1
|
Plöger R, Tsikolia N, Viebahn C. A network of transient domains for breaking symmetry during anterior-posterior axis formation in the porcine embryo. Dev Dyn 2024. [PMID: 39377464 DOI: 10.1002/dvdy.739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/09/2024] Open
Abstract
Breaking radial symmetry for anterior-posterior axis formation is one of the key developmental steps of vertebrate gastrulation and is established through a succession of transient domains defined by morphology or gene expression. Three such domains were interpreted recently in the rabbit to be part of a "three-anchor-point model" for axis formation. To answer the question as to whether the model is generally applicable to mammals, the dynamic expression patterns of four marker genes were analyzed in the pig, where gastrulating epiblast forms from half the inner cell mass: EOMES and PKDCC transcripts display decreasing expression intensities in the anterior hypoblast and-together with WNT3-increasing intensity in the anterior streak domain and the node; TBX6 expression changes from an initial central expression to exclusive expression in the posterior extremity of the primitive streak. The anterior streak domain has thus a molecular footprint similar to the one in the rabbit, the end node shares TBX6 between the species, while the anterior hypoblast-mirroring specific porcine epiblast derivation and fate-is marked by PKDCC instead of WNT3. The molecular similarities in transient domains point to conserved mechanisms for establishing the mammalian anterior-posterior axis and, possibly, breaking radial symmetry.
Collapse
Affiliation(s)
- Ruben Plöger
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Identification of candidate genomic regions for thermogelled egg yolk traits based on a genome-wide association study. Poult Sci 2022; 102:102402. [PMID: 36610105 PMCID: PMC9850194 DOI: 10.1016/j.psj.2022.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Egg yolk texture is an important indicator for evaluating egg yolk quality. Genetic markers associated with economic traits predict genomes and facilitate mining for potential genes. Numerous genome-wide association studies have been conducted on egg traits. However, studies on the genetic basis of thermogelled yolk texture are still lacking. The aim of the present study was to find significant single nucleotide polymorphism (SNP) sites and candidate genes related to thermogelled yolk texture in Hetian Dahei chicken (HTHD) flocks that can be used as genetic markers. Five traits, including hardness, cohesiveness, gumminess, chewiness, and resilience, had low heritability (0.044-0.078). Ten genes, including U6, FSHR, PKDCC, SLC7A11, TIMM9, ARID4A, PSMA3, ACTR10, EML4, and SLC35F4 may control the hardness of the thermogelled egg yolks. In addition, 12 SNPs associated with cohesiveness were identified. RELCH located on GGA2 participates in cholesterol transport. The candidate gene LRRK2, which is associated with gumminess, influences the concentrations of very low-density lipoprotein in blood. Eight SNPs associated with resilience were identified, mainly on GGA3 and GCA28. In total, 208 SNPs associated with chewiness were identified, and 159 candidate genes, which were mainly involved in proteasome-mediated ubiquitin-dependent protein catabolic process, negative regulation of transport, lipid droplet organization, and vehicle docking involved in exocytosis, were found near these regions. Thermogel egg yolk texture is a complex phenotype controlled by multiple genes. Based on heritability assays and GWAS results, there is a genetic basis for the texture of thermogelled egg yolks. We identified a series of SNPs associated with yolk texture and candidate genes. Our result provides a theoretical basis for breeding high-quality egg yolk using molecular marker-assisted selection and could facilitate the development of novel traits.
Collapse
|
3
|
Dubey A, Saint-Jeannet JP. Anterior patterning genes induced by Zic1 are sensitive to retinoic acid and its metabolite, 4-oxo-RA. Dev Dyn 2022; 251:498-512. [PMID: 34536327 PMCID: PMC8891028 DOI: 10.1002/dvdy.420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Development of paired sensory organs is a highly complex and coordinated process. These organs arise from ectodermal thickenings in the cephalic region known as cranial placodes. We have previously shown that Zic1 is a critical regulator for the formation of the pre-placodal region (PPR), the common territory for the development of all cranial placodes in Xenopus laevis. RESULTS In this study, we have analyzed a number of Zic1 targets for their expression during PPR patterning, as well as their regulation by retinoic acid (RA) and one of its major metabolites, 4-oxo-RA. Our findings show that anteriorly Zic1 regulates several transcription factors, Crx, Fezf2, Nkx3-1, and Xanf1 as well as a serine/threonine/tyrosine kinase, Pkdcc.2. These factors are all expressed in the vicinity of the PPR and as such are candidate regulators of placode formation downstream of Zic1. In addition to their differential regulation by RA, we find that 4-oxo-RA is also capable of modulating the expression of these genes, as well as a broad array of RA-regulated genes. CONCLUSION Our data highlight the complexity of retinoid-mediated regulation required for Zic1-activated anterior structure specification in Xenopus, and the potential physiological role of 4-oxo-RA in cranial placode development.
