1
|
Labarthe MM, Maroniche GA, Lamattina L, Creus CM. Nitric oxide synthase expression in Pseudomonas koreensis MME3 improves plant growth promotion traits. Appl Microbiol Biotechnol 2024; 108:212. [PMID: 38358431 PMCID: PMC10869383 DOI: 10.1007/s00253-024-13029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
The development of novel biotechnologies that promote a better use of N to optimize crop yield is a central goal for sustainable agriculture. Phytostimulation, biofertilization, and bioprotection through the use of bio-inputs are promising technologies for this purpose. In this study, the plant growth-promoting rhizobacteria Pseudomonas koreensis MME3 was genetically modified to express a nitric oxide synthase of Synechococcus SyNOS, an atypical enzyme with a globin domain that converts nitric oxide to nitrate. A cassette for constitutive expression of synos was introduced as a single insertion into the genome of P. koreensis MME3 using a miniTn7 system. The resulting recombinant strain MME3:SyNOS showed improved growth, motility, and biofilm formation. The impact of MME3:SyNOS inoculation on Brachypodium distachyon growth and N uptake and use efficiencies under different N availability situations was analyzed, in comparison to the control strain MME3:c. After 35 days of inoculation, plants treated with MME3:SyNOS had a higher root dry weight, both under semi-hydroponic and greenhouse conditions. At harvest, both MME3:SyNOS and MME3:c increased N uptake and use efficiency of plants grown under low N soil. Our results indicate that synos expression is a valid strategy to boost the phytostimulatory capacity of plant-associated bacteria and improve the adaptability of plants to N deficiency. KEY POINTS: • synos expression improves P. koreensis MME3 traits important for rhizospheric colonization • B. distachyon inoculated with MME3:SyNOS shows improved root growth • MME3 inoculation improves plant N uptake and use efficiencies in N-deficient soil.
Collapse
Affiliation(s)
- María M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lorenzo Lamattina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- IIB, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Cecilia M Creus
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Palanisamy V, Bosilevac JM, Barkhouse DA, Velez SE, Chitlapilly Dass S. Shotgun-metagenomics reveals a highly diverse and communal microbial network present in the drains of three beef-processing plants. Front Cell Infect Microbiol 2023; 13:1240138. [PMID: 37743870 PMCID: PMC10515220 DOI: 10.3389/fcimb.2023.1240138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
Background Multi-species biofilms pose a problem in various environments, especially food-processing environments. The diversity of microorganisms in these biofilms plays a critical role in their integrity and protection against external biotic and abiotic factors. Compared to single-species biofilms, mixed-species biofilms are more resistant to various stresses, including antimicrobials like sanitizers. Therefore, understanding the microbiome composition and diversity in biofilms and their metabolic potential is a priority when developing intervention techniques to combat foodborne pathogens in food processing environments. Methods This study aimed to describe and compare the microbiome profile of 75 drain biofilm samples obtained from five different locations (Hotscale, Hotbox, Cooler, Processing, & Grind room) of three beef-processing plants (Plant A, B & C) taken over two timepoints 2017-18 (T1) and 2021 (T2) by shotgun sequencing. Results Core microbiome analysis found Pseudomonas, Psychrobacter, and Acinetobacter to be the top three prevalent genera among the plants and locations. Alpha diversity analysis demonstrated a high diversity of microbiome present in all the plants and locations across the time points. Functional analysis showed the high metabolic potential of the microbial community with abundance of genes in metabolism, cell-adhesion, motility, and quorum sensing. Moreover, Quaternary Ammonium Compound (QAC) resistance genes were also observed, this is significant as QAC sanitizers are commonly used in many food processing facilities. Multi-functional genes such as transposases, polymerases, permeases, flagellar proteins, and Mobile Genetic Elements (MGEs) were found suggesting these are dynamic microbial communities that work together to protect themselves against environmental stresses through multiple defense mechanisms. Conclusion This study provides a framework for understanding the collective microbial network spanning a beef processing system. The results can be used to develop intervention strategies to best control these highly communicative microbial networks.
