fueled by insight into the interspecies (host-microbe and microbe-microbe) interactions that differentiate healthy from pathogen-infested microbiotas.
Collapse
Affiliation(s)
- Andrew J Hryckowian
- Department of Microbiology and Immunology, Stanford University, CA, United States
| | - Kali M Pruss
- Department of Microbiology and Immunology, Stanford University, CA, United States
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University, CA, United States.
| |
Collapse
|
26
|
Moore JH, Pinheiro CCD, Zaenker EI, Bolick DT, Kolling GL, van Opstal E, Noronha FJD, De Medeiros PHQS, Rodriguez RS, Lima AA, Guerrant RL, Warren CA. Correction: Defined Nutrient Diets Alter Susceptibility to Clostridium difficile Associated Disease in a Murine Model. PLoS One 2015; 10:e0137037. [PMID: 26372249 PMCID: PMC4570795 DOI: 10.1371/journal.pone.0137037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|