1
|
Paromov V, Uversky VN, Cooley A, Liburd LE, Mukherjee S, Na I, Dayhoff GW, Pratap S. The Proteomic Analysis of Cancer-Related Alterations in the Human Unfoldome. Int J Mol Sci 2024; 25:1552. [PMID: 38338831 PMCID: PMC10855131 DOI: 10.3390/ijms25031552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Many proteins lack stable 3D structures. These intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains with intrinsically disordered protein regions (IDPRs) often carry out regulatory functions related to molecular recognition and signal transduction. IDPs/IDPRs constitute a substantial portion of the human proteome and are termed "the unfoldome". Herein, we probe the human breast cancer unfoldome and investigate relations between IDPs and key disease genes and pathways. We utilized bottom-up proteomics, MudPIT (Multidimensional Protein Identification Technology), to profile differentially expressed IDPs in human normal (MCF-10A) and breast cancer (BT-549) cell lines. Overall, we identified 2271 protein groups in the unfoldome of normal and cancer proteomes, with 148 IDPs found to be significantly differentially expressed in cancer cells. Further analysis produced annotations of 140 IDPs, which were then classified to GO (Gene Ontology) categories and pathways. In total, 65% (91 of 140) IDPs were related to various diseases, and 20% (28 of 140) mapped to cancer terms. A substantial portion of the differentially expressed IDPs contained disordered regions, confirmed by in silico characterization. Overall, our analyses suggest high levels of interactivity in the human cancer unfoldome and a prevalence of moderately and highly disordered proteins in the network.
Collapse
Affiliation(s)
- Victor Paromov
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Ayorinde Cooley
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Lincoln E. Liburd
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Shyamali Mukherjee
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Insung Na
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33613, USA;
| | - Siddharth Pratap
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
2
|
Hernandez-Pacheco N, Kere M, Melén E. Gene-environment interactions in childhood asthma revisited; expanding the interaction concept. Pediatr Allergy Immunol 2022; 33:e13780. [PMID: 35616899 PMCID: PMC9325482 DOI: 10.1111/pai.13780] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023]
Abstract
Investigation of gene-environment interactions (GxE) may provide important insights into the gene regulatory framework in response to environmental factors of relevance for childhood asthma. Over the years, different methodological strategies have been applied, more recently using genome-wide approaches. The best example to date is the major asthma locus on the 17q12-21 chromosome region, viral infections, and airway epithelium processes where recent studies have shed much light on mechanisms in childhood asthma. However, there are challenges with the traditional single variant-single exposure interaction models, as they do not encompass the complexity and cumulative effects of multiple exposures or multiple genetic variants. As such, we need to redefine our traditional GxE thinking, and we propose in this review to expand the GxE concept by also evaluating other omics layers, such as epigenetics, transcriptomics, metabolomics, and proteomics. In addition, host factors such as age, gender, and other exposures are very likely to influence GxE effects and need firmly to be considered in future studies.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Maura Kere
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, South General Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Morrison AJ, Wonderlick DR, Harms MJ. Ensemble epistasis: thermodynamic origins of nonadditivity between mutations. Genetics 2021; 219:iyab105. [PMID: 34849909 PMCID: PMC8633102 DOI: 10.1093/genetics/iyab105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/19/2021] [Indexed: 01/02/2023] Open
Abstract
Epistasis-when mutations combine nonadditively-is a profoundly important aspect of biology. It is often difficult to understand its mechanistic origins. Here, we show that epistasis can arise from the thermodynamic ensemble, or the set of interchanging conformations a protein adopts. Ensemble epistasis occurs because mutations can have different effects on different conformations of the same protein, leading to nonadditive effects on its average, observable properties. Using a simple analytical model, we found that ensemble epistasis arises when two conditions are met: (1) a protein populates at least three conformations and (2) mutations have differential effects on at least two conformations. To explore the relative magnitude of ensemble epistasis, we performed a virtual deep-mutational scan of the allosteric Ca2+ signaling protein S100A4. We found that 47% of mutation pairs exhibited ensemble epistasis with a magnitude on the order of thermal fluctuations. We observed many forms of epistasis: magnitude, sign, and reciprocal sign epistasis. The same mutation pair could even exhibit different forms of epistasis under different environmental conditions. The ubiquity of thermodynamic ensembles in biology and the pervasiveness of ensemble epistasis in our dataset suggests that it may be a common mechanism of epistasis in proteins and other macromolecules.
