1
|
Ali Ahmed E, Abd El-Basit SA, Mohamed MA, Swellam M. Clinical role of MiRNA 29a and MiRNA 335 on breast cancer management: their relevance to MMP2 protein level. Arch Physiol Biochem 2022; 128:1058-1065. [PMID: 32267166 DOI: 10.1080/13813455.2020.1749085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Circulating miRNAs are novel biomarkers, authors aimed to investigate the expression level of miR-29a and miR-335 and their relevance to CEA, CA15.3, and matrix metalloproteinase-2 (MMP2). MATERIALS AND METHODS Breast cancer (BC) patients (n = 44), benign breast lesion patients (n = 25), and healthy individuals (n = 19) were enrolled for detection of miRNA expression levels, MMP2 and biochemical markers using quantitative polymerase chain reaction (PCR) and ELISA, respectively. RESULTS Expression of miR-29a and miR-335 were significantly decreased in breast patients as compared to healthy individuals, while biochemical markers were high in BC patients as compared to the other two groups. The diagnostic efficacy for miR-29a, miR-335, and MMP2 were superior to both CEA and CA 15.3 for early detection of BC patients. CONCLUSIONS Detection of the miR-29a and miR335 expression levels in serum samples are significant promising biomarkers for BC diagnosis.
Collapse
Affiliation(s)
- Elham Ali Ahmed
- Zoology Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Sohir A Abd El-Basit
- Zoology Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Mona A Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, Giza, Egypt
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Suyal G, Pandey P, Saraya A, Sharma R. Tumour suppressor role of microRNA-335-5p in esophageal squamous cell carcinoma by targeting TTK (Mps1). Exp Mol Pathol 2021; 124:104738. [PMID: 34953918 DOI: 10.1016/j.yexmp.2021.104738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Esophageal cancer is an aggressive malignancy. miR-335-5p is reported to possess both tumour suppressor and tumour promoter activities in different cancers. OBJECTIVES We investigated the role of miR-335-5p in esophageal cancer by expression and functional studies. MATERIALS AND METHODS The role of miR-335-5p in ESCC was evaluated using MTT assay, cell cycle analysis, colony formation assay, scratch assay, matrigel invasion, and migration assay. RESULTS Our expression studies showed a significantly decreased expression of tissue and circulating miR-335-5p in esophageal cancer. Our results herein report a key tumour suppressive role of miR-335-5p in esophageal carcinogenesis by inhibiting proliferation, migration, and invasion in ESCC cells. Using RNA-seq and Insilico analysis we found TTK to be a newly identified direct target and confirmed it by using luciferase assay. CONCLUSION Overall, our expression and functional analysis results demonstrated herein point towards the potential role of miR-335-5p in esophageal tumorigenesis. Moreover, this is the first report showing TTK as a downstream target of miR-335-5p.
Collapse
Affiliation(s)
- Geetika Suyal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Prerna Pandey
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India.
| |
Collapse
|
3
|
Ong J, van den Berg A, Faiz A, Boudewijn IM, Timens W, Vermeulen CJ, Oliver BG, Kok K, Terpstra MM, van den Berge M, Brandsma CA, Kluiver J. Current Smoking is Associated with Decreased Expression of miR-335-5p in Parenchymal Lung Fibroblasts. Int J Mol Sci 2019; 20:ijms20205176. [PMID: 31635387 PMCID: PMC6829537 DOI: 10.3390/ijms20205176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoking causes lung inflammation and tissue damage. Lung fibroblasts play a major role in tissue repair. Previous studies have reported smoking-associated changes in fibroblast responses and methylation patterns. Our aim was to identify the effect of current smoking on miRNA expression in primary lung fibroblasts. Small RNA sequencing was performed on lung fibroblasts from nine current and six ex-smokers with normal lung function. MiR-335-5p and miR-335-3p were significantly downregulated in lung fibroblasts from current compared to ex-smokers (false discovery rate (FDR) <0.05). Differential miR-335-5p expression was validated with RT-qPCR (p-value = 0.01). The results were validated in lung tissue from current and ex-smokers and in bronchial biopsies from non-diseased smokers and never-smokers (p-value <0.05). The methylation pattern of the miR-335 host gene, determined by methylation-specific qPCR, did not differ between current and ex-smokers. To obtain insights into the genes regulated by miR-335-5p in fibroblasts, we overlapped all proven miR-335-5p targets with our previously published miRNA targetome data in lung fibroblasts. This revealed Rb1, CARF, and SGK3 as likely targets of miR-335-5p in lung fibroblasts. Our study indicates that miR-335-5p downregulation due to current smoking may affect its function in lung fibroblasts by targeting Rb1, CARF and SGK3.
Collapse
Affiliation(s)
- Jennie Ong
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Anke van den Berg
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB) Faculty of Science, Ultimo, NSW 2007, Australia.
| | - Ilse M Boudewijn
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Cornelis J Vermeulen
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Respiratory Cellular and Molecular Biology, The University of Sydney, New South Wales 2037, Australia.
