1
|
Stalin J, Coquoz O, Jeitziner Marcone R, Jemelin S, Desboeufs N, Delorenzi M, Blot-Chabaud M, Imhof BA, Ruegg C. Targeting of the NOX1/ADAM17 Enzymatic Complex Regulates Soluble MCAM-Dependent Pro-Tumorigenic Activity in Colorectal Cancer. Biomedicines 2023; 11:3185. [PMID: 38137406 PMCID: PMC10740863 DOI: 10.3390/biomedicines11123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The melanoma cell adhesion molecule, shed from endothelial and cancer cells, is a soluble growth factor that induces tumor angiogenesis and growth. However, the molecular mechanism accounting for its generation in a tumor context is still unclear. To investigate this mechanism, we performed in vitro experiments with endothelial/cancer cells, gene expression analyses on datasets from human colorectal tumor samples, and applied pharmacological methods in vitro/in vivo with mouse and human colorectal cancer cells. We found that soluble MCAM generation is governed by ADAM17 proteolytic activity and NOX1-regulating ADAM17 expression. The treatment of colorectal tumor-bearing mice with pharmacologic NOX1 inhibitors or tumor growth in NOX1-deficient mice reduced the blood concentration of soluble MCAM and abrogated the anti-tumor effects of anti-soluble MCAM antibodies while ADAM17 pharmacologic inhibitors reduced tumor growth and angiogenesis in vivo. Especially, the expression of MCAM, NOX1, and ADAM17 was more prominent in the angiogenic, colorectal cancer-consensus molecular subtype 4 where high MCAM expression correlated with angiogenic and lymphangiogenic markers. Finally, we demonstrated that soluble MCAM also acts as a lymphangiogenic factor in vitro. These results identify a role for NOX1/ADAM17 in soluble MCAM generation, with potential clinical therapeutic relevance to the aggressive, angiogenic CMS4 colorectal cancer subtype.
Collapse
Affiliation(s)
- Jimmy Stalin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (S.J.); (B.A.I.)
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
- C2VN, Inserm 1263, Inra 1260, UFR Pharmacie, Aix-Marseille University, 27 Bd J. Moulin, 13005 Marseille, France;
| | - Oriana Coquoz
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
| | - Rachel Jeitziner Marcone
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.M.); (M.D.)
| | - Stephane Jemelin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (S.J.); (B.A.I.)
| | - Nina Desboeufs
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.M.); (M.D.)
| | - Marcel Blot-Chabaud
- C2VN, Inserm 1263, Inra 1260, UFR Pharmacie, Aix-Marseille University, 27 Bd J. Moulin, 13005 Marseille, France;
| | - Beat A. Imhof
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (S.J.); (B.A.I.)
| | - Curzio Ruegg
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
| |
Collapse
|
2
|
Mezyk-Kopec R, Potin L, Medellin JEG, Salles CM, Swartz MA. TGF-β Signaling Prevents MHC Class II-Expressing Lymphatic Endothelial Cells from Reactivating Human Allogenic Memory CD4+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:782-790. [PMID: 37486193 PMCID: PMC11155268 DOI: 10.4049/jimmunol.2200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
Lymphatic endothelial cells (LECs) express MHC class II (MHC-II) upon IFN-γ stimulation, yet recent evidence suggests that LECs cannot activate naive or memory CD4+ T cells. In this article, we show that IFN-γ-activated human dermal LECs can robustly reactivate allogeneic human memory CD4+ T cells (hCD4+ TMs), but only when TGF-β signaling is inhibited. We found that in addition to upregulating MHC-II, IFN-γ also induces LECs to upregulate glycoprotein A repetitions predominant, which anchors latent TGF-β to the membrane and potentially inhibits T cell activation. Indeed, hCD4+ TM proliferation was substantially increased when LEC-CD4+ TM cultures were treated with a TGF-β receptor type 1 inhibitor or when glycoprotein A repetitions predominant expression was silenced in LECs. Reactivated hCD4+ TMs were characterized by their proliferation, CD25 expression, and cytokine secretion. CD4+ TM reactivation was dependent on LEC expression of MHC-II, confirming direct TCR engagement. Although CD80 and CD86 were not detected on LECs, the costimulatory molecules OX40L and ICOSL were upregulated upon cytokine stimulation; however, blocking these did not affect CD4+ TM reactivation by LECs. Finally, we found that human dermal LECs also supported the maintenance of Foxp3-expressing hCD4+ TMs independently of IFN-γ-induced MHC-II. Together, these results demonstrate a role for LECs in directly modulating CD4+ TM reactivation under inflammatory conditions and point to LEC-expressed TGF-β as a negative regulator of this activation.