Collapse
Affiliation(s)
- Vignesh Palanisamy
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Joseph M. Bosilevac
- U. S. Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Lincoln, NE, United States
| | - Darryll A. Barkhouse
- Molecular Center of Excellence, Invisible Sentinel, bioMerieux Inc., Philadelphia, PA, United States
| | - Sarah E. Velez
- Molecular Center of Excellence, Invisible Sentinel, bioMerieux Inc., Philadelphia, PA, United States
| | | |
Collapse
|
3
|
Blanco-Romero E, Durán D, Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Adaption of Pseudomonas ogarae F113 to the Rhizosphere Environment-The AmrZ-FleQ Hub. Microorganisms 2023; 11:microorganisms11041037. [PMID: 37110460 PMCID: PMC10146422 DOI: 10.3390/microorganisms11041037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Motility and biofilm formation are two crucial traits in the process of rhizosphere colonization by pseudomonads. The regulation of both traits requires a complex signaling network that is coordinated by the AmrZ-FleQ hub. In this review, we describe the role of this hub in the adaption to the rhizosphere. The study of the direct regulon of AmrZ and the phenotypic analyses of an amrZ mutant in Pseudomonas ogarae F113 has shown that this protein plays a crucial role in the regulation of several cellular functions, including motility, biofilm formation, iron homeostasis, and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) turnover, controlling the synthesis of extracellular matrix components. On the other hand, FleQ is the master regulator of flagellar synthesis in P. ogarae F113 and other pseudomonads, but its implication in the regulation of multiple traits related with environmental adaption has been shown. Genomic scale studies (ChIP-Seq and RNA-Seq) have shown that in P. ogarae F113, AmrZ and FleQ are general transcription factors that regulate multiple traits. It has also been shown that there is a common regulon shared by the two transcription factors. Moreover, these studies have shown that AmrZ and FleQ form a regulatory hub that inversely regulate traits such as motility, extracellular matrix component production, and iron homeostasis. The messenger molecule c-di-GMP plays an essential role in this hub since its production is regulated by AmrZ and it is sensed by FleQ and required for its regulatory role. This regulatory hub is functional both in culture and in the rhizosphere, indicating that the AmrZ-FleQ hub is a main player of P. ogarae F113 adaption to the rhizosphere environment.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
4
|
Blanco-Romero E, Durán D, Garrido-Sanz D, Rivilla R, Martín M, Redondo-Nieto M. Transcriptomic analysis of Pseudomonas ogarae F113 reveals the antagonistic roles of AmrZ and FleQ during rhizosphere adaption. Microb Genom 2022; 8. [PMID: 35012704 PMCID: PMC8914362 DOI: 10.1099/mgen.0.000750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rhizosphere colonization by bacteria involves molecular and cellular mechanisms, such as motility and chemotaxis, biofilm formation, metabolic versatility, or biosynthesis of secondary metabolites, among others. Nonetheless, there is limited knowledge concerning the main regulatory factors that drive the rhizosphere colonization process. Here we show the importance of the AmrZ and FleQ transcription factors for adaption in the plant growth-promoting rhizobacterium (PGPR) and rhizosphere colonization model Pseudomonas ogarae F113. RNA-Seq analyses of P. ogarae F113 grown in liquid cultures either in exponential and stationary growth phase, and rhizosphere conditions, revealed that rhizosphere is a key driver of global changes in gene expression in this bacterium. Regarding the genetic background, this work has revealed that a mutation in fleQ causes considerably more alterations in the gene expression profile of this bacterium than a mutation in amrZ under rhizosphere conditions. The functional analysis has revealed that in P. ogarae F113, the transcription factors AmrZ and FleQ regulate genes involved in diverse bacterial functions. Notably, in the rhizosphere, these transcription factors antagonistically regulate genes related to motility, biofilm formation, nitrogen, sulfur, and amino acid metabolism, transport, signalling, and secretion, especially the type VI secretion systems. These results define the regulon of two important bifunctional transcriptional regulators in pseudomonads during the process of rhizosphere colonization.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain.,Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
5
|
Kou L, Huang T, Zhang H, Wen G, Li N, Wang C, Lu L. Mix-cultured aerobic denitrifying bacterial communities reduce nitrate: Novel insights in micro-polluted water treatment at lower temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148910. [PMID: 34328901 DOI: 10.1016/j.scitotenv.2021.148910] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Three mix-cultured aerobic denitrifiers were screened from a source water reservoir and named HE1, HE3 and SU4. Approximately 72.9%, 68.6% and 66.2% of nitrate were effectively removed from basal medium, respectively, after 120 h of cultivation at 8 °C. The nitrogen balance analysis revealed about one-fifth of the initial nitrogen was converted into gaseous denitrification products. According to the results of Biolog, the three microfloras had high metabolic capacity to carbon sources. The dominant genera were Pseudomonas and Paracoccus in these bacterial communities based on nirS gene sequencing. Response surface methodology elucidated that the denitrification rates of identified bacteria reached the maximum under the following optimal parameters: C/N ratio of 7.51-8.34, pH of 8.03-8.09, temperature of 18.03-20.19 °C, and shaking speed of 67.04-120 rpm. All results suggested that screened aerobic denitrifiers could potentially be applied to improve the source water quality at low temperature.
