1
|
Li L, Wu Q, Zhai J, Wu K, Fang L, Li M, Zeng S, Li S. Comparative chloroplast genomics of 24 species shed light on the genome evolution and phylogeny of subtribe Coelogyninae (Orchidaceae). BMC PLANT BIOLOGY 2024; 24:31. [PMID: 38182989 PMCID: PMC10768429 DOI: 10.1186/s12870-023-04665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The orchids of the subtribe Coelogyninae are among the most morphologically diverse and economically important groups within the subfamily Epidendroideae. Previous molecular studies have revealed that Coelogyninae is an unambiguously monophyletic group. However, intergeneric and infrageneric relationships within Coelogyninae are largely unresolved. There has been long controversy over the classification among the genera within the subtribe. RESULTS The complete chloroplast (cp.) genomes of 15 species in the subtribe Coelogyninae were newly sequenced and assembled. Together with nine available cp. genomes in GenBank from representative clades of the subtribe, we compared and elucidated the characteristics of 24 Coelogyninae cp. genomes. The results showed that all cp. genomes shared highly conserved structure and contained 135 genes arranged in the same order, including 89 protein-coding genes, 38 tRNAs, and eight rRNAs. Nevertheless, structural variations in relation to particular genes at the IR/SC boundary regions were identified. The diversification pattern of the cp. genomes showed high consistency with the phylogenetic placement of Coelogyninae. The number of different types of SSRs and long repeats exhibited significant differences in the 24 Coelogyninae cp. genomes, wherein mononucleotide repeats (A/T), and palindromic repeats were the most abundant. Four mutation hotspot regions (ycf1a, ndhF-rp132, psaC-ndhE, and rp132-trnL) were determined, which could serve as effective molecular markers. Selection pressure analysis revealed that three genes (ycf1a, rpoC2 and ycf2 genes) might have experienced apparent positive selection during the evolution. Using the alignments of whole cp. genomes and protein-coding sequences, this study presents a well-resolved phylogenetic framework of Coelogyninae. CONCLUSION The inclusion of 55 plastid genome data from a nearly complete generic-level sampling provide a comprehensive view of the phylogenetic relationships among genera and species in subtribe Coelogyninae and illustrate the diverse genetic variation patterns of plastid genomes in this species-rich plant group. The inferred relationships and informally recognized major clades within the subtribe are presented. The genetic markers identified here will facilitate future studies on the genetics and phylogeny of subtribe Coelogyninae.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuping Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhi Li
- Guangzhou Bio & Data Biotechnology Co., Ltd, Guangzhou, 510555, China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shijin Li
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
2
|
Han S, Wang R, Hong X, Wu C, Zhang S, Kan X. Plastomes of Bletilla (Orchidaceae) and Phylogenetic Implications. Int J Mol Sci 2022; 23:ijms231710151. [PMID: 36077549 PMCID: PMC9456473 DOI: 10.3390/ijms231710151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Bletilla is a small genus of only five species distributed across Asia, including B. chartacea, B. foliosa, B. formosana, B. ochracea and B. striata, which is of great medicinal importance. Furthermore, this genus is a member of the key tribe Arethuseae (Orchidaceae), harboring an extremely complicated taxonomic history. Recently, the monophyletic status of Bletilla has been challenged, and the phylogenetic relationships within this genus are still unclear. The plastome, which is rich in both sequence and structural variation, has emerged as a powerful tool for understanding plant evolution. Along with four new plastomes, this work is committed to exploring plastomic markers to elucidate the phylogeny of Bletilla. Our results reveal considerable plastomic differences between B. sinensis and the other three taxa in many aspects. Most importantly, the specific features of the IR junction patterns, novel pttRNA structures and codon aversion motifs can serve as useful molecular markers for Bletilla phylogeny. Moreover, based on maximum likelihood and Bayesian inference methods, our phylogenetic analyses based on two datasets of Arethuseae strongly imply that Bletilla is non-monophyletic. Accordingly, our findings from this study provide novel potential markers for species identification, and shed light on the evolution of Bletilla and Arethuseae.
Collapse
Affiliation(s)
- Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China
| | - Rongbin Wang
- Institute of Chinese Medicine Resources, Anhui College of Traditional Chinese Medicine, Wuhu 241002, China
- Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xin Hong
- Anhui Provincial Engineering Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Cuilian Wu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China
- Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China
- Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China
- Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Correspondence: ; Tel.: +86-139-5537-2268
| |
Collapse
|
3
|
Li L, Wu Q, Fang L, Wu K, Li M, Zeng S. Comparative Chloroplast Genomics and Phylogenetic Analysis of Thuniopsis and Closely Related Genera within Coelogyninae (Orchidaceae). Front Genet 2022; 13:850201. [PMID: 35401668 PMCID: PMC8987740 DOI: 10.3389/fgene.2022.850201] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
The genus Thuniopsis was recently proposed for a rare orchid species T. cleistogama formerly classified in the genus Thunia. The relationships between Thuniopsis and its related genera have not yet been conclusively resolved. Recognition of the genus provides a new perspective to illustrate the morphological diversity and plastome evolution within Coelogyninae. In this study, we sequenced and assembled complete chloroplast (cp) genomes for three accessions of Thuniopsis cleistogama and two accessions of Thunia alba. A total of 135 genes were annotated for each cp genome, including 89 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The ENC-plot and neutrality plot analyses revealed that natural selection dominated over mutation pressure in their evolutionary process. Specially, we found that selection played a vital role in shaping the codon usage in Thunia alba cp genome. General characteristics of the cp genomes were further analyzed and compared with those published plastomes of four other related species. Despite the conserved organization and structure, the whole individual cp genome size ranged from 158,394 bp to 159,950 bp. In all the examined plastomes, sequences in the inverted repeat (IR) regions were more conserved than those in the small single copy (SSC) and large single copy (LSC) regions. However, close examination identified contraction and expansion of the IR/SSC boundary regions, which might be the main reason for the cp genome size variation. Our comparative analysis of the cp genomes revealed that single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) provided valuable information for identifying genetic variations within and among genera. Furthermore, sequence variations in the protein-coding regions were more conserved than those in the non-coding regions. We selected eight divergence hotspots with nucleotide sequence diversities (Pi values) higher than 0.08. Most of these polymorphisms were located in the intergenic regions. Phylogenomic analyses recovered largely congruent relationships among major clades and strongly supported the monophyly of Thuniopsis. The results obtained in this study can improve our understanding of the classification of this enigmatic genus. The chloroplast genomic data presented here provide valuable insights into the phylogeny and evolutionary patterns of the Coelogyninae as well as the orchids as a whole.