Collapse
Affiliation(s)
- Renata Mezyk-Kopec
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Krakow, Poland
| | - Lambert Potin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | | | - Calixto M. Salles
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
- Committee on Immunology, University of Chicago, Chicago, Illinois
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Fabbi M, Costa D, Russo D, Arenare L, Gaggero G, Signoriello S, Scambia G, Pisano C, Colombo N, Losito NS, Filaci G, Spina A, Califano D, Scognamiglio G, Gadducci A, Mezzanzanica D, Bagnoli M, Ferrini S, Canzonieri V, Chiodini P, Perrone F, Pignata S. Analysis of A Disintegrin and Metalloprotease 17 (ADAM17) Expression as a Prognostic Marker in Ovarian Cancer Patients Undergoing First-Line Treatment Plus Bevacizumab. Diagnostics (Basel) 2022; 12:diagnostics12092118. [PMID: 36140519 PMCID: PMC9498026 DOI: 10.3390/diagnostics12092118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
To find prognostic factors for advanced ovarian cancer patients undergoing first-line therapy with carboplatin, paclitaxel and bevacizumab, we investigated the expression of a disintegrin and metalloprotease 17 (ADAM17) in cancer tissues. ADAM17 has been involved in ovarian cancer development, progression and cell resistance to cisplatin. Tissue microarrays from 309 ovarian cancer patients enrolled in the MITO16A/MANGO-OV2 clinical trial were analyzed by immunohistochemistry for ADAM17 protein expression. Intensity and extent of staining were combined into a semi-quantitative visual grading system (H score) which was related to clinicopathological characteristics of cases and the clinical outcome of patients by univariate and multivariate Cox regression models. ADAM17 immunostaining was detected in most samples, mainly localized in the tumor cells, with variable intensity across the cohort. Kaplan–Meier survival curves, generated according to the best cut-off value for the ADAM17 H score, showed that high ADAM17 expression was associated with worse prognosis for PFS and OS. However, after the application of a shrinkage procedure to adjust for overfitting hazard ratio estimates, the ADAM17 value as prognostic factor was lost. As subgroup analysis suggested that ADAM17 expression could be prognostically relevant in cases with no residual disease at baseline, further studies in this patient category may be worth planning.