Collapse
Affiliation(s)
- Liqing Kou
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Chenxu Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Linchao Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
6
|
The Two-Component System RstA/RstB Regulates Expression of Multiple Efflux Pumps and Influences Anaerobic Nitrate Respiration in Pseudomonas fluorescens. mSystems 2021; 6:e0091121. [PMID: 34726491 PMCID: PMC8562477 DOI: 10.1128/msystems.00911-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multidrug resistance (MDR) efflux pumps are involved in bacterial intrinsic resistance to multiple antimicrobials. Expression of MDR efflux pumps can be either constitutive or transiently induced by various environmental signals, which are typically perceived by bacterial two-component systems (TCSs) and relayed to the bacterial nucleoid, where gene expression is modulated for niche adaptation. Here, we demonstrate that RstA/RstB, a TCS previously shown to control acid-induced and biofilm-related genes in Escherichiacoli, confers resistance to multiple antibiotics in Pseudomonas fluorescens by directly regulating the MDR efflux pumps EmhABC and MexCD-OprJ. Moreover, we show that phosphorylation of the conserved Asp52 residue in RstA greatly enhances RstA-DNA interaction, and regulation of the multidrug resistance by RstA/RstB is dependent on the phosphorylation of the RstA Asp52 residue by RstB. Proteome analysis reveals RstA/RstB also positively regulates the efflux pump MexEF-OprN and enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. Our results suggest that, by coupling the expression of multiple efflux pumps and anaerobic nitrate respiration, RstA/RstB could play a role in defense against nitrosative stress caused by anaerobic nitrate respiration. IMPORTANCE Microenvironmental hypoxia typically increases bacterial multidrug resistance by elevating expression of multidrug efflux pumps, but the precise mechanism is currently not well understood. Here, we showed that the two-component system RstA/RstB not only positively regulated expression of several efflux pumps involved in multidrug resistance, but also promoted expression of enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. These results suggested that, by upregulating expression of efflux pumps and pyoverdine biosynthesis-related enzymes, RstA/RstB could play a role in promoting bacterial tolerance to hypoxia by providing protection against nitrosative stress.