- University of Technology Sydney, School of Life Sciences, Sydney, New South Wales 2007, Australia.
| | - Klaas Kok
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9713 GZ Groningen, The Netherlands.
| | - Martijn M Terpstra
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9713 GZ Groningen, The Netherlands.
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Joost Kluiver
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
4
|
Fatima N, Srivastava AN, Nigam J, Raza ST, Rizvi S, Siddiqui Z, Kumar V. Low Expression of MicroRNA335-5p Is Associated with Malignant Behavior of Gallbladder Cancer: A Clinicopathological Study. Asian Pac J Cancer Prev 2019; 20:1895-1900. [PMID: 31244315 PMCID: PMC7021618 DOI: 10.31557/apjcp.2019.20.6.1895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs (miRNAs) are non-coding RNAs that regulate multiple cellular processes during cancer
progression, identified to be involved in tumorgenesis of several cancers including cancers of digestive system. However
its role in gallbladder inflammatory disease (GID) and gallbladder cancer (GBC) has not been well documented.
The present study was aimed to investigate the clinical significance of hsa-miRNA-335-5p (miR-335) in GBC and
GID. Subjects and Methods: This prospective case control study, conducted from July 1, 2014 to December 1, 2017
in Era’s Lucknow Medical College & Hospital, India, evaluated miR-335 expression by real-time polymerase chain
reaction. Hundred tissue samples GID (control; n=50) and GBC (case; n=50) were studied. Relative quantification of
target miR-335 expression was examined using the comparative cycle threshold method. Their expression was correlated
with different clinicopathological parameters. Fishers’ exact test, Student’s t-test, and Chi-square test were used as
appropriate for data analysis. Kaplan-Meier methods were used to calculate overall and disease-free survival rate.
Two sided P<0.05 was considered as significant. Results: miR-335 expression was found to be significantly low in
GBC lesions when compared with GID lesions (P<0.001). The low expression level of miR-335 was correlated with
histological grade (P=0.007), clinical stage (P<0.001), lymph node metastasis (P<0.001) and liver metastasis (P=0.016).
Reduced expression of miRNA-335 was associated with a shorter median overall survival (7 months vs. 25 months)
in GBC patients (P<0.001). Conclusions: Down regulation of miR-335 is associated with the severity of the disease
and thus indicate that miR-335 expression may serve as prognostic marker for GBC.
Collapse
Affiliation(s)
- Naseem Fatima
- Department of Pathology, Era's Lucknow Medical College & Hospital, Lucknow, India.
| | | | - Jaya Nigam
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow India
| | - Syed Tasleem Raza
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Saliha Rizvi
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Zainab Siddiqui
- Department of Pathology, Era's Lucknow Medical College & Hospital, Lucknow, India.
| | - Vijay Kumar
- Department of Surgical Oncology, King George's Medical University, Lucknow India
| |
Collapse
|
5
|
Swellam M, Mahmoud MS, Hashim M, Hassan NM, Sobeih ME, Nageeb AM. Clinical aspects of circulating miRNA‐335 in breast cancer patients: A prospective study. J Cell Biochem 2018; 120:8975-8982. [DOI: 10.1002/jcb.28168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Menha Swellam
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| | - Magda Sayed Mahmoud
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| | - Maha Hashim
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| | - Naglaa M Hassan
- Department of Clinical Pathology National Cancer Institute Cairo Egypt
| | | | - Amira M Nageeb
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| |
Collapse
|
6
|
Sandoval-Bórquez A, Polakovicova I, Carrasco-Véliz N, Lobos-González L, Riquelme I, Carrasco-Avino G, Bizama C, Norero E, Owen GI, Roa JC, Corvalán AH. MicroRNA-335-5p is a potential suppressor of metastasis and invasion in gastric cancer. Clin Epigenetics 2017; 9:114. [PMID: 29075357 PMCID: PMC5645854 DOI: 10.1186/s13148-017-0413-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Multiple aberrant microRNA expression has been reported in gastric cancer. Among them, microRNA-335-5p (miR-335), a microRNA regulated by DNA methylation, has been reported to possess both tumor suppressor and tumor promoter activities. Results Herein, we show that miR-335 levels are reduced in gastric cancer and significantly associate with lymph node metastasis, depth of tumor invasion, and ultimately poor patient survival in a cohort of Amerindian/Hispanic patients. In two gastric cancer cell lines AGS and, Hs 746T the exogenous miR-335 decreases migration, invasion, viability, and anchorage-independent cell growth capacities. Performing a PCR array on cells transfected with miR-335, 19 (30.6%) out of 62 genes involved in metastasis and tumor invasion showed decreased transcription levels. Network enrichment analysis narrowed these genes to nine (PLAUR, CDH11, COL4A2, CTGF, CTSK, MMP7, PDGFA, TIMP1, and TIMP2). Elevated levels of PLAUR, a validated target gene, and CDH11 were confirmed in tumors with low expression of miR-335. The 3′UTR of CDH11 was identified to be directly targeted by miR-335. Downregulation of miR-335 was also demonstrated in plasma samples from gastric cancer patients and inversely correlated with DNA methylation of promoter region (Z = 1.96, p = 0.029). DNA