Collapse
Affiliation(s)
- Marina Fabbi
- UO Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Delfina Costa
- UO Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Daniela Russo
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Laura Arenare
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Gabriele Gaggero
- UO Anatomia Patologica Ospedaliera, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Simona Signoriello
- Department of Mental Health and Public Medicine, Section of Statistics, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Giovanni Scambia
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Life Science and Public Health, Catholic University of Sacred Heart, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Carmela Pisano
- Urogynecological Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Nicoletta Colombo
- European Institute of Oncology IRCCS, University of Milan-Bicocca, 20126 Milan, Italy
| | - Nunzia Simona Losito
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Gilberto Filaci
- UO Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Anna Spina
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Daniela Califano
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, 56127 Pisa, Italy
| | - Delia Mezzanzanica
- Molecular Therapies Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Marina Bagnoli
- Molecular Therapies Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Silvano Ferrini
- UO Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Paolo Chiodini
- Department of Mental Health and Public Medicine, Section of Statistics, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Sandro Pignata
- Urogynecological Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
4
|
Pandit A, Begum Y, Saha P, Srivastava AK, Swarnakar S. Approaches Toward Targeting Matrix Metalloproteases for Prognosis and Therapies in Gynecological Cancer: MicroRNAs as a Molecular Driver. Front Oncol 2022; 11:720622. [PMID: 35145899 PMCID: PMC8821656 DOI: 10.3389/fonc.2021.720622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
Gene expression can be regulated by small non-coding RNA molecules like microRNAs (miRNAs) which act as cellular mediators necessary for growth, differentiation, proliferation, apoptosis, and metabolism. miRNA deregulation is often observed in many human malignancies, acting both as tumor-promoting and suppressing, and their abnormal expression is linked to unrestrained cellular proliferation, metastasis, and perturbation in DNA damage as well as cell cycle. Matrix Metalloproteases (MMPs) have crucial roles in both growth, and tissue remodeling in normal conditions, as well as in promoting cancer development and metastasis. Herein, we outline an integrated interactive study involving various MMPs and miRNAs and also feature a way in which these communications impact malignant growth, movement, and metastasis. The present review emphasizes on important miRNAs that might impact gynecological cancer progression directly or indirectly via regulating MMPs. Additionally, we address the likely use of miRNA-mediated MMP regulation and their downstream signaling pathways towards the development of a potential treatment of gynecological cancers.
Collapse
Affiliation(s)
- Anuradha Pandit
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Yasmin Begum
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Snehasikta Swarnakar
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- *Correspondence: Snehasikta Swarnakar,
| |
Collapse
|
5
|
Kumaravel S, Abbey CA, Bayless KJ, Chakraborty S. The β 1-integrin plays a key role in LEC invasion in an optimized 3-D collagen matrix model. Am J Physiol Cell Physiol 2020; 319:C1045-C1058. [PMID: 33052069 DOI: 10.1152/ajpcell.00299.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lymphangiogenesis, or formation of new lymphatic vessels, is a tightly regulated process that is controlled by growth factor signaling and biomechanical cues. Lymphatic endothelial cells (LECs) undergo remodeling, migration, and proliferation to invade the surrounding extracellular matrix (ECM) during both physiological and pathological lymphangiogenesis. This study optimized conditions for an in vitro three-dimensional (3-D) collagen-based model that induced LEC invasion and recapitulated physiological formation of lymphatic capillaries with lumens. Invasion of LECs was enhanced in the presence of sphingosine 1-phosphate (S1P). Effects of various known lymphangiogenic factors, vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factor (bFGF), interleukin (IL)-8, and hepatocyte growth factor (HGF), were tested on LEC sprout formation synergistically with VEGF-C. Several of these growth factors significantly enhanced LEC invasion, and synergistic effects of some of these further enhanced the sprouting density and lumen volume. To determine the contribution of specific ECM components, we analyzed the expression of different integrin subunits. Basal expressions of the integrin α5- and integrin β1-subunits were high in LECs. The addition of fibronectin, which mediates cellular responses through these integrins, enhanced LEC sprouting density and sprout length dose-dependently. siRNA-mediated knockdown of the integrin β1-subunit suppressed LEC invasion and also inhibited VEGF receptor (VEGFR)3 and ERK activation. Furthermore, exposing LECs to the inflammatory mediator lipopolysaccharide (LPS) inhibited sprouting. This optimized model for LEC invasion includes S1P, VEGF-C, and fibronectin within a 3-D collagen matrix, along with VEGF-C, VEGF-A, bFGF, and HGF in the culture medium, and provides a useful tool to investigate the functional effect of various lymphangiogenic factors and inhibitors.
