1
|
Hashimoto Y, Negishi J, Funamoto S, Kimura T, Kobayashi H, Oshika T, Kishida A. Preparation, physico-biochemical characterization, and proteomic analysis of highly transparent corneal extracellular matrices for lamellar keratoplasty and tissue-engineered cornea construction. Mater Today Bio 2024; 28:101241. [PMID: 39328788 PMCID: PMC11426139 DOI: 10.1016/j.mtbio.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Corneal opacity and deformation, which often require corneal transplantation for treatment, are among the leading causes of monocular blindness. To restore corneal clarity and integrity, there is a need for an artificial stroma that not only matches the transparency of donated human cornea but also effectively integrates to the corneal tissue. In this study, a transparent decellularized cornea was successfully developed using the high hydrostatic pressure method with processing conditions optimized for corneal decellularization. Biochemical analyses demonstrated the effective removal of cellular components from the transparent decellularized corneas, while preserving collagen and glycosaminoglycans. Proteome analysis also revealed that core matrisome and matrisome-associated proteins remained following decellularization, similar to the composition observed in untreated corneas. The light transmittance of the transparent decellularized corneas was 86.4 ± 1.5 % in the visible region, comparable to that of donated human corneas. No complications, such as angiogenesis, were observed following interlamellar corneal transplantation in rabbits. The grafts were almost imperceptible immediately following surgery and achieved complete transparency within a few days, becoming indistinguishable even under a microscope. The transparent decellularized cornea presented here has promising potential as a material for application in lamellar keratoplasty.
Collapse
Affiliation(s)
- Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Jun Negishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Seiichi Funamoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
- Department of Biomedical Engineering, Faculty of Life Science, Toyo University, 48-1 Oka, Asaka-shi, Saitama, 351-8510, Japan
| | - Hisatoshi Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
2
|
Sharma M, Kaur S, Mavlankar NA, Chanda A, Gupta PC, Saikia UN, Ram J, Pal A, Mandal S, Guptasarma P, Luthra-Guptasarma M. Use of discarded corneo-scleral rims to create cornea-like tissue. Mol Biol Rep 2024; 51:391. [PMID: 38446253 DOI: 10.1007/s11033-024-09321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Corneal disease is a major cause of blindness. Transplantation of cadaver-derived corneas (keratoplasty) is still the current therapy of choice; however, the global shortage of donor corneas continues to drive a search for alternatives. To this end, biosynthetic corneal substitutes have recently begun to gain importance. Here, we present a novel method for the generation of a cornea-like tissue (CLT), using corneo-scleral rims discarded after keratoplasty. METHODS AND RESULTS Type I collagen was polymerized within the corneo-scleral rim, which functioned as a 'host' mould, directing the 'guest' collagen to polymerize into disc-shaped cornea-like material (CLM), displaying the shape, curvature, thickness, and transparency of normal cornea. This polymerization of collagen appears to derive from some morphogenetic influence exerted by the corneo-scleral rim. Once the CLM had formed naturally, we used collagen crosslinking to fortify it, and then introduced cells to generate a stratified epithelial layer to create cornea-like tissue (CLT) displaying characteristics of native cornea. Through the excision and reuse of rims, each rim turned out to be useful for the generation of multiple cornea-shaped CLTs. CONCLUSIONS The approach effectively helps to shorten the gap between demand and supply of CLMs/CLTs for transplantation. We are exploring the surgical transplantation of this CLT into animal eyes, as keratoprostheses, as a precursor to future applications involving human eyes. It is possible to use either the CLM or CLT, for patients with varying corneal blinding diseases.
Collapse
Affiliation(s)
- Maryada Sharma
- Department of Immunopathology, Research Block A, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
- Department of Otolaryngology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Subhpreet Kaur
- Department of Immunopathology, Research Block A, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | | | - Alokananda Chanda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Parul Chawla Gupta
- Departments of Ophthalmology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Uma Nahar Saikia
- Departments of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Jagat Ram
- Departments of Ophthalmology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Asish Pal
- Institute of Nano Science and Technology, SAS Nagar, Punjab, India
| | - Sanjay Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Purnananda Guptasarma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Research Block A, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India.
| |
Collapse
|
3
|
Pellegrini M, Yu AC, Busin M. Deep anterior lamellar keratoplasty for keratoconus: Elements for success. Saudi J Ophthalmol 2022; 36:36-41. [PMID: 35971490 PMCID: PMC9375458 DOI: 10.4103/sjopt.sjopt_100_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/20/2021] [Indexed: 11/05/2022] Open
Abstract
Advanced keratoconus may require keratoplasty when the patient can no longer achieve functional vision with glasses and contact lenses. Deep anterior lamellar keratoplasty (DALK) has become the surgical treatment of choice due to its undisputed advantages over penetrating keratoplasty including the reduced risk of intraoperative complications, the absence of endothelial immune rejection, and the longer graft survival. Albeit "big-bubble" DALK still represents the most popular surgical method, several modifications have been developed over the years. This allowed standardization of the technique, with improved success rates and clinical outcomes. This review presents an overview on the literature on DALK surgery for keratoconus. We discuss state-of-the art surgical techniques, current evidence on the clinical outcomes and complications as well as possible future directions.