Collapse
Affiliation(s)
| | - Jean-Pierre Saint-Jeannet
- Correspondence: Jean-Pierre Saint-Jeannet, Department of Molecular Pathobiology, New York University, College of Dentistry, 345 East 24 Street, New York, NY 10010 – USA, tel: 212-998-9978,
| |
Collapse
|
4
|
Lee DR, Rhodes C, Mitra A, Zhang Y, Maric D, Dale RK, Petros TJ. Transcriptional heterogeneity of ventricular zone cells in the ganglionic eminences of the mouse forebrain. eLife 2022; 11:71864. [PMID: 35175194 PMCID: PMC8887903 DOI: 10.7554/elife.71864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
The ventricular zone (VZ) of the nervous system contains radial glia cells that were originally considered relatively homogenous in their gene expression, but a detailed characterization of transcriptional diversity in these VZ cells has not been reported. Here, we performed single-cell RNA sequencing to characterize transcriptional heterogeneity of neural progenitors within the VZ and subventricular zone (SVZ) of the ganglionic eminences (GEs), the source of all forebrain GABAergic neurons. By using a transgenic mouse line to enrich for VZ cells, we characterize significant transcriptional heterogeneity, both between GEs and within spatial subdomains of specific GEs. Additionally, we observe differential gene expression between E12.5 and E14.5 VZ cells, which could provide insights into temporal changes in cell fate. Together, our results reveal a previously unknown spatial and temporal genetic diversity of VZ cells in the ventral forebrain that will aid our understanding of initial fate decisions in the forebrain.
Collapse
Affiliation(s)
- Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Christopher Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core, National Institute of Neurological Disease and Stroke, Bethesda, United States
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| |
Collapse
|
5
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
6
|
Plöger R, Viebahn C. Expression patterns of signalling molecules and transcription factors in the early rabbit embryo and their significance for modelling amniote axis formation. Dev Genes Evol 2021; 231:73-83. [PMID: 34100128 PMCID: PMC8213660 DOI: 10.1007/s00427-021-00677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
The anterior-posterior axis is a central element of the body plan and, during amniote gastrulation, forms through several transient domains with specific morphogenetic activities. In the chick, experimentally proven activity of signalling molecules and transcription factors lead to the concept of a 'global positioning system' for initial axis formation whereas in the (mammotypical) rabbit embryo, a series of morphological or molecular domains are part of a putative 'three-anchor-point model'. Because circular expression patterns of genes involved in axis formation exist in both amniote groups prior to, and during, gastrulation and may thus be suited to reconcile these models, the expression patterns of selected genes known in the chick, namely the ones coding for the transcription factors eomes and tbx6, the signalling molecule wnt3 and the wnt inhibitor pkdcc, were analysed in the rabbit embryonic disc using in situ hybridisation and placing emphasis on their germ layer location. Peripheral wnt3 and eomes expression in all layers is found initially to be complementary to central pkdcc expression in the hypoblast during early axis formation. Pkdcc then appears - together with a posterior-anterior gradient in wnt3 and eomes domains - in the epiblast posteriorly before the emerging primitive streak is marked by pkdcc and tbx6 at its anterior and posterior extremities, respectively. Conserved circular expression patterns deduced from some of this data may point to shared mechanisms in amniote axis formation while the reshaping of localised gene expression patterns is discussed as part of the 'three-anchor-point model' for establishing the mammalian body plan.
Collapse
Affiliation(s)
- Ruben Plöger
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Monteiro RS, Gentsch GE, Smith JC. Transcriptomics of dorso-ventral axis determination in Xenopus tropicalis. Dev Biol 2018; 439:69-79. [PMID: 29709598 PMCID: PMC5971218 DOI: 10.1016/j.ydbio.2018.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/08/2018] [Accepted: 04/24/2018] [Indexed: 11/26/2022]
Abstract
Amphibian embryos provide a powerful system to study early cell fate determination because their eggs are externally fertilised, large, and easy to manipulate. Ultraviolet (UV) or lithium chloride (LiCl) treatment are classic embryonic manipulations frequently used to perturb specification of the dorso-ventral (DV) axis by affecting the stability of the maternal Wnt mediator β-catenin. Such treatments result in the formation of so-called ventralised or dorsalised embryos. Although these phenotypes have been well described with respect to their morphology and some aspects of gene expression, their whole transcriptomes have never been systematically characterised and compared. Here we show that at the early gastrula stage UV-treated embryos are transcriptionally more closely related to untreated embryos than to LiCl-treated embryos. Transcriptional comparisons with dissected ventral and dorsal regions of unperturbed gastrula embryos indicate that UV and LiCl treatments indeed enrich for ventral and dorsal cells, respectively. However, these treatments also affect the balance of neural induction in the ectodermal germ layer, with LiCl stimulating pro-neural BMP inhibition and UV preferentially generating epidermis because of elevated BMP levels. Thus the transcriptomes of UV- and LiCl-treated embryos can best be described as ventro-epidermalised and dorso-neuralised. These descriptions notwithstanding, our profiling reveals several hitherto uncharacterized genes with differential expression along the DV axis. At least one of these genes, a RNF220-like ubiquitin ligase, is activated dorsally by β-catenin. Our analysis of UV/LiCl-mediated axis perturbation will enhance the mechanistic understanding of DV axis determination in vertebrates.