Collapse
Affiliation(s)
- Anneliese J Morrison
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene OR 97403, USA
| | - Daria R Wonderlick
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene OR 97403, USA
| | - Michael J Harms
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene OR 97403, USA
| |
Collapse
|
4
|
Rodrigues YK, van Bergen E, Alves F, Duneau D, Beldade P. Additive and non-additive effects of day and night temperatures on thermally plastic traits in a model for adaptive seasonal plasticity. Evolution 2021; 75:1805-1819. [PMID: 34097756 DOI: 10.1111/evo.14271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
Developmental plasticity can match organismal phenotypes to ecological conditions, helping populations to deal with the environmental heterogeneity of alternating seasons. In contrast to natural situations, experimental studies of plasticity often use environmental conditions that are held constant during development. To explore potential interactions between day and night temperatures, we tested effects of circadian temperature fluctuations on thermally plastic traits in a seasonally plastic butterfly, Bicyclus anynana. Comparing phenotypes for four treatments corresponding to a full-factorial analysis of cooler and warmer temperatures, we found evidence of significant interaction effects between day and night temperatures. We then focused on comparing phenotypes between individuals reared under two types of temperature fluctuations (warmer days with cooler nights, and cooler days with warmer nights) and individuals reared under a constant temperature of the same daily mean. We found evidence of additive-like effects (for body size), and different types of dominance-like effects, with one particular period of the light cycle (for development time) or one particular extreme temperature (for eyespot size) having a larger impact on phenotype. Differences between thermally plastic traits, which together underlie alternative seasonal strategies for survival and reproduction, revealed their independent responses to temperature. This study underscores the value of studying how organisms integrate complex environmental information toward a complete understanding of natural phenotypic variation and of the impact of environmental change thereon.
Collapse
Affiliation(s)
- Yara Katia Rodrigues
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Current address: Atlantic Technical University (UTA), Mindelo, São Vicente island, Cabo Verde
| | - Erik van Bergen
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Current address: Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland
| | - Filipa Alves
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - David Duneau
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,UMR 5174 - CNRS, Evolution et Diversité Biologique, University Paul Sabatier, Toulouse, France
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,UMR 5174 - CNRS, Evolution et Diversité Biologique, University Paul Sabatier, Toulouse, France.,CE3C: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Portugal
| |
Collapse
|
5
|
Sun M, Shen B, Li W, Samir P, Browne CM, Link AJ, Frank J. A Time-Resolved Cryo-EM Study of Saccharomyces cerevisiae 80S Ribosome Protein Composition in Response to a Change in Carbon Source. Proteomics 2020; 21:e2000125. [PMID: 33007145 DOI: 10.1002/pmic.202000125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/31/2020] [Indexed: 12/28/2022]
Abstract
The role of the ribosome in the regulation of gene expression has come into increased focus. It is proposed that ribosomes are catalytic engines capable of changing their protein composition in response to environmental stimuli. Time-resolved cryo-electron microscopy (cryo-EM) techniques are employed to identify quantitative changes in the protein composition and structure of the Saccharomyces cerevisiae 80S ribosomes after shifting the carbon source from glucose to glycerol. Using cryo-EM combined with the computational classification approach, it is found that a fraction of the yeast cells' 80S ribosomes lack ribosomal proteins at the entrance and exit sites for tRNAs, including uL16(RPL10), eS1(RPS1), uS11(RPS14A/B), and eS26(RPS26A/B). This fraction increased after a change from glucose to glycerol medium. The quantitative structural analysis supports the hypothesis that ribosomes are dynamic complexes that alter their composition in response to changes in growth or environmental conditions.