Collapse
Affiliation(s)
- Marco Pellegrini
- Department of Translational Medicine, University of Ferrara, Forlì, Italy,Department of Ophthalmology, Ospedali Privati Forlì “Villa Igea”, Forlì, Italy,Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), Forlì, Italy
| | - Angeli Christy Yu
- Department of Translational Medicine, University of Ferrara, Forlì, Italy,Department of Ophthalmology, Ospedali Privati Forlì “Villa Igea”, Forlì, Italy,Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), Forlì, Italy
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, Forlì, Italy,Department of Ophthalmology, Ospedali Privati Forlì “Villa Igea”, Forlì, Italy,Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), Forlì, Italy,Address for correspondence: Prof. Massimo Busin, Ospedali Privati Forlì ‘Villa Igea’, Forlì 47122, Italy. E-mail:
| |
Collapse
|
4
|
Xu H, Sapienza JS, Jin Y, Lin J, Zheng X, Dong H, Diao H, Zhao Y, Gao J, Tang J, Feng X, Micceri D, Zeng H, Lin D. Lamellar Keratoplasty Using Acellular Bioengineering Cornea (BioCorneaVetTM) for the Treatment of Feline Corneal Sequestrum: A Retrospective Study of 62 Eyes (2018–2021). Animals (Basel) 2022; 12:ani12081016. [PMID: 35454262 PMCID: PMC9026742 DOI: 10.3390/ani12081016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Corneal sequestrum is a specific and common corneal disease in cats. Surgery treatment is the recommended option. Acellular bioengineering cornea (ABC) is a popular and effective corneal transplantation material. However, no study has been published to evaluate the effectiveness and outcome of ABC lamellar transplantation for the treatment of feline corneal sequestrum (FCS). The purpose of this retrospective study was to evaluate the surgical effect of ABC lamellar transplantation in the treatment of FCS. All cats were diagnosed with FCS. All eyes received ABC lamellar transplantation for the first time, including 61 cats (62 eyes), aged 6–120 months. The average sequestrum size was 7.98 mm, with a medium of 7.75 mm (range, 4.75–11.75 mm), and the sequestrum thickness included 200 microns for 1 eye (1.61%), 300 microns for 28 eyes (45.16%), 400 microns for 29 eyes (46.77%), and 450 microns for 4 eyes (6.45%). All eyes retained vision after surgical treatment, and there was no recurrence during the follow-up period. This study has several limitations, including incomplete unification and standardization of data collection, some vacancies of follow-up time, inconsistency between then optical coherence tomography(OCT) examination and postoperative photo collection. Despite several limitations, our results show that ABC is easy to obtain and store, and has the choice of different sizes and thicknesses to achieve rapid corneal healing, and satisfactory visual and cosmetic effects in FCS treatment. Acellular bioengineering cornea can be a good alternative for the treatment of FCS. Abstract To retrospectively evaluate the effectiveness and outcome of lamellar keratoplasty using acellular bioengineering cornea (BioCorneaVetTM) for the treatment of feline corneal sequestrum (FCS). The medical records of cats diagnosed with FCS that underwent lamellar keratoplasty with BioCorneaVetTM between 2018 and 2021 with a minimum of 3 months of follow-up were reviewed. Follow-up examinations were performed weekly for 3 months, and then optical coherence tomography (OCT) examination was performed on select patients at 0, 3, 6, and 12 months post-operatively. A total of 61 cats (30 left eyes and 32 right eyes) were included. The Persian breed was overrepresented, 48/61 (78.69%). Four different thicknesses of acellular bioengineering cornea were used (200, 300, 400, or 450 microns), and the mean graft size was 8.23 mm (range, 5.00–12.00 mm). Minor complications were composed of partial dehiscence, and protrusion of the graft occurred in 7/62 eyes (11.29%). The median postoperative follow-up was 12.00 months (range, 3–41 months). A good visual outcome was achieved in 60/62 eyes (96.77%), and a mild to moderate corneal opacification occurred in 2/62 (3.23%). No recurrence of corneal sequestrum was observed. From the results, lamellar keratoplasty using acellular bioengineering cornea (BioCorneaVetTM) is an effective treatment for FCS, providing a good tectonic support and natural collagen framework, and resulting in satisfactory visual and cosmetic effects.
Collapse
Affiliation(s)
- Huihao Xu
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
- College of Veterinary Medicine, Southwest University, No. 160, Xueyuan Road, Rongchang District, Chongqing 402460, China; (X.Z.); (J.T.); (X.F.); (H.Z.)
| | - John S. Sapienza
- Long Island Veterinary Specialists, Plainview, NY 11803, USA; (J.S.S.); (D.M.)
| | - Yipeng Jin
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Jiahao Lin
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Xiaobo Zheng
- College of Veterinary Medicine, Southwest University, No. 160, Xueyuan Road, Rongchang District, Chongqing 402460, China; (X.Z.); (J.T.); (X.F.); (H.Z.)
| | - Haodi Dong
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Hongxiu Diao
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Ying Zhao
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Jiafeng Gao
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Jing Tang
- College of Veterinary Medicine, Southwest University, No. 160, Xueyuan Road, Rongchang District, Chongqing 402460, China; (X.Z.); (J.T.); (X.F.); (H.Z.)
| | - Xueqian Feng
- College of Veterinary Medicine, Southwest University, No. 160, Xueyuan Road, Rongchang District, Chongqing 402460, China; (X.Z.); (J.T.); (X.F.); (H.Z.)
| | - Danielle Micceri
- Long Island Veterinary Specialists, Plainview, NY 11803, USA; (J.S.S.); (D.M.)
| | - Haoran Zeng
- College of Veterinary Medicine, Southwest University, No. 160, Xueyuan Road, Rongchang District, Chongqing 402460, China; (X.Z.); (J.T.); (X.F.); (H.Z.)
| | - Degui Lin
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
- Correspondence:
| |
Collapse
|
5
|
Hashimoto Y, Yamashita A, Negishi J, Kimura T, Funamoto S, Kishida A. 4-Arm PEG-Functionalized Decellularized Pericardium for Effective Prevention of Postoperative Adhesion in Cardiac Surgery. ACS Biomater Sci Eng 2021; 8:261-272. [PMID: 34937336 DOI: 10.1021/acsbiomaterials.1c00990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Postoperative adhesions are a very common and serious complication in cardiac surgery, and the development of an effective anti-adhesion membrane showing resistance to the physical stimulus generated by the pulsation of the heart is desirable. In this study, an anti-adhesion material was developed through amine coupling between decellularized bovine pericardia (dBPCs) and 4-arm poly(ethylene glycol) succinimidyl glutarate (4-arm PEG-NHS) for the postoperative care of cardiac surgical patients. The efficacy of the 4-arm PEG-functionalized dBPCs in the prevention of adhesions after cardiac surgery was investigated in a rabbit heart adhesion model. The dBPCs meet the requirements for biocompatibility, flexibility, and sufficient suturable strength, and the 4-arm PEG moieties provide an anti-adhesion effect by the high excluded volume interactions of the PEG chains with proteins. The 4-arm PEG-functionalized dBPCs had a significantly greater anti-adhesion effect than the other materials tested and showed re-establishment of the mesothelial monolayer. These results suggested that the 4-arm PEG-functionalized dBPCs are a favorable material for an anti-adhesion membrane.