Collapse
|
7
|
Ma RC, Chu YX, Wang J, Wang C, Leigh MB, Chen Y, He R. Stable-isotopic and metagenomic analyses reveal metabolic and microbial link of aerobic methane oxidation coupled to denitrification at different O 2 levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142901. [PMID: 33757249 DOI: 10.1016/j.scitotenv.2020.142901] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Aerobic methane (CH4) oxidation coupled to denitrification (AME-D) can not only mitigate CH4 emission into the atmosphere, but also potentially alleviate nitrogen pollution in surface waters and engineered ecosystems, and it has attracted substantial research interest. O2 concentration plays a key role in AME-D, yet little is understood about how it impacts microbial interactions. Here, we applied isotopically labeled K15NO3 and 13CH4 and metagenomic analyses to investigate the metabolic and microbial link of AME-D at different O2 levels. Among the four experimental O2 levels of 21%,10%, 5% and 2.5% and a CH4 concentration of 8% (i.e., the O2/CH4 ratios of 2.62, 1.26, 0.63 and 0.31), the highest NO3--N removal occurred in the AME-D system incubated at the O2 concentration of 10%. Methanol and acetate may serve as the trophic linkage between aerobic methanotrophs and denitrifers in the AME-D systems. Methylotrophs including Methylophilus, Methylovorus, Methyloversatilis and Methylotenera were abundant under the O2-sufficient condition with the O2 concentration of 21%, while denitrifiers such as Azoarcus, Thauera and Thiobacillus dominated in the O2-limited environment with the O2 concentration of 10%. The competition of denitrifiers and methylotrophs in the AME-D system for CH4-derived carbon, such as methanol and acetate, might be influenced by chemotactic responses. More methane-derived carbon flowed into methylotrophs under the O2-sufficient condition, while more methane-derived carbon was used for denitrification in the O2-limited environment. These findings can aid in evaluating the distribution and contribution of AME-D and in developing strategies for mitigating CH4 emission and nitrogen pollution in natural and engineered ecosystems.
Collapse
Affiliation(s)
- Ruo-Chan Ma
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Cheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, AK 99775, USA
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Bouteiller M, Dupont C, Bourigault Y, Latour X, Barbey C, Konto-Ghiorghi Y, Merieau A. Pseudomonas Flagella: Generalities and Specificities. Int J Mol Sci 2021; 22:ijms22073337. [PMID: 33805191 PMCID: PMC8036289 DOI: 10.3390/ijms22073337] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Flagella-driven motility is an important trait for bacterial colonization and virulence. Flagella rotate and propel bacteria in liquid or semi-liquid media to ensure such bacterial fitness. Bacterial flagella are composed of three parts: a membrane complex, a flexible-hook, and a flagellin filament. The most widely studied models in terms of the flagellar apparatus are E. coli and Salmonella. However, there are many differences between these enteric bacteria and the bacteria of the Pseudomonas genus. Enteric bacteria possess peritrichous flagella, in contrast to Pseudomonads, which possess polar flagella. In addition, flagellar gene expression in Pseudomonas is under a four-tiered regulatory circuit, whereas enteric bacteria express flagellar genes in a three-step manner. Here, we use knowledge of E. coli and Salmonella flagella to describe the general properties of flagella and then focus on the specificities of Pseudomonas flagella. After a description of flagellar structure, which is highly conserved among Gram-negative bacteria, we focus on the steps of flagellar assembly that differ between enteric and polar-flagellated bacteria. In addition, we summarize generalities concerning the fuel used for the production and rotation of the flagellar macromolecular complex. The last part summarizes known regulatory pathways and potential links with the type-six secretion system (T6SS).
Collapse
Affiliation(s)
- Mathilde Bouteiller
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Charly Dupont
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Yvann Bourigault
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Corinne Barbey
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Annabelle Merieau
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
- Correspondence:
| |
Collapse
|
9
|
Tumewu SA, Ogawa Y, Okamoto T, Sugihara Y, Yamada H, Taguchi F, Matsui H, Yamamoto M, Noutoshi Y, Toyoda K, Ichinose Y. Cluster II che genes of Pseudomonas syringae pv. tabaci 6605, orthologs of cluster I in Pseudomonas aeruginosa, are required for chemotaxis and virulence. Mol Genet Genomics 2021; 296:299-312. [PMID: 33386986 DOI: 10.1007/s00438-020-01745-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants and is highly motile. Pta6605 has multiple clusters of chemotaxis genes including cheA, a gene encoding a histidine kinase, cheY, a gene encoding a response regulator, mcp, a gene for a methyl-accepting chemotaxis protein, as well as flagellar and pili biogenesis genes. However, only two major chemotaxis gene clusters, cluster I and cluster II, possess cheA and cheY. Deletion mutants of cheA or cheY were constructed to evaluate their possible role in Pta6605 chemotaxis and virulence. Motility tests and a chemotaxis assay to known attractant demonstrated that cheA2 and cheY2 mutants were unable to swarm and to perform chemotaxis, whereas cheA1 and cheY1 mutants retained chemotaxis ability almost equal to that of the wild-type (WT) strain. Although WT and cheY1 mutants of Pta6605 caused severe disease symptoms on host tobacco leaves, the cheA2 and cheY2 mutants did not, and symptom development with cheA1 depended on the inoculation method. These results indicate that chemotaxis genes located in cluster II are required for optimal chemotaxis and host plant infection by Pta6605 and that cluster I may partially contribute to these phenotypes.
