1
|
Grzywa TM, Nowis D, Golab J. The role of CD71 + erythroid cells in the regulation of the immune response. Pharmacol Ther 2021; 228:107927. [PMID: 34171326 DOI: 10.1016/j.pharmthera.2021.107927] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Complex regulation of the immune response is necessary to support effective defense of an organism against hostile invaders and to maintain tolerance to harmless microorganisms and autoantigens. Recent studies revealed previously unappreciated roles of CD71+ erythroid cells (CECs) in regulation of the immune response. CECs physiologically reside in the bone marrow where erythropoiesis takes place. Under stress conditions, CECs are enriched in some organs outside of the bone marrow as a result of extramedullary erythropoiesis. However, the role of CECs goes well beyond the production of erythrocytes. In neonates, increased numbers of CECs contribute to their vulnerability to infectious diseases. On the other side, neonatal CECs suppress activation of immune cells in response to abrupt colonization with commensal microorganisms after delivery. CECs are also enriched in the peripheral blood of pregnant women as well as in the placenta and are responsible for the regulation of feto-maternal tolerance. In patients with cancer, anemia leads to increased frequency of CECs in the peripheral blood contributing to diminished antiviral and antibacterial immunity, as well as to accelerated cancer progression. Moreover, recent studies revealed the role of CECs in HIV and SARS-CoV-2 infections. CECs use a full arsenal of mechanisms to regulate immune response. These cells suppress proinflammatory responses of myeloid cells and T-cell proliferation by the depletion of ʟ-arginine by arginase. Moreover, CECs produce reactive oxygen species to decrease T-cell proliferation. CECs also secrete cytokines, including transforming growth factor β (TGF-β), which promotes T-cell differentiation into regulatory T-cells. Here, we comprehensively describe the role of CECs in orchestrating immune response and indicate some therapeutic approaches that might be used to regulate their effector functions in the treatment of human conditions.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Doctoral School, Medical University of Warsaw, Zwirki and Wigury 61 Street, 02-091 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Centre of Preclinical Research, Medical University of Warsaw, Banacha 1b Street, 02-097 Warsaw, Poland.
| |
Collapse
|
2
|
Maier JI, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, Schell C. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells 2021; 10:cells10061509. [PMID: 34203913 PMCID: PMC8232754 DOI: 10.3390/cells10061509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Glomerular kidney disease causing nephrotic syndrome is a complex systemic disorder and is associated with significant morbidity in affected patient populations. Despite its clinical relevance, well-established models are largely missing to further elucidate the implications of uncontrolled urinary protein loss. To overcome this limitation, we generated a novel, inducible, podocyte-specific transgenic mouse model (Epb41l5fl/fl*Nphs1-rtTA-3G*tetOCre), developing nephrotic syndrome in adult mice. Animals were comprehensively characterized, including microbiome analysis and multiplexed immunofluorescence imaging. Induced knockout mice developed a phenotype consistent with focal segmental glomerular sclerosis (FSGS). Although these mice showed hallmark features of severe nephrotic syndrome (including proteinuria, hypoalbuminemia and dyslipidemia), they did not exhibit overt chronic kidney disease (CKD) phenotypes. Analysis of the gut microbiome demonstrated distinct dysbiosis and highly significant enrichment of the Alistipes genus. Moreover, Epb41l5-deficient mice developed marked organ pathologies, including extramedullary hematopoiesis of the spleen. Multiplex immunofluorescence imaging demonstrated red pulp macrophage proliferation and mTOR activation as driving factors of hematopoietic niche expansion. Thus, this novel mouse model for adult-onset nephrotic syndrome reveals the significant impact of proteinuria on extra-renal manifestations, demonstrating the versatility of this model for nephrotic syndrome-related research.
Collapse
Affiliation(s)
- Jasmin I. Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.H.); (G.W.)
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.H.); (G.W.)