Collapse
Affiliation(s)
- Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akitatsu Yamashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Jun Negishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.,Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Seiichi Funamoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
6
|
Santillo D, Mathieson I, Corsi F, Göllner R, Guandalini A. The use of acellular porcine corneal stroma xenograft (BioCorneaVet ™ ) for the treatment of deep stromal and full thickness corneal defects: A retrospective study of 40 cases (2019-2021). Vet Ophthalmol 2021; 24:469-483. [PMID: 34480395 DOI: 10.1111/vop.12927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To document the effectiveness and outcome of corneal grafting using acellular porcine corneal stroma (APCS) for veterinary use (BioCorneaVet™ ) to restore corneal integrity in dogs. METHODS A review of medical records of patients that underwent keratoplasty with APCS graft to repair deep corneal defects, descemetoceles, and perforations between 2019 and 2021 was carried out. Only animals with intact dazzle reflex, consensual PLR before the surgery and a minimum follow-up of four weeks were considered for the study, with forty dogs (1 eye each) meeting the inclusion criteria. RESULTS Brachycephalic breeds were the most frequently represented, and 20 right eyes and 20 left eyes were affected with 25 perforations, 8 descemetoceles, and 9 deep stromal defects (1 eye had both perforation and descemetocele). Most of the patients had concurrent ocular diseases or had undergone previous surgery on the other eye. Two different thickness of xenograft was used (300 or 450 µm), and the diameter ranged from 3 to 10 mm. Postoperative complications included mild to severe corneal vascularization, partial dehiscence, melting, and glaucoma. Follow-up time ranged from 28 to 797 days (mean: 233 days). Ocular integrity was maintained in 37/40 cases (92.5%), and vision was preserved in 36 cases (90%). CONCLUSION The use of APCS (BioCorneaVet™ ) is an effective surgical treatment for deep stromal defects, descemetocele, and perforations in dogs, providing a good tectonic support and preserving anatomical integrity and vision. The cosmetic appearance was considered good in all the cases and continued to improve with time.
Collapse
Affiliation(s)
- Daniele Santillo
- Eye Vet Referral, Sutton Weaver, Cheshire, UK.,Centro Veterinario Specialistico, Roma, Italy
| | | | | | | | | |
Collapse
|
7
|
Fernández-Pérez J, Madden PW, Brady RT, Nowlan PF, Ahearne M. The effect of prior long-term recellularization with keratocytes of decellularized porcine corneas implanted in a rabbit anterior lamellar keratoplasty model. PLoS One 2021; 16:e0245406. [PMID: 34061862 PMCID: PMC8168847 DOI: 10.1371/journal.pone.0245406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Decellularized porcine corneal scaffolds are a potential alternative to human cornea for keratoplasty. Although clinical trials have reported promising results, there can be corneal haze or scar tissue. Here, we examined if recellularizing the scaffolds with human keratocytes would result in a better outcome. Scaffolds were prepared that retained little DNA (14.89 ± 5.56 ng/mg) and demonstrated a lack of cytotoxicity by in vitro. The scaffolds were recellularized using human corneal stromal cells and cultured for between 14 in serum-supplemented media followed by a further 14 days in either serum free or serum-supplemented media. All groups showed full-depth cell penetration after 14 days. When serum was present, staining for ALDH3A1 remained weak but after serum-free culture, staining was brighter and the keratocytes adopted a native dendritic morphology with an increase (p < 0.05) of keratocan, decorin, lumican and CD34 gene expression. A rabbit anterior lamellar keratoplasty model was used to compare implanting a 250 μm thick decellularized lenticule against one that had been recellularized with human stromal cells after serum-free culture. In both groups, host rabbit epithelium covered the implants, but transparency was not restored after 3 months. Post-mortem histology showed under the epithelium, a less-compact collagen layer, which appeared to be a regenerating zone with some α-SMA staining, indicating fibrotic cells. In the posterior scaffold, ALDH1A1 staining was present in all the acellular scaffold, but in only one of the recellularized lenticules. Since there was little difference between acellular and cell-seeded scaffolds in our in vivo study, future scaffold development should use acellular controls to determine if cells are necessary.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Peter W. Madden
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Robert Thomas Brady
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Peter F. Nowlan
- School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mark Ahearne
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Yoon CH, Choi HJ, Kim MK. Corneal xenotransplantation: Where are we standing? Prog Retin Eye Res 2021; 80:100876. [PMID: 32755676 PMCID: PMC7396149 DOI: 10.1016/j.preteyeres.2020.100876] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
The search for alternatives to allotransplants is driven by the shortage of corneal donors and is demanding because of the limitations of the alternatives. Indeed, current progress in genetically engineered (GE) pigs, the introduction of gene-editing technology by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, and advanced immunosuppressants have made xenotransplantation a possible option for a human trial. Porcine corneal xenotransplantation is considered applicable because the eye is regarded as an immune-privileged site. Furthermore, recent non-human primate studies have shown long-term survival of porcine xenotransplants in keratoplasty. Herein, corneal immune privilege is briefly introduced, and xenogeneic reactions are compared with allogeneic reactions in corneal transplantation. This review describes the current knowledge on special issues of xenotransplantation, xenogeneic rejection mechanisms, current immunosuppressive regimens of corneal xenotransplantation, preclinical efficacy and safety data of corneal xenotransplantation, and updates of the regulatory framework to conduct a clinical trial on corneal xenotransplantation. We also discuss barriers that might prevent xenotransplantation from becoming common practice, such as ethical dilemmas, public concerns on xenotransplantation, and the possible risk of xenozoonosis. Given that the legal definition of decellularized porcine cornea (DPC) lies somewhere between a medical device and a xenotransplant, the preclinical efficacy and clinical trial data using DPC are included. The review finally provides perspectives on the current standpoint of corneal xenotransplantation in the fields of regenerative medicine.