Collapse
Affiliation(s)
- Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| |
Collapse
|
6
|
Ge J, Tang L, Mu P, Zhu F, Xie L, Tang Y. Association of ADAM17 Expression Levels in Patients with Interstitial Lung Disease. Immunol Invest 2019; 49:134-145. [PMID: 31469350 DOI: 10.1080/08820139.2019.1660367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A disintegrin and metalloproteinases (ADAMs) are believed to be involved in the pathogenesis of many fibrosis-related diseases. However, little is known regarding the significance of ADAM17 as a biomarker for interstitial lung disease (ILD). In this study, by using the RT-PCR, western blotting and ELISA, we detected the expression level of ADAM17 in peripheral blood mononuclear cells and serum from idiopathic pulmonary fibrosis (IPF) patients, connective tissue disease associated ILD (CTD-ILD) patients and healthy controls, and correlations between clinical and laboratory parameters were also analyzed. We found that IPF patients and CTD-ILD patients showed higher levels of ADAM17 than healthy controls. Moreover, ADAM17 in IPF patients with acute exacerbation (AE-IPF) was significantly higher than that in stable IPF (S-IPF) patients. Expression of ADAM17 was positively correlated with disease duration and CRP but negatively correlated with diffusing capacity of carbon monoxide (DLCO) and total lung capacity (TLC). Among the CTD-ILD patients, SSc-ILD patients had the highest serum levels of ADAM17 compared with the RA-ILD, SS-ILD and IIM-ILD groups and ADAM17 expression levels were correlated with image grading. In conclusion, this study showed that ADAM17 is highly expressed in ILD patients and is associated with disease activity and severity. Additionally, ADAM17 expression is not only related to the primary CTDs, but also to image grading. ADAM17 may serve as a new biomarker for ILD.
Collapse
Affiliation(s)
- Jianjian Ge
- Department of Clinical Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Lijian Tang
- Department of Pulmonary Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Peipei Mu
- Department of Clinical Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Fuli Zhu
- Department of Radiology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Lian Xie
- Department of Clinical Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Yurong Tang
- Department of Clinical Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
7
|
Structural exploration of arylsulfonamide-based ADAM17 inhibitors through validated comparative multi-QSAR modelling studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Li W, Wang D, Sun X, Zhang Y, Wang L, Suo J. ADAM17 promotes lymph node metastasis in gastric cancer via activation of the Notch and Wnt signaling pathways. Int J Mol Med 2018; 43:914-926. [PMID: 30569104 PMCID: PMC6317666 DOI: 10.3892/ijmm.2018.4028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022] Open
Abstract
Disintegrin and metalloproteinase domain-containing proteins (ADAMs) have been implicated in cell adhesion, signaling and migration. The aim of the present study was to identify key members of the ADAM protein family associated with the metastasis of gastric cancer and to evaluate their clinical significance. A total of 193 patients with gastric cancer and positive lymph node metastasis were enrolled. Key members of the ADAM family associated with lymph node metastasis were identified. The correlations between survival times and the clinicopathological features of patients were investigated. Furthermore, ADAM17 expression in gastric cancer cells with different metastatic potentials was determined. ADAM17 was overexpressed in BGC-823 cells and suppressed in SGC-7901 cells to further investigate its effects on cell viability and migration. The key pathways associated with ADAM17 were identified by gene set enrichment analysis (GSEA). It was found that ADAM9 and ADAM17 were significantly upregulated in gastric cancer and positive metastatic lymph node tissues. Further, there was a strong correlation between the survival times of patients and ADAM17 expression. ADAM17 was upregulated in gastric cancer cells with high metastatic potential. The viability of BGC-823 cells significantly increased following ADAM17 overexpression, whereas the viability and migration of SGC-7901 cells decreased following ADAM17 suppression. GSEA and western blot analysis revealed a positive correlation between the Notch and Wnt signaling pathways with ADAM17 expression. In conclusion, the increased expression of ADAM17 promoted the progression of gastric cancer, potentially via Notch and/or Wnt signaling pathway activation, and ADAM17 may serve as a useful prognostic marker.
