1
|
Song W, Gan W, Xie Z, Chen J, Wang L. Small RNA sequencing reveals sex-related miRNAs in Collichthys lucidus. Front Genet 2022; 13:955645. [PMID: 36092867 PMCID: PMC9458855 DOI: 10.3389/fgene.2022.955645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Collichthys lucidus (C. lucidus) is an economically important fish species, exhibiting sexual dimorphism in its growth rate. However, there is a lack of research on its underlying sex-related mechanisms. Therefore, small RNA sequencing was performed to better comprehend these sex-related molecular mechanisms. In total, 171 differentially expressed miRNAs (DE-miRNAs) were identified between the ovaries and testes. Functional enrichment analysis revealed that the target genes of DE-miRNAs were considerably enriched in the p53 signaling, PI3K–Akt signaling, and TGF-beta signaling pathways. In addition, sex-related miRNAs were identified, and the expression of miR-430c-3p and miR-430f-3p was specifically observed in the gonads compared with other organs and their expression was markedly upregulated in the testes relative to the ovaries. Bmp15 was a target of miR-430c-3p and was greatly expressed in the ovaries compared with the testes. Importantly, miR-430c-3p and bmp15 co-expressed in the ovaries and testes. This research provides the first detailed miRNA profiles for C. lucidus concerning sex, likely laying the basis for further studies on sex differentiation in C. lucidus.
Collapse
Affiliation(s)
- Wei Song
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wu Gan
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhengli Xie
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Jia Chen
- State Key Laboratory of Large Yellow Croaker Breeding, Fuding Seagull Fishing Food Co. Ltd., Ningde, China
| | - Lumin Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- *Correspondence: Lumin Wang,
| |
Collapse
|
2
|
Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010574. [PMID: 35010832 PMCID: PMC8744944 DOI: 10.3390/ijerph19010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022]
Abstract
Exposure to Endocrine Disrupting Chemicals (EDC) has been linked with several adverse outcomes. In this review, we examine EDCs that are pervasive in the environment and are of concern in the context of human, animal, and environmental health. We explore the consequences of EDC exposure on aquatic life, terrestrial animals, and humans. We focus on the exploitation of genomics technologies and in particular whole transcriptome sequencing. Genome-wide analyses using RNAseq provides snap shots of cellular, tissue and whole organism transcriptomes under normal physiological and EDC perturbed conditions. A global view of gene expression provides highly valuable information as it uncovers gene families or more specifically, pathways that are affected by EDC exposures, but also reveals those that are unaffected. Hypotheses about genes with unknown functions can also be formed by comparison of their expression levels with genes of known function. Risk assessment strategies leveraging genomic technologies and the development of toxicology databases are explored. Finally, we review how the Adverse Outcome Pathway (AOP) has exploited this high throughput data to provide a framework for toxicology studies.
Collapse
|
3
|
Ou M, Chen K, Gao D, Wu Y, Chen Z, Luo Q, Liu H, Zhao J. Comparative transcriptome analysis on four types of gonadal tissues of blotched snakehead (Channa maculata). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100708. [PMID: 32674038 DOI: 10.1016/j.cbd.2020.100708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Blotched snakehead (Channa maculata) is an economically important freshwater fish in China, of which males grow much faster than females. To illuminate the molecular mechanism of sex differentiation and gonad development, RNA-Sequencing was performed to identify sex-related genes and pathway in gonads of 6-month-old normal XX females (XX-F), normal XY males (XY-M), XY sex reversal females (XY-F) and YY super-males (YY-M). The analysis showed that many differentially expressed genes (DEGs) had similar expression patterns in XY-F and XX-F, which were different from XY-M and YY-M. qRT-PCR indicated that Amh, Dmrt1, and Sox9 had relatively high expression in testes of XY-M and YY-M. Taking Amh as an example, there was a relative fold change of 1.0 in XX-F, 2.1 fold change in XY-F, 36.1 fold change in XY-M, and 26.0 fold change in YY-M. Cyp19a1a, Figla, and Foxl2 were highly expressive in ovaries of XX-F and XY-F. Taking Figla as an example, there was a relative fold change of 557 in XX-F, 304.5 fold change in XY-F, 5.6 fold change in XY-M, and 4.4 fold change in YY-M. KEGG analysis revealed many DEGs distributed in pathways related to sex differentiation, steroid hormone synthesis and growth, etc. Significant variation and trends in relative expression levels tested by qRT-PCR were consistent with those recorded by RNA-Sequencing. This is the first time that transcriptome of snakehead has been investigated systematically and in an integrated way. Large quantities of candidate genes involved in sex differentiation, gonad development and growth dimorphism were identified. The study provides useful resources for understanding sex differentiation and growth dimorphism, potentially assisting mono-sex production of snakehead in aquaculture.