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Fernández-Pérez J, Madden PW, Ahearne M. Engineering a Corneal Stromal Equivalent Using a Novel Multilayered Fabrication Assembly Technique. Tissue Eng Part A 2020; 26:1030-1041. [PMID: 32368948 PMCID: PMC7580631 DOI: 10.1089/ten.tea.2020.0019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To overcome the serious shortage of donor corneas for transplantation, alternatives based on tissue engineering need to be developed. Decellularized corneas are one potential alternative, but their densely packed collagen architecture inhibits recellularization in vitro. Therefore, a new rapid method of recellularizing these constructs to ensure high cellularity throughout the collagen scaffold is needed. In this study, we developed a novel method for fabricating corneal constructs by using decellularized porcine corneal sheets assembled using a bottom-up approach by layering multiple sheets between cell-laden collagen I hydrogel. Corneal lenticules were cut from porcine corneas by cryosectioning, then decellularized with detergents and air-dried for storage as sheets. Human corneal stromal cells were encapsulated in collagen I hydrogel and cast between the dried sheets. Constructs were cultured in serum-free medium supplemented with ascorbic acid and insulin for 2 weeks. Epithelial cells were then seeded on the surface and cultured for an additional week. Transparency, cell viability, and phenotype were analyzed by qPCR, histology, and immunofluorescence. Constructs without epithelial cells were sutured onto an ex vivo porcine cornea and cultured for 1 week. Lenticules were successfully decellularized, achieving dsDNA values of 13 ± 1.2 ng/mg dry tissue, and were more resistant to degradation than the collagen I hydrogels. Constructs maintained high cell viability with a keratocyte-like phenotype with upregulation of keratocan, decorin, lumican, collagen I, ALDH3A1, and CD34 and the corneal epithelial cells stratified with a cobblestone morphology. The construct was amenable to surgical handling and no tearing occurred during suturing. After 7 days ex vivo, constructs were covered by a neoepithelium from the host porcine cells and integration into the host stroma was observed. This study describes a novel approach toward fabricating anterior corneal substitutes in a simple and rapid manner, obtaining mature and suturable constructs using only tissue-derived materials.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Trinity Center for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Peter W Madden
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Trinity Center for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mark Ahearne
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Trinity Center for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Trias E, Gallon P, Ferrari S, Piteira AR, Tabera J, Casaroli-Marano RP, Parekh M, Ruzza A, Franch A, Ponzin D. Banking of corneal stromal lenticules: a risk-analysis assessment with the EuroGTP II interactive tool. Cell Tissue Bank 2020; 21:189-204. [PMID: 32020423 DOI: 10.1007/s10561-020-09813-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
We evaluated the feasibility and performed a risk-benefit analysis of the storage and widespread distribution of stromal lenticules for clinical application using a new systematic tool (European Good Tissue and cells Practices II-EuroGTP II tool), specifically designed for assessing the risk, safety and efficacy of substances of human origin. Three types of potential tissue preparations for human stromal lenticules were evaluated: cryopreserved, dehydrated and decellularized. The tool helps to identify an overall risk score (0-2: negligible; 2-6: low; 6-22: moderate; > 22: high) and suggests risk reduction strategies. For all the three types of products, we found the level of risk to be as "moderate". A process validation, pre-clinical in vitro and in vivo evaluations and a clinical study limited to a restricted number of patients should therefore be performed in order to mitigate the risks. Our study allowed to establish critical points and steps necessary to implement a new process for safe stromal lenticule preparation by the eye banks to be used in additive keratoplasty. Moreover, it shows that the EuroGTP II tool is useful to assess and identify risk reduction strategies for introduction of new Tissue and Cellular Therapies and Products into the clinical practice.
Collapse
Affiliation(s)
- Esteve Trias
- Advanced Therapy Unit, Hospital Clinic, Escala 3, Planta 1 Criopreservació, C/Villarroel 170, 08036, Barcelona, Spain.
| | - Paola Gallon
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | - Ana Rita Piteira
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Jaime Tabera
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Ricardo P Casaroli-Marano
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
- Department of Surgery, School of Medicine & Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Mohit Parekh
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
- Institute of Ophthalmology, University College London, London, UK
| | | | - Antonella Franch
- Department of Ophthalmology, SS Giovanni e Paolo Hospital, ULSS3 Serenissima, Venice, Italy
| | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| |
Collapse
|
11
|
Zhou Y, Wang T, Wang Y, Meng F, Ying M, Han R, Hao P, Wang L, Li X. Blockade of extracellular high-mobility group box 1 attenuates inflammation-mediated damage and haze grade in mice with corneal wounds. Int Immunopharmacol 2020; 83:106468. [PMID: 32279044 DOI: 10.1016/j.intimp.2020.106468] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the expression of extracellular high mobility group box 1 (HMGB1) and the effect of its inhibitor glycyrrhizin (GL) in corneal wound healing. METHODS We treated C57BL/6J mice with GL or PBS before and after establishing a corneal injury model. Fluorescein staining, Ki-67 expression, haze grade, and haematoxylin/eosin (H&E) staining were used to assess treatment efficacy. The expression of HMGB1, NF-κB-p65, the NLRP3 inflammasome, IL-1β, CCL2, CXCL2, TGF-β1, α-SMA, fibronectin, and collagen III and neutrophil influx were examined by immunohistochemical staining, western blot, and RT-qPCR at various time points after corneal injury. RESULTS After corneal injury, HMGB1 transferred from the nucleus to the cytoplasm and was passively released or actively secreted into the corneal stroma from epithelial cells and inflammatory cells; however, this increase was attenuated by GL treatment. Furthermore, GL indirectly attenuated the expression of IL-1β by directly inhibiting extracellular HMGB1 functions, which activated the NF-κB-p65/NLRP3/IL-1β signalling pathway. Moreover, application of GL alleviated the neutrophil infiltration that delays wound healing, accompanied by the downregulation of expression of the chemokines CCL2 and CXCL2. More interestingly, application of GL reduced the degree of haze grade through inactivating extracellular HMGB1 functions that induced TGF-β1 release and myofibroblast differentiation. In addition, fluorescein and H&E staining and Ki-67 levels suggest that GL promotes regeneration of corneal epithelium. CONCLUSIONS After corneal injury, extracellular HMGB1 can be an essential driver to trigger a neutrophil- and cytokine-mediated inflammatory injury amplification loop. The application of GL promotes the cornea to restore transparency and integrity, which may be related to the attenuation of extracellular HMGB1 levels and function.