Collapse
Affiliation(s)
- Wei Li
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Daguang Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuan Sun
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian Suo
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
9
|
Chen H, Wang S. Clinical significance of ADAM29 promoting the invasion and growth of gastric cancer cells in vitro. Oncol Lett 2018; 16:1483-1490. [PMID: 30008827 PMCID: PMC6036465 DOI: 10.3892/ol.2018.8838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 04/06/2018] [Indexed: 12/23/2022] Open
Abstract
ADAM metallopeptidase domain 29 (ADAM29) belongs to the ADAM family, is a type I integral membrane protein and secrets a glycoprotein that mediates cell-cell and cell-matrix interaction. Aberrant expression of ADAM29 is involved in a number of physiological processes diversification. The purpose of the present study was to investigate the expression and biological effect of ADAM29 in human gastric cancer (GC) specimens and cell lines in vitro. The expression of ADAM29 was examined in 83 GC samples and 25 adjacent normal gastric tissues using quantitative reverse transcriptase-quantitative polymerase chain reaction and immunohistochemistry. The association between ADAM29 expression and cellular function of GC cells was assessed in vitro. The ADAM29 mRNA levels were significantly elevated in GC tissues compared with paracancerous tissues. Increased levels of ADAM29 were associated with high-grade staging and high Tumor-Node-Metastasis stages. Kaplan-Meier survival curves demonstrated that patients with GC and low ADAM29 transcript levels exhibited longer overall survival (OS) (P<0.01) and progression-free survival (PFS) time (P<0.01) compared with patients with high ADAM29 expression levels. ADAM29 significantly promoted the proliferation, migration and invasion of GC cells in vitro when overexpressed in MGC803 cells and knocked down in AGS cells. ADAM29 was increased in GC and the elevated expression of ADAM29 was associated with a poor survival rate of patients. ADAM29 may become a prognostic factor and therapeutic candidate for human GC.
Collapse
Affiliation(s)
- Hongbing Chen
- Department of Gastrointenstinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Siping Wang
- Department of Emergency, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
10
|
Yamakawa M, Doh SJ, Santosa SM, Montana M, Qin EC, Kong H, Han KY, Yu C, Rosenblatt MI, Kazlauskas A, Chang JH, Azar DT. Potential lymphangiogenesis therapies: Learning from current antiangiogenesis therapies-A review. Med Res Rev 2018. [PMID: 29528507 DOI: 10.1002/med.21496] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, lymphangiogenesis, the process of lymphatic vessel formation from existing lymph vessels, has been demonstrated to have a significant role in diverse pathologies, including cancer metastasis, organ graft rejection, and lymphedema. Our understanding of the mechanisms of lymphangiogenesis has advanced on the heels of studies demonstrating vascular endothelial growth factor C as a central pro-lymphangiogenic regulator and others identifying multiple lymphatic endothelial biomarkers. Despite these breakthroughs and a growing appreciation of the signaling events that govern the lymphangiogenic process, there are no FDA-approved drugs that target lymphangiogenesis. In this review, we reflect on the lessons available from the development of antiangiogenic therapies (26 FDA-approved drugs to date), review current lymphangiogenesis research including nanotechnology in therapeutic drug delivery and imaging, and discuss molecules in the lymphangiogenic pathway that are promising therapeutic targets.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Susan J Doh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ellen C Qin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL.,Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
11
|
Dosch J, Ziemke E, Wan S, Luker K, Welling T, Hardiman K, Fearon E, Thomas S, Flynn M, Rios-Doria J, Hollingsworth R, Herbst R, Hurt E, Sebolt-Leopold J. Targeting ADAM17 inhibits human colorectal adenocarcinoma progression and tumor-initiating cell frequency. Oncotarget 2017; 8:65090-65099. [PMID: 29029414 PMCID: PMC5630314 DOI: 10.18632/oncotarget.17780] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/03/2017] [Indexed: 11/25/2022] Open
Abstract
ADAM17 (a disintegrin and metalloproteinase 17)/TACE (TNFα converting enzyme) has emerged as a potential therapeutic target in colorectal cancer (CRC) and other cancers, due in part to its role in regulating various tumor cell surface proteins and growth factors and cytokines in the tumor microenvironment. The emergence of MEDI3622, a highly potent and specific antibody-based ADAM17 inhibitor, has allowed testing of the concept that targeting ADAM17 may be an important new therapeutic approach for CRC patients. We demonstrate that MEDI3622 is highly efficacious on tumor growth in multiple human CRC PDX models, resulting in improved survival of animals bearing tumor xenografts. MEDI3622 was further found to impact Notch pathway activity and tumor-initiating cells. The promising preclinical activity seen here supports further clinical investigation of this treatment approach to improve therapeutic outcome for patients diagnosed with metastatic CRC, including patients with KRAS-mutant tumors for whom other therapeutic options are currently limited.