Collapse
Affiliation(s)
- Stephany Angelia Tumewu
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Yujiro Ogawa
- Faculty of Agriculture, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Takumi Okamoto
- Faculty of Agriculture, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Yuka Sugihara
- Faculty of Agriculture, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Hajime Yamada
- Faculty of Agriculture, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Fumiko Taguchi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
10
|
Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Comput Struct Biotechnol J 2020; 18:3539-3554. [PMID: 33304453 PMCID: PMC7711191 DOI: 10.1016/j.csbj.2020.11.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) actively colonize the soil portion under the influence of plant roots, called the rhizosphere. Many plant-beneficial Pseudomonas spp. have been characterized as PGPR. They are ubiquitous rod-shaped motile Gram-negative bacteria displaying a high metabolic versatility. Their capacity to protect plants from pathogens and improve plant growth closely depends on their rhizosphere colonization abilities. Various molecular and cellular mechanisms are involved in this complex process, such as chemotaxis, biofilm formation, secondary metabolites biosynthesis, metabolic versatility, and evasion of plant immunity. The burst in Pseudomonas spp. genome sequencing in recent years has been crucial to better understand how they colonize the rhizosphere. In this review, we discuss the recent advances regarding these mechanisms and the underlying bacterial genetic factors required for successful rhizosphere colonization.
Collapse
Affiliation(s)
- Antoine Zboralski
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
11
|
Jerdan R, Kuśmierska A, Petric M, Spiers AJ. Penetrating the air-liquid interface is the key to colonization and wrinkly spreader fitness. MICROBIOLOGY-SGM 2020; 165:1061-1074. [PMID: 31436522 DOI: 10.1099/mic.0.000844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In radiating populations of Pseudomonas fluorescens SBW25, adaptive wrinkly spreader (WS) mutants are able to gain access to the air-liquid (A-L) interface of static liquid microcosms and achieve a significant competitive fitness advantage over other non-biofilm-forming competitors. Aerotaxis and flagella-based swimming allows SBW25 cells to move into the high-O2 region located at the top of the liquid column and maintain their position by countering the effects of random cell diffusion, convection and disturbance (i.e. physical displacement). However, wild-type cells showed significantly lower levels of enrichment in this region compared to the archetypal WS, indicating that WS cells employ an additional mechanism to transfer to the A-L interface where displacement is no longer an issue and a biofilm can develop at the top of the liquid column. Preliminary experiments suggest that this might be achieved through the expression of an as yet unidentified surface active agent that is weakly associated with WS cells and alters liquid surface tension, as determined by quantitative tensiometry. The effect of physical displacement on the colonization of the high-O2 region and A-L interface was reduced through the addition of agar or polyethylene glycol to increase liquid viscosity, and under these conditions the competitive fitness of the WS was significantly reduced. These observations suggest that the ability to transfer to the A-L interface from the high-O2 region and remain there without further expenditure of energy (through, for example, the deployment of flagella) is a key evolutionary innovation of the WS, as it allows subsequent biofilm development and significant population increase, thereby affording these adaptive mutants a competitive fitness advantage over non-biofilm-forming competitors located within the liquid column.