Collapse
Affiliation(s)
- Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Dandan Gao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yanduo Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
4
|
Rutherford R, Lister A, Bosker T, Blewett T, Gillio Meina E, Chehade I, Kanagasabesan T, MacLatchy D. Mummichog (Fundulus heteroclitus) are less sensitive to 17α-ethinylestradiol (EE 2) than other common model teleosts: A comparative review of reproductive effects. Gen Comp Endocrinol 2020; 289:113378. [PMID: 31899193 DOI: 10.1016/j.ygcen.2019.113378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 12/28/2022]
Abstract
The environmental estrogen 17α-ethinylestradiol (EE2) will depress or completely inhibit egg production in many common model teleosts at low concentrations (≤0.5 ng/L; Runnalls et al., 2015). This inhibition is not seen in the estuarine killifish, or mummichog (Fundulus heteroclitus), even when exposed to 100 ng/L EE2. This relative insensitivity to EE2 exposure indicates species-specific mechanisms for compensating for exogenous estrogenic exposure. This review compares various reproductive responses elicited by EE2 in mummichog to other common model teleosts, such as zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), identifying key endpoints where mummichog differ from other studied fish. For example, EE2 accumulates primarily in the liver/gall bladder of mummichog, which is different than zebrafish and fathead minnow in which accumulation is predominantly in the carcass. Despite causing species-specific differences in fecundity, EE2 has been shown to consistently induce hepatic vitellogenin in males and cause feminization/sex reversal during gonadal differentiation in larval mummichog, similar to other species. In addition, while gonadal steroidogenesis and plasma steroid levels respond to exogenous EE2, it is generally at higher concentrations than observed in other species. In mummichog, production of 17β-estradiol (E2) by full grown ovarian follicles remains high; unlike other teleost models where E2 synthesis decreases as 17α,20β-dihydroxy-4-prenen-3-on levels increase to induce oocyte maturation. New evidence in mummichog indicates some dissimilarity in gonadal steroidogenic gene expression responses compared to gene expression responses in zebrafish and fathead minnow exposed to EE2. The role of ovarian physiology continues to warrant investigation regarding the tolerance of mummichog to exogenous EE2 exposure. Here we present a comprehensive review, highlighting key biological differences in response to EE2 exposure between mummichog and other commonly used model teleosts.
Collapse
Affiliation(s)
- Robert Rutherford
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Andrea Lister
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Thijs Bosker
- Leiden University College/Institute of Environmental Sciences, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands.
| | - Tamzin Blewett
- University of Alberta, Edmonton, AB, 116 St & 85 Ave, T6G 2R3, Canada.