Collapse
Affiliation(s)
- Joseph Dosch
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Ziemke
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shanshan Wan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Theodore Welling
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karin Hardiman
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric Fearon
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suneetha Thomas
- Department of Oncology Research, MedImmune, LLC, Gaithersburg, MD 20878, USA
| | - Matthew Flynn
- Department of Oncology Research, MedImmune, LLC, Gaithersburg, MD 20878, USA
| | - Jonathan Rios-Doria
- Department of Oncology Research, MedImmune, LLC, Gaithersburg, MD 20878, USA
| | | | - Ronald Herbst
- Department of Oncology Research, MedImmune, LLC, Gaithersburg, MD 20878, USA
| | - Elaine Hurt
- Department of Oncology Research, MedImmune, LLC, Gaithersburg, MD 20878, USA
| | | |
Collapse
|
12
|
Chakraborty S, Ain R. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling. J Biol Chem 2017; 292:6600-6620. [PMID: 28235804 DOI: 10.1074/jbc.m116.742627] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 02/22/2017] [Indexed: 01/27/2023] Open
Abstract
Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- From the Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Rupasri Ain
- From the Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| |
Collapse
|
13
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
14
|
Hu TX, Wang G, Wu W, Gao L, Tan QY, Wang J. Hydrogen Sulfide Inhibits High Glucose-Induced sFlt-1 Production via Decreasing ADAM17 Expression in 3T3-L1 Adipocytes. Int J Endocrinol 2017; 2017:9501792. [PMID: 28740508 PMCID: PMC5504937 DOI: 10.1155/2017/9501792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/22/2017] [Accepted: 05/21/2017] [Indexed: 11/18/2022] Open
Abstract
Hydrogen sulfide (H2S) has recently been identified as an endogenous gaseous signaling molecule. The aim of the present study was to investigate the effect of H2S on high glucose- (HG-) induced ADAM17 expression and sFlt-1 production in 3T3-L1 adipocytes. Firstly, we found that HG DMEM upregulated the expression of ADAM17 and production of sFlt-1 in 3T3-L1 adipocytes. Knocking down ADAM17 attenuated the effect of high glucose on sFlt-1 production in adipocytes. HG decreased the expression of CSE and 3-MST, as well as the endogenous H2S production. Furthermore, knocking down CSE and 3-MST significantly increased ADAM17 expression and sFlt-1 production. The addition of exogenous H2S through the administration of sodium hydrosulfide (NaHS) inhibited HG-induced upregulation of ADAM17 expression and sFlt-1 production. In conclusion, decreased expression of CSE and 3-MST and the subsequent decrease in H2S production contribute to high glucose-induced sFlt-1 production via activating ADAM17 in adipocytes. Exogenous H2S donor NaHS has a potential therapeutic value for diabetic vascular complications.