Collapse
Affiliation(s)
- Robyn Jerdan
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Anna Kuśmierska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.,School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Marija Petric
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Andrew J Spiers
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| |
Collapse
|
12
|
Muriel C, Blanco-Romero E, Trampari E, Arrebola E, Durán D, Redondo-Nieto M, Malone JG, Martín M, Rivilla R. The diguanylate cyclase AdrA regulates flagellar biosynthesis in Pseudomonas fluorescens F113 through SadB. Sci Rep 2019; 9:8096. [PMID: 31147571 PMCID: PMC6543031 DOI: 10.1038/s41598-019-44554-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/14/2019] [Indexed: 11/23/2022] Open
Abstract
Flagellum mediated motility is an essential trait for rhizosphere colonization by pseudomonads. Flagella synthesis is a complex and energetically expensive process that is tightly regulated. In Pseudomonas fluorescens, the regulatory cascade starts with the master regulatory protein FleQ that is in turn regulated by environmental signals through the Gac/Rsm and SadB pathways, which converge in the sigma factor AlgU. AlgU is required for the expression of amrZ, encoding a FleQ repressor. AmrZ itself has been shown to modulate c-di-GMP levels through the control of many genes encoding enzymes implicated in c-di-GMP turnover. This cyclic nucleotide regulates flagellar function and besides, the master regulator of the flagellar synthesis signaling pathway, FleQ, has been shown to bind c-di-GMP. Here we show that AdrA, a diguanylate cyclase regulated by AmrZ participates in this signaling pathway. Epistasis analysis has shown that AdrA acts upstream of SadB, linking SadB with environmental signaling. We also show that SadB binds c-di-GMP with higher affinity than FleQ and propose that c-di-GMP produced by AdrA modulates flagella synthesis through SadB.
Collapse
Affiliation(s)
- Candela Muriel
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Esther Blanco-Romero
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Eleftheria Trampari
- Department of Molecular Microbiology, John Innes Centre. Colney Lane, Norwich, UK.,Quadram Institute, Norwich, UK
| | - Eva Arrebola
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,Department of Microbiology, University of Málaga, Málaga, Spain
| | - David Durán
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre. Colney Lane, Norwich, UK
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
13
|
Muriel C, Arrebola E, Redondo-Nieto M, Martínez-Granero F, Jalvo B, Pfeilmeier S, Blanco-Romero E, Baena I, Malone JG, Rivilla R, Martín M. AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113. Sci Rep 2018; 8:1979. [PMID: 29386661 PMCID: PMC5792552 DOI: 10.1038/s41598-018-20419-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/18/2018] [Indexed: 01/17/2023] Open
Abstract
The transcriptional regulator AmrZ is a global regulatory protein conserved within the pseudomonads. AmrZ can act both as a positive and a negative regulator of gene expression, controlling many genes implicated in environmental adaption. Regulated traits include motility, iron homeostasis, exopolysaccharides production and the ability to form biofilms. In Pseudomonas fluorescens F113, an amrZ mutant presents a pleiotropic phenotype, showing increased swimming motility, decreased biofilm formation and very limited ability for competitive colonization of rhizosphere, its natural habitat. It also shows different colony morphology and binding of the dye Congo Red. The amrZ mutant presents severely reduced levels of the messenger molecule cyclic-di-GMP (c-di-GMP), which is consistent with the motility and biofilm formation phenotypes. Most of the genes encoding proteins with diguanylate cyclase (DGCs) or phosphodiesterase (PDEs) domains, implicated in c-di-GMP turnover in this bacterium, appear to be regulated by AmrZ. Phenotypic analysis of eight mutants in genes shown to be directly regulated by AmrZ and encoding c-di-GMP related enzymes, showed that seven of them were altered in motility and/or biofilm formation. The results presented here show that in P. fluorescens, AmrZ determines c-di-GMP levels through the regulation of a complex network of genes encoding DGCs and PDEs.