Collapse
Affiliation(s)
- Yongying Zhou
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Ting Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yuchuan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China
| | - Fanlan Meng
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ming Ying
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China
| | - Ruifang Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China
| | - Peng Hao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China
| | - Liming Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China
| | - Xuan Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China.
| |
Collapse
|
12
|
Veryasova NN, Lazhko AE, Isaev DE, Grebenik EA, Timashev PS. Supercritical Carbon Dioxide—A Powerful Tool for Green Biomaterial Chemistry. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793119070236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wang Y, Ma J, Jiang X, Liu Z, Yang J, Li X. Development of Transparent Acellular Dermal Matrix as Tissue-Engineered Stroma Substitute for Central Lamellar Keratoplasty. Invest Ophthalmol Vis Sci 2020; 61:5. [PMID: 31999820 PMCID: PMC7205104 DOI: 10.1167/iovs.61.1.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To improve the transparency of the acellular dermal matrix (ADM) and investigate the optical, mechanical and histologic properties and biocompatibility of transparent ADM (TADM) in lamellar keratoplasty. Methods A stepwise sectioning strategy was applied to determine the transparency distribution of the ADM, and TADM was fabricated accordingly. Transmittance measurements, uniaxial tension testing, and histologic staining were applied to detect its properties. Lamellar keratoplasty was performed in rabbits with TADM, and postoperative evaluations were conducted including the transmittance of the transplant area and histologic staining. Results The transmittance of the ADM increased with increasing depth, and TADM was isolated mechanically at the deepest level. There was a significant improvement in the transmittance of the TADM compared with the ADM, and no significant difference in transmittance between dehydrated TADM and cornea was observed. The elastic modulus of TADM was significantly stronger than that of normal cornea (P = 0.004). TADM consisted of dense collagen fibrils, mainly collagen type I, and the collagen fibril diameter and interfibrillar spacing were determined to be larger than corneal stroma. After lamellar keratoplasty in rabbits, the TADM was well integrated with the host cornea, and transparent cornea without neovascularization was observed at 6 months. Re-epithelization was completed at 1 month, and keratocyte repopulation and collagen remodeling were observed in the graft 3 and 6 months after surgery. Conclusions This study presents the transparency distribution of the ADM and a method for obtaining TADM, which demonstrates ideal transparency, strong mechanical properties, and satisfactory biocompatibility when applied in lamellar keratoplasty.
Collapse
|
14
|
Isidan A, Liu S, Li P, Lashmet M, Smith LJ, Hara H, Cooper DKC, Ekser B. Decellularization methods for developing porcine corneal xenografts and future perspectives. Xenotransplantation 2019; 26:e12564. [PMID: 31659811 DOI: 10.1111/xen.12564] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/11/2019] [Accepted: 10/13/2019] [Indexed: 12/23/2022]
Abstract
Corneal transplantation is the only option to cure corneal opacities. However, there is an imbalance between supply and demand of corneal tissues in the world. To solve the problem of corneal shortage, corneal xenotransplantation studies have been implemented in the past years using porcine corneas. The corneal xenografts could come from (a) wild-type pigs, (b) genetically engineered pigs, (c) decellularized porcine corneas, and (d) decellularized porcine corneas that are recellularized with human corneal cells, eventually with patients' own cells, as in all type of xenografts. All approaches except, the former would reduce or mitigate recipient immune responses. Although several techniques in decellularization have been reported, there is still no standardized protocol for the complete decellularization of corneal tissue. Herein, we reviewed different decellularization methods for porcine corneas based on the mechanism of action, decellularization efficacy, biocompatibility, and the undesirable effects on corneal ultrastructure. We compared 9 decellularization methods including: (a) sodium dodecyl sulfate, (b) triton x-100, (c) hypertonic saline, (d) human serum with electrophoresis, (e) high hydrostatic pressure, (f) freeze-thaw, (h) nitrogen gas, (h) phospholipase A2 , and (i) glycerol with chemical crosslinking methods. It appears that combined methods could be more useful to perform efficient corneal decellularization.
Collapse
Affiliation(s)
- Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shaohui Liu
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Lashmet
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lester J Smith
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Islam MM, Sharifi R, Mamodaly S, Islam R, Nahra D, Abusamra DB, Hui PC, Adibnia Y, Goulamaly M, Paschalis EI, Cruzat A, Kong J, Nilsson PH, Argüeso P, Mollnes TE, Chodosh J, Dohlman CH, Gonzalez-Andrades M. Effects of gamma radiation sterilization on the structural and biological properties of decellularized corneal xenografts. Acta Biomater 2019; 96:330-344. [PMID: 31284096 PMCID: PMC7043233 DOI: 10.1016/j.actbio.2019.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
To address the shortcomings associated with corneal transplants, substantial efforts have been focused on developing new modalities such as xenotransplantion. Xenogeneic corneas are anatomically and biomechanically similar to the human cornea, yet their applications require prior decellularization to remove the antigenic components to avoid rejection. In the context of bringing decellularized corneas into clinical use, sterilization is a crucial step that determines the success of the transplantation. Well-standardized sterilization methods, such as gamma irradiation (GI), have been applied to decellularized porcine corneas (DPC) to avoid graft-associated infections in human recipients. However, little is known about the effect of GI on decellularized corneal xenografts. Here, we evaluated the radiation effect on the ultrastructure, optical, mechanical and biological properties of DPC. Transmission electron microscopy revealed that gamma irradiated decellularized porcine cornea (G-DPC) preserved its structural integrity. Moreover, the radiation did not reduce the optical properties of the tissue. Neither DPC nor G-DPC led to further activation of complement system compared to native porcine cornea when exposed to plasma. Although, DPC were mechanically comparable to the native tissue, GI increased the mechanical strength, tissue hydrophobicity and resistance to enzymatic degradation. Despite these changes, human corneal epithelial, stromal, endothelial and hybrid neuroblastoma cells grew and differentiated on DPC and G-DPC. Thus, GI may achieve effective tissue sterilization without affecting critical properties that are essential for corneal transplant survival.