Collapse
Affiliation(s)
- Tian-xiao Hu
- Department of Endocrinology, Chinese PLA 117th Hospital, Hangzhou 310013, China
- *Tian-xiao Hu: and
| | - Gang Wang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Wei Wu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Qing-ying Tan
- Department of Endocrinology, Chinese PLA 117th Hospital, Hangzhou 310013, China
| | - Jing Wang
- Department of Endocrinology, Chinese PLA 117th Hospital, Hangzhou 310013, China
- *Jing Wang:
| |
Collapse
|
15
|
Proteolysis in the Interstitium. Protein Sci 2016. [DOI: 10.1201/9781315374307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Kim TW, Ryu HH, Li SY, Li CH, Lim SH, Jang WY, Jung S. PDIA6 regulation of ADAM17 shedding activity and EGFR-mediated migration and invasion of glioblastoma cells. J Neurosurg 2016; 126:1829-1838. [DOI: 10.3171/2016.5.jns152831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVEIn patients with glioblastoma, local invasion of tumor cells causes recurrence and shortens survival. The goal of this study was to determine whether protein disulfide isomerase (PDI) A6 regulates migration and invasion of glioblastoma cells and the associated factors.METHODSU87MG cells were treated with either PDIA6 or ADAM17 small interfering RNA (siRNA) fragments or with both types of siRNA fragments, and expression was confirmed by reverse transcription–polymerase chain reaction and Western blot. Migration and invasion were assessed using a wound-healing assay, a Matrigel assay, and an organotypic culture system. After the U87MG cells were treated with siRNAs and epidermal growth factor receptor (EGFR) inhibitors, the expression of matrix metalloproteinase–2 (MMP-2), membrane Type 1-matrix metalloproteinase (MT1-MMP), integrin, phosphorylated focal adhesion kinase (pFAK), and phosphorylated EGFR (pEGFR) was detected by Western blotting and zymography.RESULTSU87MG cell migration and invasion increased significantly after inhibition of PDIA6. The MMP-2 activation ratio and ADAM17 activity (as a sheddase of the proligand) increased, and expression of pEGFR, pFAK, integrin α5β3, and MT1-MMP was induced, compared with control levels. Furthermore, heparin-binding epidermal growth factor (EGFR signaling ligand) was highly expressed in PDIA6-knockdown cells. After siPDIA6-transfected U87MG cells were treated with EGFR signaling inhibitors, expression of pFAK, MMP-2, and MT1-MMP decreased and invasion decreased significantly. Simultaneous double-knockdown of PDIA6 and ADAM17 reduced pEGFR and pFAK expression, compared with control levels.CONCLUSIONSThe authors propose that inhibiting PDIA6 could transduce EGFR signaling by activating and inducing ADAM17 during migration and invasion of U87MG glioblastoma cells. The results of this study suggest that PDIA6 is an important component of EGFR-mediated migration and invasion of U87MG cells. This is the first report of the effects of PDIA6 on migration and invasion in glioblastoma.
Collapse
Affiliation(s)
- Tae-Wan Kim
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
| | - Hyang-Hwa Ryu
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Song-Yuan Li
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Chun-Hao Li
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Sa-Hoe Lim
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Woo-Youl Jang
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
| | - Shin Jung
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| |
Collapse
|
17
|
Nakamura K, Jinnin M, Kudo H, Inoue K, Nakayama W, Honda N, Kajihara I, Masuguchi S, Fukushima S, Ihn H. The role of PSMB9 upregulated by interferon signature in the pathophysiology of cutaneous lesions of dermatomyositis and systemic lupus erythematosus. Br J Dermatol 2016; 174:1030-41. [PMID: 26713607 DOI: 10.1111/bjd.14385] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dermatomyositis (DM) and systemic lupus erythematosus (SLE) have common skin features, including dermal mucin deposition and interferon signature, although their roles are unknown. OBJECTIVES To identify common or specific molecular changes in DM and SLE skin. METHODS Proteomic analysis was performed using DM and healthy skin. Glycosaminoglycans were analysed by high-performance liquid chromatography. RESULTS The expression of 60 proteins was upregulated or downregulated in DM skin compared with healthy skin in the proteomic analysis. Among those proteins, PSMB9, an immunoproteasome subunit, was upregulated in the epidermis of DM and SLE, but not in other skin diseases. Furthermore, versican V1, a core protein for glycosaminoglycans, was upregulated, while type I collagen was downregulated in the dermis of DM and SLE skin. Interferon stimulated PSMB9 expression in cultured keratinocytes and reduced collagen expression in dermal fibroblasts, but did not affect versican expression. The PSMB9 knock-down in keratinocytes led to significant suppression of transforming growth factor (TGF)-β2 and TGF-β3, inducers of versican synthesis. TGF-β3 expression was upregulated in both DM and SLE, while TGF-β2 expression was increased only in the DM epidermis. ΔDiHS-diS1, a component of heparan sulfate, was significantly increased only in DM. TGF-β2 expression significantly increased the ΔDiHS-diS1 expression in dermal fibroblasts in vitro. CONCLUSIONS The interferon signature in DM and SLE skin reduces collagen in dermal fibroblasts, whereas overexpression of PSMB9 induced by interferon stimulates versican inducers in epidermal keratinocytes. In addition, the TGF-β2-ΔDiHS-diS1 pathway may be responsible for the specific molecular change in DM skin.