Collapse
Affiliation(s)
- Rita S Monteiro
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, United Kingdom.
| | - George E Gentsch
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, United Kingdom
| | - James C Smith
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, United Kingdom.
| |
Collapse
|
8
|
Maddala R, Skiba NP, Rao PV. Vertebrate Lonesome Kinase Regulated Extracellular Matrix Protein Phosphorylation, Cell Shape, and Adhesion in Trabecular Meshwork Cells. J Cell Physiol 2017; 232:2447-2460. [PMID: 27591737 PMCID: PMC5462548 DOI: 10.1002/jcp.25582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
Abstract
Glaucoma, a leading cause of irreversible blindness, is commonly associated with elevated intraocular pressure (IOP) due to impaired aqueous humor (AH) drainage through the trabecular meshwork (TM). Although dysregulated production and organization of extracellular matrix (ECM) is presumed to increase resistance to AH outflow and elevate IOP by altering TM cell contractile and adhesive properties, it is not known whether regulation of ECM protein phosphorylation via the secretory vertebrate lonesome kinase (VLK) influences TM cellular characteristics. Here, we tested this possibility. Experiments carried out in this study reveal that the 32 kDa protein is a prominent VLK isoform detectable in lysates and conditioned media (CM) of human TM cells. Increased levels of VLK were observed in CM of TM cells subjected to cyclic mechanical stretch, or treated with dexamethasone, TGF-β2, and TM cells expressing constitutively active RhoA GTPase. Downregulation of VLK expression in TM cells using siRNA decreased tyrosine phosphorylation (TyrP) of ECM proteins and focal adhesions, and induced changes in cell shape in association with reduced levels of actin stress fibers and phospho-paxillin. VLK was also demonstrated to regulate TGF-β2-induced TyrP of ECM proteins. Taken together, these results suggest that VLK secretion can be regulated by external cues, intracellular signal proteins, and mechanical stretch, and VLK can in turn regulate TyrP of ECM proteins secreted by TM cells and control cell shape, actin stress fibers, and focal adhesions. These observations indicate a potential role for VLK in homeostasis of AH outflow and IOP, and in the pathobiology of glaucoma. J. Cell. Physiol. 232: 2447-2460, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine. Durham, NC. USA. 27710
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine. Durham, NC. USA. 27710
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine. Durham, NC. USA. 27710
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine. Durham, NC. USA. 27710
| |
Collapse
|
9
|
Calabrò M, Porcelli S, Crisafulli C, Wang SM, Lee SJ, Han C, Patkar AA, Masand PS, Albani D, Raimondi I, Forloni G, Bin S, Mattiaccio A, Mantovani V, Jun TY, Pae CU, Serretti A. Genetic Variants Within Key Nodes of the Cascade of Antipsychotic Mechanisms: Effects on Antipsychotic Response and Schizophrenia Psychopathology in a Naturalistic Treatment Setting in Two Independent Korean and Italian Samples. Adv Ther 2017; 34:1482-1497. [PMID: 28508933 DOI: 10.1007/s12325-017-0555-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Schizophrenia (SCZ) is one of the most disabling psychiatric disorders. Genetic factors play an important role in both SCZ liability and its treatment outcome. In the present paper, we investigated the effects of several single nucleotide polymorphisms (SNPs) within ten strong candidate genes involved with antipsychotics (APs) mechanisms of action. METHODS Two independent samples were investigated in the present study. Totals of 176 SCZ subjects and 326 controls of Korean ancestry, and 83 SCZ subjects and 194 controls of Italian ancestry were recruited and genotyped. SCZ risk and other parameters were also investigated. RESULTS Concerning APs response, only a nominal association with HOMER1 rs3822568 in the Korean sample was found. In the haplotype analysis, rs9801117 C-rs12668837 C-rs4621754 A haplotype within ESYT2 and NCAPG2 genes was associated with APs response in the same sample. As for secondary outcomes, rs7439 within PKDCC and rs12668837 within NCAPG2 were associated with SCZ risk in the Italian sample. In the haplotype analysis, rs2788478 G-rs2657375 T-rs1039621 A within the region between WDR60 and ESYT genes and rs2013 C (ESYT2)-rs6459896 A (NCAPG2) haplotypes were associated with SCZ in the same sample. No association was found in the Korean sample. Finally, our exploratory data suggest a possible modulation of HOMER1, ARC, BDNF, TXNRD2, WDR60, and ESYT2 genes in the APs response to specific symptom clusters. CONCLUSION Our results did not support a primary role for the genes investigated in the APs response. On the other hand, our secondary results suggest a possible involvement of NACPG2 and PKDCC in SCZ liability. Finally, our exploratory findings may deserve further investigations in specific studies.