Collapse
Affiliation(s)
- Mohammad Mirazul Islam
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Roholah Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shamina Mamodaly
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Daniel Nahra
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Dina B Abusamra
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pui Chuen Hui
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yashar Adibnia
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Yeditepe University School of Medicine, Istanbul, Turkey
| | - Mehdi Goulamaly
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eleftherios I Paschalis
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Andrea Cruzat
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway; Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Pablo Argüeso
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway; Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - James Chodosh
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Claes H Dohlman
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain.
| |
Collapse
|
16
|
Re-epithelialization and remodeling of decellularized corneal matrix in a rabbit corneal epithelial wound model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:238-246. [DOI: 10.1016/j.msec.2019.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
|
17
|
Nakamura N, Ito A, Kimura T, Kishida A. Extracellular Matrix Induces Periodontal Ligament Reconstruction In Vivo. Int J Mol Sci 2019; 20:E3277. [PMID: 31277305 PMCID: PMC6650958 DOI: 10.3390/ijms20133277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/04/2022] Open
Abstract
One of the problems in dental implant treatment is the lack of periodontal ligament (PDL), which supports teeth, prevents infection, and transduces sensations such as chewiness. The objective of the present study was to develop a decellularized PDL for supporting an artificial tooth. To this end, we prepared mouse decellularized mandible bone with a PDL matrix by high hydrostatic pressure and DNase and detergent treatments and evaluated its reconstruction in vivo. After tooth extraction, the decellularized mandible bone with PDL matrix was implanted under the subrenal capsule in rat and observed that host cells migrated into the matrix and oriented along the PDL collagen fibers. The extracted decellularized tooth and de- and re-calcified teeth, which was used as an artificial tooth model, were re-inserted into the decellularized mandible bone and implanted under the subrenal capsule in rat. The reconstructed PDL matrix for the extracted decellularized tooth resembled the decellularized mandible bone without tooth extraction. This demonstrates that decellularized PDL matrix can reconstruct PDL tissue by controlling host cell migration, which could serve as a novel periodontal treatment approach.
Collapse
Affiliation(s)
- Naoko Nakamura
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ai Ito
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
18
|
Corneal Stromal Transplantation With Human-derived Acellular Dermal Matrix for Pellucid Marginal Corneal Degeneration: A Nonrandomized Clinical Trial. Transplantation 2019; 103:e172-e179. [DOI: 10.1097/tp.0000000000002681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Fernández-Pérez J, Ahearne M. Decellularization and recellularization of cornea: Progress towards a donor alternative. Methods 2019; 171:86-96. [PMID: 31128238 DOI: 10.1016/j.ymeth.2019.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
The global shortage of donor corneas for transplantation has led to corneal bioengineering being investigated as a method to generate transplantable tissues. Decellularized corneas are among the most promising materials for engineering corneal tissue since they replicate the complex structure and composition of real corneas. Decellularization is a process that aims to remove cells from organs or tissues resulting in a cell-free scaffold consisting of the tissues extracellular matrix. Here different decellularization techniques are described, including physical, chemical and biological methods. Analytical techniques to confirm decellularization efficiency are also discussed. Different cell sources for the recellularization of the three layers of the cornea, recellularization methods used in the literature and techniques used to assess the outcome of the implantation of such scaffolds are examined. Studies involving the application of decellularized corneas in animal models and human clinical studies are discussed. Finally, challenges for this technology are explored involving scalability, automatization and regulatory affairs.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Dept of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Mark Ahearne
- Dept of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Ireland.
| |
Collapse
|
20
|
|
21
|
Yokokura S, Tanaka Y. Recent Advances in Biosynthetic Corneal Substitutes. CURRENT OPHTHALMOLOGY REPORTS 2018. [DOI: 10.1007/s40135-018-0180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Chakraborty J, Roy S, Murab S, Ravani R, Kaur K, Devi S, Singh D, Sharma S, Mohanty S, Dinda AK, Tandon R, Ghosh S. Modulation of Macrophage Phenotype, Maturation, and Graft Integration through Chondroitin Sulfate Cross-Linking to Decellularized Cornea. ACS Biomater Sci Eng 2018; 5:165-179. [PMID: 33405862 DOI: 10.1021/acsbiomaterials.8b00251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decellularized corneas obtained from other species have gained intense popularity in the field of tissue engineering due to its role to serve as an alternative to the limited availability of high-quality donor tissues. However, the decellularized cornea is found to evoke an immune response inspite of the removal of the cellular contents and antigens due to the distortion of the collagen fibrils that exposes certain antigenic sites, which often lead to graft rejection. Therefore, in this study we tested the hypothesis that cross-linking the decellularized corneas with chondroitin sulfate may help in restoring the distorted conformationation changes of fibrous matrix and thus help in reducing the occurrence of graft rejection. Cross-linking of the decellularized cornea with oxidized chondroitin sulfate was validated by ATR-FTIR analysis. An in vitro immune response study involving healthy monocytes and differentiated macrophages with their surface marker analysis by pHrodo red, Lysotracker red, ER tracker, and CD63, LAMP-2 antibodies confirmed that the cross-linked decellularized matrices elicited the least immune response compared to the decellularized ones. We implanted three sets of corneal scaffolds obtained from goat, i.e., native, decellularized, and decellularized corneas conjugated with chondroitin sulfate into the rabbit stroma. Histology analysis, three months after implantation into the rabbit corneal stromal region, confirmed the restoration of the collagen fibril conformation and the migration of cells to the implanted constructs, affirming proper graft integration. Hence we conclude that the chondroitin sulfate cross-linked decellularized corneal matrix may serve as an efficient alternative to the allograft and human cadaveric corneas.
Collapse
Affiliation(s)
- Juhi Chakraborty
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Subhadeep Roy
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sumit Murab
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | - Kulwinder Kaur
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | | | | | | | | | | | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
23
|
Alió Del Barrio JL, El Zarif M, Azaar A, Makdissy N, Khalil C, Harb W, El Achkar I, Jawad ZA, de Miguel MP, Alió JL. Corneal Stroma Enhancement With Decellularized Stromal Laminas With or Without Stem Cell Recellularization for Advanced Keratoconus. Am J Ophthalmol 2018; 186:47-58. [PMID: 29103962 DOI: 10.1016/j.ajo.2017.10.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE This phase 1 study seeks to preliminarily evaluate the safety and efficacy of decellularized human corneal stromal lamina transplantation with or without autologous adipose-derived adult stem cell recellularization within the corneal stroma of patients with advanced keratoconus. DESIGN Phase 1 clinical trial. METHODS Femtosecond-assisted 120-μm thickness and 9-mm diameter laminas were obtained from the anterior stroma of human donor corneas and decellularized with a sodium dodecyl sulfate solution. Autologous adipose-derived adult stem cells were obtained by elective liposuction and cultured onto both sides of the lamina. Five patients received the decellularized lamina alone and 4 patients the recellularized lamina into a femtosecond-assisted 9.5-mm diameter lamellar pocket under topical anesthesia. The total duration of follow-up was 6 months. RESULTS No case showed clinical haze or scarring by month 3. Six months after surgery, patients showed a general improvement of all visual parameters, with a mean unaided visual acuity from 0.109 to 0.232 (P = .05) and corrected distance visual acuity from 0.22 to 0.356 (P = .068). Refractive sphere improved in all patients (from -4.55 diopters [D] to -2.69 D; P = .017), but refractive cylinder remained stable (from -2.83 to -2.61; P = .34). An improvement tendency of all anterior keratometric values was observed. A mean improvement of 120 μm in all thickness parameters was confirmed (P = .008), as well as an improvement in the spherical aberration (P = .018), coma (P = .23) and total higher order aberrations (P = .31). No significant differences among groups were detected. CONCLUSIONS Decellularized human corneal stromal laminas transplantation seems safe and moderately effective for advanced keratoconus. Potential benefits of its recellularization with autologous adipose-derived adult stem cells remains unclear.