Collapse
Affiliation(s)
- K Nakamura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - M Jinnin
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - H Kudo
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - K Inoue
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - W Nakayama
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - N Honda
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - I Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - S Masuguchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - S Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - H Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| |
Collapse
|
18
|
Chan LJ, Ascher DB, Yadav R, Bulitta JB, Williams CC, Porter CJH, Landersdorfer CB, Kaminskas LM. Conjugation of 10 kDa Linear PEG onto Trastuzumab Fab' Is Sufficient to Significantly Enhance Lymphatic Exposure while Preserving in Vitro Biological Activity. Mol Pharm 2016; 13:1229-41. [PMID: 26871003 DOI: 10.1021/acs.molpharmaceut.5b00749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The lymphatic system is a major conduit by which many diseases spread and proliferate. There is therefore increasing interest in promoting better lymphatic drug targeting. Further, antibody fragments such as Fabs have several advantages over full length monoclonal antibodies but are subject to rapid plasma clearance, which can limit the lymphatic exposure and activity of Fabs against lymph-resident diseases. This study therefore explored ideal PEGylation strategies to maximize biological activity and lymphatic exposure using trastuzumab Fab' as a model. Specifically, the Fab' was conjugated with single linear 10 or 40 kDa PEG chains at the hinge region. PEGylation led to a 3-4-fold reduction in binding affinity to HER2, but antiproliferative activity against HER2-expressing BT474 cells was preserved. Lymphatic pharmacokinetics were then examined in thoracic lymph duct cannulated rats after intravenous and subcutaneous dosing at 2 mg/kg, and the data were evaluated via population pharmacokinetic modeling. The Fab' displayed limited lymphatic exposure, but conjugation of 10 kDa PEG improved exposure by approximately 11- and 5-fold after intravenous (15% dose collected in thoracic lymph over 30 h) and subcutaneous (9%) administration, respectively. Increasing the molecular weight of the PEG to 40 kDa, however, had no significant impact on lymphatic exposure after intravenous (14%) administration and only doubled lymphatic exposure after subcutaneous administration (18%) when compared to 10 kDa PEG-Fab'. The data therefore suggests that minimal PEGylation has the potential to enhance the exposure and activity of Fab's against lymph-resident diseases, while no significant benefit is achieved with very large PEGs.
Collapse
Affiliation(s)
- Linda J Chan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David B Ascher
- Department of Biochemistry, University of Cambridge , Sanger Building, Downing Site, Cambridge, CB2 1GA, U.K
| | - Rajbharan Yadav
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jürgen B Bulitta
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia.,Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida , Orlando, Florida 32816, United States
| | - Charlotte C Williams
- CSIRO Materials Science and Engineering , 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lisa M Kaminskas
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
19
|
Update September 2015. Lymphat Res Biol 2015. [DOI: 10.1089/lrb.2015.29018.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|