Collapse
Affiliation(s)
- Candela Muriel
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Eva Arrebola
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | | | - Blanca Jalvo
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Sebastian Pfeilmeier
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, NR47UH, Norwich, UK
| | - Esther Blanco-Romero
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Irene Baena
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, NR47UH, Norwich, UK
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain.
| |
Collapse
|
14
|
Rivilla R, Martín M, Lloret J. What makes rhizobia rhizosphere colonizers? Environ Microbiol 2017; 19:4379-4381. [PMID: 28892276 DOI: 10.1111/1462-2920.13917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/26/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Darwin 2. 28049, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Darwin 2. 28049, Spain
| | - Javier Lloret
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Darwin 2. 28049, Spain
| |
Collapse
|
15
|
Salah Ud-Din AIM, Roujeinikova A. The periplasmic sensing domain of Pseudomonas fluorescens chemotactic transducer of amino acids type B (CtaB): Cloning, refolding, purification, crystallization, and X-ray crystallographic analysis. Biosci Trends 2017; 11:229-234. [PMID: 28250336 DOI: 10.5582/bst.2016.01218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pseudomonas fluorescens is a plant growth promoting rhizobacterium that provides nutrients for growth and induces systemic resistance against plant diseases. It has been linked with a number of human diseases including nosocomial infections and bacterial cystitis. Chemotactic motility of P. fluorescens towards root exudates plays a crucial role in establishing a symbiotic relationship with host plants. The P. fluorescens chemotactic transducer of amino acids type B (CtaB) mediates chemotaxis towards amino acids. As a step towards elucidation of the structural basis of ligand recognition by CtaB, we have produced crystals of its recombinant sensory domain and performed their X-ray diffraction analysis. The periplasmic sensory domain of CtaB has been expressed, purified, and crystallized by the hanging-drop vapor diffusion method using ammonium sulfate as a precipitating agent. A complete data set was collected to 2.2 Å resolution using cryocooling conditions and synchrotron radiation. The crystals belong to space group P212121, with unit-cell parameters a = 34.5, b = 108.9, c = 134.6 Å. Calculation of the Matthews coefficient and the self-rotation function using this data set suggested that the asymmetric unit contains a protein dimer. Detailed structural analysis of CtaB would be an important step towards understanding the molecular mechanism underpinning the recognition of environmental signals and transmission of the signals to the inside of the cell.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University.,Department of Biochemistry and Molecular Biology, Monash University
| |
Collapse
|
16
|
Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 2016; 56:1274-1288. [PMID: 27439917 DOI: 10.1002/jobm.201600188] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022]
Abstract
Increasing evidence shows that nitric oxide (NO), a typical signaling molecule plays important role in development of plant and in bacteria-plant interaction. In the present study, we tested the effect of sodium nitroprusside (SNP)-a nitric oxide donor, on bacterial metabolism and its role in establishment of PGPR-plant interaction under salinity condition. In the present study, we adopted methods namely, biofilm formation assay, GC-MS analysis of bacterial volatiles, chemotaxis assay of root exudates (REs), measurement of electrolyte leakage and lipid peroxidation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for gene expression. GC-MS analysis revealed that three new volatile organic compounds (VOCs) were expressed after treatment with SNP. Two VOCs namely, 4-nitroguaiacol and quinoline were found to promote soybean seed germination under 100 mM NaCl stress. Chemotaxis assay revealed that SNP treatment, altered root exudates profiling (SS-RE), found more attracted to Pseudomonas simiae bacterial cells as compared to non-treated root exudates (S-RE) under salt stress. Expression of Peroxidase (POX), catalase (CAT), vegetative storage protein (VSP), and nitrite reductase (NR) genes were up-regulated in T6 treatment seedlings, whereas, high affinity K+ transporter (HKT1), lipoxygenase (LOX), polyphenol oxidase (PPO), and pyrroline-5-carboxylate synthase (P5CS) genes were down-regulated under salt stress. The findings suggest that NO improves the efficiency and establishment of PGPR strain in the plant environment during salt condition. This strategy may be applied on soybean plants to increase their growth during salinity stress.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Sarita Kumari
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Shekhar Jain
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Ajit Varma
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Devendra Kumar Choudhary
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| |
Collapse
|
17
|
Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R, Redondo-Nieto M. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex. PLoS One 2016; 11:e0150183. [PMID: 26915094 PMCID: PMC4767706 DOI: 10.1371/journal.pone.0150183] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/10/2016] [Indexed: 01/22/2023] Open
Abstract
The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | - Jan P. Meier-Kolthoff
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
- * E-mail:
| |
Collapse
|