Collapse
Affiliation(s)
- Jorge L Alió Del Barrio
- Cornea, Cataract and Refractive Surgery Unit, Vissum Corporación, Alicante, Spain; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
| | | | - Albert Azaar
- Reviva Regenerative Medicine Center, Middle East Hospital, Beirut, Lebanon
| | - Nehman Makdissy
- Reviva Regenerative Medicine Center, Middle East Hospital, Beirut, Lebanon; Lebanese University, Beirut, Lebanon
| | - Charbel Khalil
- Reviva Regenerative Medicine Center, Middle East Hospital, Beirut, Lebanon
| | - Walid Harb
- Reviva Regenerative Medicine Center, Middle East Hospital, Beirut, Lebanon
| | | | | | - María P de Miguel
- Cell Engineering Laboratory, IdiPAZ, La Paz Hospital Research Institute, Madrid, Spain
| | - Jorge L Alió
- Cornea, Cataract and Refractive Surgery Unit, Vissum Corporación, Alicante, Spain; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain.
| |
Collapse
|
24
|
NAKAMURA N, KIMURA T, KISHIDA A. Medical Application of Decellularized Tissue-Polymer Complex. KOBUNSHI RONBUNSHU 2018. [DOI: 10.1295/koron.2017-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naoko NAKAMURA
- College of Systems Engineering and Science, Shibaura Institute of Technology
| | - Tsuyoshi KIMURA
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Akio KISHIDA
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
25
|
Huang YH, Tseng FW, Chang WH, Peng IC, Hsieh DJ, Wu SW, Yeh ML. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology. Acta Biomater 2017; 58:238-243. [PMID: 28579539 DOI: 10.1016/j.actbio.2017.05.060] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 10/19/2022]
Abstract
In this study, we developed a novel method using supercritical carbon dioxide (SCCO2) to prepare acellular porcine cornea (APC). Under gentle extraction conditions using SCCO2 technology, hematoxylin and eosin staining showed that cells were completely lysed, and cell debris, including nuclei, was efficiently removed from the porcine cornea. The SCCO2-treated corneas exhibited intact stromal structures and appropriate mechanical properties. Moreover, no immunological reactions and neovascularization were observed after lamellar keratoplasty in rabbits. All transplanted grafts and animals survived without complications. The transplanted APCs were opaque after the operation but became transparent within 2weeks. Complete re-epithelialization of the transplanted APCs was observed within 4weeks. In conclusion, APCs produced by SCCO2 extraction technology could be an ideal and useful scaffold for corneal tissue engineering. STATEMENT OF SIGNIFICANCE We decellularized the porcine cornea using SCCO2 extraction technology and investigated the characteristics, mechanical properties, and biocompatibility of the decellularized porcine cornea by lamellar keratoplasty in rabbits. To the best of our knowledge, this is the first report describing the use of SCCO2 extraction technology for preparation of acellular corneal scaffold. We proved that the cellular components of porcine corneas had been efficiently removed, and the biomechanical properties of the scaffold were well preserved by SCCO2 extraction technology. SCCO2-treated corneas maintained optical transparency and exhibited appropriate strength to withstand surgical procedures. In vivo, the transplanted corneas showed no evidence of immunological reactions and exhibited good biocompatibility and long-term stability. Our results suggested that the APCs developed by SCCO2 extraction technology could be an ideal and useful scaffold for corneal replacement and corneal tissue engineering.
Collapse
|
26
|
Brunette I, Roberts CJ, Vidal F, Harissi-Dagher M, Lachaine J, Sheardown H, Durr GM, Proulx S, Griffith M. Alternatives to eye bank native tissue for corneal stromal replacement. Prog Retin Eye Res 2017; 59:97-130. [DOI: 10.1016/j.preteyeres.2017.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/15/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
|
27
|
Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells. Biomaterials 2017; 124:180-194. [PMID: 28199886 DOI: 10.1016/j.biomaterials.2017.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/23/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to construct a full-thickness artificial cornea substitute in vitro by coculturing limbal epithelial cell-like (LEC-like) cells and corneal endothelial cell-like (CEC-like) cells derived from human embryonic stem cells (hESCs) on APCM scaffold. A 400 μm thickness, 11 mm diameter APCM lamella containing Bowman's membrane was prepared as the scaffold using trephine and a special apparatus made by ourselves. LEC-like cells and CEC-like cells, derived from hESCs as our previously described, were cocultured on the scaffold using a special insert of 24-well plates that enabled seeding both sides of the scaffold. Three or four layers of epithelium-like cells and a uniform monolayer of CEC-like cells could be observed by H&E staining. The thickness, endothelial cell density, and mechanical properties of the construct were similar to that of native rabbit corneas. Immunofluorescence analysis showed expression of ABCG2 and CK3 in the epithelium-like cell layers and expression of N-cadherin, ZO-1 and Na+/K + ATPase in the CEC-like cells. The corneal substitutes were well integrated within the host corneas, and the transparency increased gradually in 8-week follow-up after transplantation in the rabbits. These results suggest that the strategy we developed is feasible and effective for construction of tissue-engineered full-thickness cornea substitute with critical properties of native cornea.