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
- Correspondence:
| |
Collapse
|
3
|
Kasinath V, Yilmam OA, Uehara M, Jiang L, Ordikhani F, Li X, Salant DJ, Abdi R. Activation of fibroblastic reticular cells in kidney lymph node during crescentic glomerulonephritis. Kidney Int 2019; 95:310-320. [PMID: 30522766 PMCID: PMC6342621 DOI: 10.1016/j.kint.2018.08.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 01/02/2023]
Abstract
Crescentic glomerulonephritis is an inflammatory condition characterized by rapid deterioration of kidney function. Previous studies of crescentic glomerulonephritis have focused on immune activation in the kidney. However, the role of fibroblastic reticular cells, which reside in the stromal compartment of the kidney lymph node, has not been studied in this condition. We investigated the activation of kidney lymph node-resident fibroblastic reticular cells in nephrotoxic serum nephritis, a classic murine model of crescentic glomerulonephritis. We found that increased deposition of extracellular matrix fibers by fibroblastic reticular cells in the kidney lymph node was associated with the propagation of high endothelial venules, specialized blood vessels through which lymphocytes enter the lymph node, as well as with expansion of the lymphatic vasculature. The kidney lymph node also contained an expanding population of pro-inflammatory T cells. Removal of the kidney lymph node, depletion of fibroblastic reticular cells, and treatment with anti-podoplanin antibody each resulted in reduction of kidney injury. Our findings suggest that modulating the activity of fibroblastic reticular cells may be a novel therapeutic approach in crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Vivek Kasinath
- Transplantation Research Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Osman A Yilmam
- Transplantation Research Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mayuko Uehara
- Transplantation Research Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Liwei Jiang
- Transplantation Research Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Farideh Ordikhani
- Transplantation Research Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xiaofei Li
- Transplantation Research Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - David J Salant
- Renal Section, Boston University Medical Center, Boston, Massachusetts, USA
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Artinger K, Kirsch AH, Aringer I, Moschovaki-Filippidou F, Eller P, Rosenkranz AR, Eller K. Innate and adaptive immunity in experimental glomerulonephritis: a pathfinder tale. Pediatr Nephrol 2017; 32:943-947. [PMID: 27169420 PMCID: PMC5399043 DOI: 10.1007/s00467-016-3404-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/31/2022]
Abstract
The role of innate and adaptive immune cells in the experimental model of nephrotoxic serum nephritis (NTS) has been rigorously studied in recent years. The model is dependent on kidney-infiltrating T helper (TH) 17 and TH1 cells, which recruit neutrophils and macrophages, respectively, and cause sustained kidney inflammation. In a later phase of disease, regulatory T cells (Tregs) infiltrate the kidney in an attempt to limit disease activity. In the early stage of NTS, lymph node drainage plays an important role in disease initiation since dendritic cells present the antigen to T cells in the T cell zones of the draining lymph nodes. This results in the differentiation and proliferation of TH17 and TH1 cells. In this setting, immune regulatory cells (Tregs), namely, CCR7-expressing Tregs and mast cells (MCs), which are recruited by Tregs via the production of interleukin-9, exert their immunosuppressive capacity. Together, these two cell populations inhibit T cell differentiation and proliferation, thereby limiting disease activity by as yet unknown mechanisms. In contrast, the spleen plays no role in immune activation in NTS, but constitutes a place of extramedullary haematopoiesis. The complex interactions of immune cells in NTS are still under investigation and might ultimately lead to targeted therapies in glomerulonephritis.
Collapse
Affiliation(s)
- Katharina Artinger
- 0000 0000 8988 2476grid.11598.34Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 27, 8036 Graz, Austria
| | - Alexander H. Kirsch
- 0000 0000 8988 2476grid.11598.34Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 27, 8036 Graz, Austria
| | - Ida Aringer
- 0000 0000 8988 2476grid.11598.34Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 27, 8036 Graz, Austria
| | - Foteini Moschovaki-Filippidou
- 0000 0000 8988 2476grid.11598.34Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 27, 8036 Graz, Austria
| | - Philipp Eller
- 0000 0000 8988 2476grid.11598.34Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander R. Rosenkranz
- 0000 0000 8988 2476grid.11598.34Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 27, 8036 Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 27, 8036, Graz, Austria.
| |
Collapse
|
5
|
Tsai F, Perlman H, Cuda CM. The contribution of the programmed cell death machinery in innate immune cells to lupus nephritis. Clin Immunol 2016; 185:74-85. [PMID: 27780774 DOI: 10.1016/j.clim.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/15/2016] [Accepted: 10/20/2016] [Indexed: 12/24/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-factorial autoimmune disease initiated by genetic and environmental factors, which in combination trigger disease onset in susceptible individuals. Damage to the kidney as a consequence of lupus nephritis (LN) is one of the most prevalent and severe outcomes, as LN affects up to 60% of SLE patients and accounts for much of SLE-associated morbidity and mortality. As remarkable strides have been made in unlocking new inflammatory mechanisms associated with signaling molecules of programmed cell death pathways, this review explores the available evidence implicating the action of these pathways specifically within dendritic cells and macrophages in the control of kidney disease. Although advancements into the underlying mechanisms responsible for inducing cell death inflammatory pathways have been made, there still exist areas of unmet need. By understanding the molecular mechanisms by which dendritic cells and macrophages contribute to LN pathogenesis, we can improve their viability as potential therapeutic targets to promote remission.
Collapse
Affiliation(s)
- FuNien Tsai
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| | - Harris Perlman
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| | - Carla M Cuda
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Eller K, Rosenkranz AR. Specialized Regulatory T Cells for Optimal Suppression of T Cell Responses in GN. J Am Soc Nephrol 2016; 28:1-2. [PMID: 27683895 DOI: 10.1681/asn.2016070785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander R Rosenkranz
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|