Collapse
|
10
|
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. Dev Biol 2016; 426:429-441. [PMID: 27209239 DOI: 10.1016/j.ydbio.2016.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022]
Abstract
During early vertebrate embryogenesis, cell fate specification is often coupled with cell acquisition of specific adhesive, polar and/or motile behaviors. In Xenopus gastrulae, tissues fated to form different axial structures display distinct motility. The cells in the early organizer move collectively and directionally toward the animal pole and contribute to anterior mesendoderm, whereas the dorsal and the ventral-posterior trunk tissues surrounding the blastopore of mid-gastrula embryos undergo convergent extension and convergent thickening movements, respectively. While factors regulating cell lineage specification have been described in some detail, the molecular machinery that controls cell motility is not understood in depth. To gain insight into the gene battery that regulates both cell fates and motility in particular embryonic tissues, we performed RNA sequencing (RNA-seq) to investigate differentially expressed genes in the early organizer, the dorsal and the ventral marginal zone of Xenopus gastrulae. We uncovered many known signaling and transcription factors that have been reported to play roles in embryonic patterning during gastrulation. We also identified many uncharacterized genes as well as genes that encoded extracellular matrix (ECM) proteins or potential regulators of actin cytoskeleton. Co-expression of a selected subset of the differentially expressed genes with activin in animal caps revealed that they had distinct ability to block activin-induced animal cap elongation. Most of these factors did not interfere with mesodermal induction by activin, but an ECM protein, EFEMP2, inhibited activin signaling and acted downstream of the activated type I receptor. By focusing on a secreted protein kinase PKDCC1, we showed with overexpression and knockdown experiments that PKDCC1 regulated gastrulation movements as well as anterior neural patterning during early Xenopus development. Overall, our studies identify many differentially expressed signaling and cytoskeleton regulators in different embryonic regions of Xenopus gastrulae and imply their functions in regulating cell fates and/or behaviors during gastrulation.
Collapse
|
11
|
Ding Y, Colozza G, Zhang K, Moriyama Y, Ploper D, Sosa EA, Benitez MDJ, De Robertis EM. Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. Dev Biol 2016; 426:176-187. [PMID: 27016259 PMCID: PMC5033668 DOI: 10.1016/j.ydbio.2016.02.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/14/2016] [Accepted: 02/26/2016] [Indexed: 12/31/2022]
Abstract
RNA sequencing has allowed high-throughput screening of differential gene expression in many tissues and organisms. Xenopus laevis is a classical embryological and cell-free extract model system, but its genomic sequence had been lacking due to difficulties arising from allotetraploidy. There is currently much excitement surrounding the release of the completed X. laevis genome (version 9.1) by the Joint Genome Institute (JGI), which provides a platform for genome-wide studies. Here we present a deep RNA-seq dataset of transcripts expressed in dorsal and ventral lips of the early Xenopus gastrula embryo using the new genomic information, which was further annotated by blast searches against the human proteome. Overall, our findings confirm previous results from differential screenings using other methods that uncovered classical dorsal genes such as Chordin, Noggin and Cerberus, as well as ventral genes such as Sizzled, Ventx, Wnt8 and Bambi. Complete transcriptome-wide tables of mRNAs suitable for data mining are presented, which include many novel dorsal- and ventral-specific genes. RNA-seq was very quantitative and reproducible, and allowed us to define dorsal and ventral signatures useful for gene set expression analyses (GSEA). As an example of a new gene, we present here data on an organizer-specific secreted protein tyrosine kinase known as Pkdcc (protein kinase domain containing, cytoplasmic) or Vlk (vertebrate lonesome kinase). Overexpression experiments indicate that Pkdcc can act as a negative regulator of Wnt/ β-catenin signaling independently of its kinase activity. We conclude that RNA-Seq in combination with the X. laevis complete genome now available provides a powerful tool for unraveling cell-cell signaling pathways during embryonic induction.
Collapse
Affiliation(s)
- Yi Ding
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Gabriele Colozza
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Kelvin Zhang
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | - Yuki Moriyama
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Diego Ploper
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Eric A Sosa
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Maria D J Benitez
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA.
| |
Collapse
|