Collapse
|
28
|
Nakamura N, Kimura T, Kishida A. Overview of the Development, Applications, and Future Perspectives of Decellularized Tissues and Organs. ACS Biomater Sci Eng 2016; 3:1236-1244. [DOI: 10.1021/acsbiomaterials.6b00506] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Naoko Nakamura
- Institute of Biomaterials
and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials
and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 Japan
| | - Akio Kishida
- Institute of Biomaterials
and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 Japan
| |
Collapse
|
29
|
Starnecker F, König F, Hagl C, Thierfelder N. Tissue-engineering acellular scaffolds-The significant influence of physical and procedural decellularization factors. J Biomed Mater Res B Appl Biomater 2016; 106:153-162. [PMID: 27898187 DOI: 10.1002/jbm.b.33816] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 01/09/2023]
Abstract
The importance of decellularized medical products has significantly increased during the last years. In this paper, we evaluated the effects of selected physical and procedural decellularization (DC) factors with the aim to systematically assess their influence on DC results. 72 porcine aortic walls (AW) were divided into three groups and exposed to a DC solution for 4 h and 8 h, either continuously or in repeated cycles. The AW were rocked (90bpm), whirled (10 l/min), sonicated (120W, 45 kHz) or exposed to a combination of these treatments, followed by 10 washing cycles. Defining successful DC as removal of nuclei while keeping an intact extracellular matrix (ECM), we equalized the efficiency to the penetration depth (PD), obtained by DAPI fluorescence and H&E staining. Additionally, we performed scanning electron microscopy (SEM), Pentachrome and Picrosirius-Red staining. Results showed that significantly higher DC depths are achieved on outer compared to inner surfaces (61 ± 7%; p < 0.001). Furthermore, the PD showed a high time dependency for all samples. Compared to continuous rocking, we achieved a significant increase in the DC efficiency through cyclic treatments ( ∼ 43%), whirling ( ∼ 19%) and sonication ( ∼ 49%). The combined treatment supported these results. In all procedures, a skeletonized but intact Collagen fibrous network was obtained as confirmed by SEM analysis. In conclusion, we systematically identified essential factors to significantly enhance DC procedures. We highly recommend considering these factors in future DC protocols. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 153-162, 2018.
Collapse
Affiliation(s)
- F Starnecker
- Department of Cardiac Surgery, Laboratory for Tissue Engineering, Grosshadern Medical Centre, Ludwig-Maximilians-University, Marchioninistrasse 15, Munich, 81377, Germany
| | - F König
- Department of Cardiac Surgery, Laboratory for Tissue Engineering, Grosshadern Medical Centre, Ludwig-Maximilians-University, Marchioninistrasse 15, Munich, 81377, Germany
| | - C Hagl
- Department of Cardiac Surgery, Laboratory for Tissue Engineering, Grosshadern Medical Centre, Ludwig-Maximilians-University, Marchioninistrasse 15, Munich, 81377, Germany
| | - N Thierfelder
- Department of Cardiac Surgery, Laboratory for Tissue Engineering, Grosshadern Medical Centre, Ludwig-Maximilians-University, Marchioninistrasse 15, Munich, 81377, Germany
| |
Collapse
|
30
|
Murab S, Ghosh S. Impact of osmoregulatory agents on the recovery of collagen conformation in decellularized corneas. ACTA ACUST UNITED AC 2016; 11:065005. [PMID: 27786166 DOI: 10.1088/1748-6041/11/6/065005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The process of decellularization of the cornea leads to the removal of cells and antigens. However, during decellularization the ultrastructure of the corneal matrix is usually damaged and a secondary conformation of the collagen fibrils is modulated resulting in altered transparency and physical properties. The strategy for recovering modulation in collagen conformation may help to attain the native physical properties and transparency of the cornea. Decellularized corneas were treated with varied concentrations of glycerol and dextran, and the collagen conformation was monitored by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray diffraction (XRD) and Raman spectroscopic analysis. The peak at ~4 Å in XRD established the presence of transitional conformations that decreased with the application of osmoregulatory agents, but could not be completely eliminated. This was validated by the results of ATR-FTIR and Raman analysis. Importantly, the mechanism of this loss and the regaining of transparency has been proposed on the basis of the detachment of decorin molecules from the collagen triple helices, due to the change in collagen conformation during decellularization, and the subsequent partial reversal due to the desiccation effect of the osmoregulatory agents on collagen molecules. Taken together, collagen conformational transition can be considered as an indexing tool for the development of improved decellularization techniques.
Collapse
Affiliation(s)
- Sumit Murab
- Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi, India
| | | |
Collapse
|
31
|
Parker J, van Dijk K, Melles G. Updates in anterior lamellar keratoplasty: the state of the debates. EXPERT REVIEW OF OPHTHALMOLOGY 2016. [DOI: 10.1080/17469899.2016.1224656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Hashimoto Y, Hattori S, Sasaki S, Honda T, Kimura T, Funamoto S, Kobayashi H, Kishida A. Ultrastructural analysis of the decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty in a rabbit model. Sci Rep 2016; 6:27734. [PMID: 27291975 PMCID: PMC4904214 DOI: 10.1038/srep27734] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/24/2016] [Indexed: 12/13/2022] Open
Abstract
The decellularized cornea has received considerable attention for use as an artificial cornea. The decellularized cornea is free from cellular components and other immunogens, but maintains the integrity of the extracellular matrix. However, the ultrastructure of the decellularized cornea has yet to be demonstrated in detail. We investigated the influence of high hydrostatic pressure (HHP) on the decellularization of the corneal ultrastructure and its involvement in transparency, and assessed the in vivo behaviour of the decellularized cornea using two animal transplantation models, in relation to remodelling of collagen fibrils. Decellularized corneas were prepared by the HHP method. The decellularized corneas were executed by haematoxylin and eosin and Masson's trichrome staining to demonstrate the complete removal of corneal cells. Transmission electron microscopy revealed that the ultrastructure of the decellularized cornea prepared by the HHP method was better maintained than that of the decellularized cornea prepared by the detergent method. The decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty using a rabbit model was stable and remained transparent without ultrastructural alterations. We conclude that the superior properties of the decellularized cornea prepared by the HHP method were attributed to the preservation of the corneal ultrastructure.
Collapse
Affiliation(s)
- Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Shinya Hattori
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Shuji Sasaki
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
- Department of Ophthalmology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takako Honda
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Seiichi Funamoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Hisatoshi Kobayashi
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| |
Collapse
|