methylation, evaluated by methylation-specific PCR assay, was found in plasma from 23 (56.1%) out of 41 gastric cancer patients but in only 9 (30%) out of 30 healthy donors (p = 0.029, Pearson’s correlation). Taken in consideration, our results of the association with depth of invasion, lymph node metastasis, and poor prognosis together with functional assays on cell migration, invasion, and tumorigenicity are in accordance with the downregulation of miR-335 in gastric cancer. Conclusions Comprehensive evaluation of metastasis and invasion pathway identified a subset of associated genes and confirmed PLAUR and CDH11, both targets of miR-335, to be overexpressed in gastric cancer tissues. DNA methylation of miR-335 may be a promissory strategy for non-invasive approach to gastric cancer. Electronic supplementary material The online version of this article (10.1186/s13148-017-0413-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandra Sandoval-Bórquez
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Carrasco-Véliz
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Química, Faculty of Science, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Fundación Ciencia y Vida, Parque Biotecnológico, Santiago, Chile
| | - Ismael Riquelme
- Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Carrasco-Avino
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carolina Bizama
- Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Norero
- Esophagogastric Surgery Unit, Hospital Dr. Sótero del Río, Santiago, Chile.,Digestive Surgery Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Roa
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Long-term exposure of MCF-7 breast cancer cells to ethanol stimulates oncogenic features. Int J Oncol 2016; 50:49-65. [PMID: 27959387 PMCID: PMC5182011 DOI: 10.3892/ijo.2016.3800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022] Open
Abstract
Alcohol consumption is a risk factor for breast cancer. Little is known regarding the mechanism, although it is assumed that acetaldehyde or estrogen mediated pathways play a role. We previously showed that long-term exposure to 2.5 mM ethanol (blood alcohol ~0.012%) of MCF-12A, a human normal epithelial breast cell line, induced epithelial mesenchymal transition (EMT) and oncogenic transformation. In this study, we investigated in the human breast cancer cell line MCF-7, whether a similar exposure to ethanol at concentrations ranging up to peak blood levels in heavy drinkers would increase malignant progression. Short-term (1-week) incubation to ethanol at as low as 1-5 mM (corresponding to blood alcohol concentration of ~0.0048-0.024%) upregulated the stem cell related proteins Oct4 and Nanog, but they were reduced after exposure at 25 mM. Long-term (4-week) exposure to 25 mM ethanol upregulated the Oct4 and Nanog proteins, as well as the malignancy marker Ceacam6. DNA microarray analysis in cells exposed for 1 week showed upregulated expression of metallothionein genes, particularly MT1X. Long-term exposure upregulated expression of some malignancy related genes (STEAP4, SERPINA3, SAMD9, GDF15, KRT15, ITGB6, TP63, and PGR, as well as the CEACAM, interferon related, and HLA gene families). Some of these findings were validated by RT-PCR. A similar treatment also modulated numerous microRNAs (miRs) including one regulator of Oct4 as well as miRs involved in oncogenesis and/or malignancy, with only a few estrogen-induced miRs. Long-term 25 mM ethanol also induced a 5.6-fold upregulation of anchorage-independent growth, an indicator of malignant-like features. Exposure to acetaldehyde resulted in little or no effect comparable to that of ethanol. The previously shown alcohol induction of oncogenic transformation of normal breast cells is now complemented by the current results suggesting alcohol's potential involvement in malignant progression of breast cancer.
Collapse
|
8
|
Luo LJ, Wang DD, Wang J, Yang F, Tang JH. Diverse roles of miR-335 in development and progression of cancers. Tumour Biol 2016; 37:15399–15410. [PMID: 27718128 DOI: 10.1007/s13277-016-5385-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs), a series of small noncoding RNAs that regulate gene expression at the post-transcriptional/translational level, are pivotal in cell differentiation, biological development, occurrence, and development of diseases, especially in cancers. Early studies have shown that miRNA-335 (miR-335) is widely dysregulated in human cancers and play critical roles in tumorigenesis and tumor progression. In this review, we aim to summarize the regulation of miR-335 expression mechanisms in cancers. We focus on the target genes regulated by miR-335 and its downstream signaling pathways involved in the biological effects of tumor growth, invasion, and metastasis both in vitro and in vivo, and analyze the relationships between miR-335 expression and the clinical characteristics of tumors as well as its effects on prognosis. The collected evidences support the potential use of miR-335 in prognosis and diagnosis as well as the therapeutic prospects of miR-335 in cancers.
Collapse
Affiliation(s)
- Long-Ji Luo
- Department of General Surgery, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
| | - Dan-Dan Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Yang
- Department of General Surgery, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
| | - Jin-Hai Tang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China.
| |
Collapse
|