Collapse
Affiliation(s)
- Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Bingxin Shen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Parimal Samir
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA
| | - Christopher M Browne
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA
| | - Andrew J Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
6
|
Samir P, Browne CM, Rahul, Sun M, Shen B, Li W, Frank J, Link AJ. Identification of Changing Ribosome Protein Compositions using Mass Spectrometry. Proteomics 2019; 18:e1800217. [PMID: 30211483 DOI: 10.1002/pmic.201800217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/01/2018] [Indexed: 11/06/2022]
Abstract
The regulatory role of the ribosome in gene expression has come into sharper focus. It has been proposed that ribosomes are dynamic complexes capable of changing their protein composition in response to environmental stimuli. MS is applied to identify quantitative changes in the protein composition of S. cerevisiae 80S ribosomes in response to different environmental stimuli. Using quantitative MS, it is found that the paralog yeast ribosomal proteins RPL8A (eL8A) and RPL8B (eL8B) change their relative proportions in the 80S ribosome when yeast is switched from growth in glucose to glycerol. By using yeast genetics and polysome profiling, it is shown that yeast ribosomes containing either RPL8A or RPL8B are not functionally interchangeable. The quantitative proteomic data support the hypothesis that ribosomes are dynamic complexes that alter their composition and functional activity in response to changes in growth or environmental conditions.
Collapse
Affiliation(s)
- Parimal Samir
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA
| | | | - Rahul
- University of Waterloo, Waterloo, ON, Canada
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Bingxin Shen
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Wen Li
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, 10032, USA
| | - Andrew J Link
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
7
|
Gerbasi VR, Browne CM, Samir P, Shen B, Sun M, Hazelbaker DZ, Galassie AC, Frank J, Link AJ. Critical Role for Saccharomyces cerevisiae Asc1p in Translational Initiation at Elevated Temperatures. Proteomics 2018; 18:e1800208. [PMID: 30285306 PMCID: PMC6461043 DOI: 10.1002/pmic.201800208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/29/2018] [Indexed: 11/11/2022]
Abstract
The eukaryotic ribosomal protein RACK1/Asc1p is localized to the mRNA exit channel of the 40S subunit but lacks a defined role in mRNA translation. Saccharomyces cerevisiae deficient in ASC1 exhibit temperature-sensitive growth. Using this null mutant, potential roles for Asc1p in translation and ribosome biogenesis are evaluated. At the restrictive temperature the asc1Δ null mutant has reduced polyribosomes. To test the role of Asc1p in ribosome stability, cryo-EM is used to examine the structure of 80S ribosomes in an asc1Δ yeast deletion mutant at both the permissive and nonpermissive temperatures. CryoEM indicates that loss of Asc1p does not severely disrupt formation of this complex structure. No defect is found in rRNA processing in the asc1Δ null mutant. A proteomic approach is applied to survey the effect of Asc1p loss on the global translation of yeast proteins. At the nonpermissive temperature, the asc1Δ mutant has reduced levels of ribosomal proteins and other factors critical for translation. Collectively, these results are consistent with recent observations suggesting that Asc1p is important for ribosome occupancy of short mRNAs. The results show the Asc1 ribosomal protein is critical in translation during heat stress.
Collapse
Affiliation(s)
- Vincent R. Gerbasi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher M. Browne
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Parimal Samir
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bingxin Shen
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Dane Z. Hazelbaker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Andrew J. Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
8
|
Frank J. Whither Ribosome Structure and Dynamics Research? (A Perspective). J Mol Biol 2016; 428:3565-9. [PMID: 27178840 DOI: 10.1016/j.jmb.2016.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 04/29/2016] [Indexed: 12/24/2022]
Abstract
As high-resolution cryogenic electron microscopy (cryo-EM) structures of ribosomes proliferate, at resolutions that allow atomic interactions to be visualized, this article attempts to give a perspective on the way research on ribosome structure and dynamics may be headed, and particularly the new opportunities we have gained through recent advances in cryo-EM. It is pointed out that single-molecule FRET and cryo-EM form natural complements in the characterization of ribosome dynamics and transitions among equilibrating states of in vitro translational systems.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Columbia University, 116th and Broadway, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|