Collapse
Affiliation(s)
- Lin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuping Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kunlin Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mingzhi Li
- Guangzhou Bio and Data Biotechnology Co., Ltd., Guangzhou, China
| | - Songjun Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Songjun Zeng,
| |
Collapse
|
4
|
Zhou Z, Shi R, Zhang Y, Xing X, Jin X. Orchid conservation in China from 2000 to 2020: Achievements and perspectives. PLANT DIVERSITY 2021; 43:343-349. [PMID: 34816060 PMCID: PMC8591184 DOI: 10.1016/j.pld.2021.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 06/01/2023]
Abstract
We review achievements in the conservation of orchid diversity in China over the last 21 years. We provide updated information on orchid biodiversity and suggestions for orchid conservation in China. We outline national policies of biodiversity conservation, especially of orchid conservation, which provide general guidelines for orchid conservation in China. There are now approximately 1708 known species of Orchidaceae in 181 genera in China, including five new genera and 365 new species described over the last 21 years. The assessment of risk of extinction of all 1502 known native orchid species in China in 2013 indicated that 653 species were identified as threatened, 132 species were treated as data-deficient, and four species endemic to China were classified as extinct. Approximately 1100 species (ca. 65%) are protected in national nature reserves, and another ~66 species in provincial nature reserves. About 800 native orchid species have living collections in major botanical gardens. The pollination biology of 74 native orchid species and the genetic diversity and spatial genetic structure of 29 orchid species have been investigated at a local scale and/or across species distributions. The mycorrhizal fungal community composition has been investigated in many genera, such as Bletilla, Coelogyne, Cymbidium, Cypripedium, and Dendrobium. Approximately 292 species will be included in the list of national key protected wild plants this year. Two major tasks for near future include in situ conservation and monitoring population dynamics of endangered species.
Collapse
Affiliation(s)
- Zhihua Zhou
- Department of Wildlife Conservation, National Forestry and Grassland Administration, No. 18, Hepingli Dongjie, Beijing, 100714, China
| | - Ronghong Shi
- Department of Wildlife Conservation, National Forestry and Grassland Administration, No. 18, Hepingli Dongjie, Beijing, 100714, China
| | - Yu Zhang
- Beijing Botanical Garden, Wofosi Rd, Xiangshan, Beijing, 100093, China
| | - Xiaoke Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xiaohua Jin
- Institute of Botany, Chinese Academy of Sciences (IBCAS), Nanxincun 20, Xiangshan, Beijing, 100093, PR China
| |
Collapse
|
5
|
Sijimol K, Dev SA, Sreekumar VB. DNA barcoding supports existence of morphospecies complex in endemic bamboo genus Ochlandra Thwaites of the Western Ghats, India. J Genet 2020. [DOI: 10.1007/s12041-020-01227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Ponert J, Trávníček P, Vuong TB, Rybková R, Suda J. A New Species of Cleisostoma (Orchidaceae) from the Hon Ba Nature Reserve in Vietnam: A Multidisciplinary Assessment. PLoS One 2016; 11:e0150631. [PMID: 27008538 PMCID: PMC4805174 DOI: 10.1371/journal.pone.0150631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
A new species, Cleisostoma yersinii J. Ponert & Vuong, is described and illustrated based on the material collected in the Hon Ba Nature Reserve in southern Vietnam. In addition to conventional (macro)morphological examination we comparatively investigated root and leaf anatomy (using light and fluorescent microscopy), assessed nectar characteristics (using HPLC analysis), determined nuclear genome size (using DNA flow cytometry) and reconstructed phylogenetic relationships (using nrITS sequences). Cleisostoma yersinii differs from its putative closest relative C. birmanicum in wider and shorter leaves, larger flowers, distinct lip with S-shaped tip of the mid-lobe, and a shallow spur with two large nectar sacks separated by prominent calli and septum. Nectar is sucrose-dominant and very rich in sugars. Stomata are developed on both sides of the leaf and have prominent hyperstomatal chambers and substomatal cavities. Roots with well-developed exodermis and tracheoidal idioblasts are covered by a two-layer Vanda-type velamen. Chloroplasts occur not only in the cortex but are also abundant in the stele. Mean 1C-value was estimated to 2.57 pg DNA. An updated identification key is provided for SE Asian sections and all Vietnamese species of Cleisostoma.
Collapse
Affiliation(s)
- Jan Ponert
- Prague Botanical Garden, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Pavel Trávníček
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Truong Ba Vuong
- Institute of Tropical Biology, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | | | - Jan Suda
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| |
Collapse
|