| | | | - Ibrahim Chehade
- New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | | | - Deborah MacLatchy
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| |
Collapse
|
5
|
Martyniuk CJ, Feswick A, Munkittrick KR, Dreier DA, Denslow ND. Twenty years of transcriptomics, 17alpha-ethinylestradiol, and fish. Gen Comp Endocrinol 2020; 286:113325. [PMID: 31733209 PMCID: PMC6961817 DOI: 10.1016/j.ygcen.2019.113325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
In aquatic toxicology, perhaps no pharmaceutical has been investigated more intensely than 17alpha-ethinylestradiol (EE2), the active ingredient of the birth control pill. At the turn of the century, the fields of comparative endocrinology and endocrine disruption research witnessed the emergence of omics technologies, which were rapidly adapted to characterize potential hazards associated with exposures to environmental estrogens, such as EE2. Since then, significant advances have been made by the scientific community, and as a result, much has been learned about estrogen receptor signaling in fish from environmental xenoestrogens. Vitellogenin, the egg yolk precursor protein, was identified as a major estrogen-responsive gene, establishing itself as the premier biomarker for estrogenic exposures. Omics studies have identified a plethora of estrogen responsive genes, contributing to a wealth of knowledge on estrogen-mediated regulatory networks in teleosts. There have been ~40 studies that report on transcriptome responses to EE2 in a variety of fish species (e.g., zebrafish, fathead minnows, rainbow trout, pipefish, mummichog, stickleback, cod, and others). Data on the liver and testis transcriptomes dominate in the literature and have been the subject of many EE2 studies, yet there remain knowledge gaps for other tissues, such as the spleen, kidney, and pituitary. Inter-laboratory genomics studies have revealed transcriptional networks altered by EE2 treatment in the liver; networks related to amino acid activation and protein folding are increased by EE2 while those related to xenobiotic metabolism, immune system, circulation, and triglyceride storage are suppressed. EE2-responsive networks in other tissues are not as comprehensively defined which is a knowledge gap as regulated networks are expected to be tissue-specific. On the horizon, omics studies for estrogen-mediated effects in fish include: (1) Establishing conceptual frameworks for incorporating estrogen-responsive networks into environmental monitoring programs; (2) Leveraging in vitro and computational toxicology approaches to identify chemicals associated with estrogen receptor-mediated effects in fish (e.g., male vitellogenin production); (3) Discovering new tissue-specific estrogen receptor signaling pathways in fish; and (4) Developing quantitative adverse outcome pathway predictive models for estrogen signaling. As we look ahead, research into EE2 over the past several decades can serve as a template for the array of hormones and endocrine active substances yet to be fully characterized or discovered.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada; Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; University of Florida Genetics Institute, USA; Canadian Rivers Institute, Canada.
| | - April Feswick
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada; Canadian Rivers Institute, Canada
| | - Kelly R Munkittrick
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada; Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada; Canadian Rivers Institute, Canada
| | - David A Dreier
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | - Nancy D Denslow
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; University of Florida Genetics Institute, USA
| |
Collapse
|
6
|
Voisin AS, Kültz D, Silvestre F. Early-life exposure to the endocrine disruptor 17-α-ethinylestradiol induces delayed effects in adult brain, liver and ovotestis proteomes of a self-fertilizing fish. J Proteomics 2018; 194:112-124. [PMID: 30550985 DOI: 10.1016/j.jprot.2018.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2023]
Abstract
Early-life represents a critically sensitive window to endocrine disrupting chemicals, potentially leading to long-term repercussions on the phenotype later in life. The mechanisms underlying this phenomenon, referred to as the Developmental Origins of Health and Disease (DOHaD), are still poorly understood. To gain molecular understanding of these effects, we exposed mangrove rivulus (Kryptolebias marmoratus) for 28 days post hatching (dph) to 4 and 120 ng/L 17-α-ethinylestradiol, a model xenoestrogen. After 28 days, fish were raised for 140 days in clean water and we performed quantitative label-free proteomics on brain, liver and ovotestis of 168 dph adults. A total of 820, 888 and 420 proteins were robustly identified in the brain, liver and ovotestis, respectively. Effects of 17-α-ethinylestradiol were tissue and dose-dependent: a total of 31, 51 and 18 proteins were differentially abundant at 4 ng/L in the brain, liver and ovotestis, respectively, compared to 20, 25 and 39 proteins at 120 ng/L. Our results suggest that estrogen-responsive pathways, such as lipid metabolism, inflammation, and the innate immune system were affected months after the exposure. In addition, the potential perturbation of S-adenosylmethionine metabolism encourages future studies to investigate the role of DNA methylation in mediating the long-term effects of early-life exposures. SIGNIFICANCE: The Developmental Origins of Health and Disease (DOHaD) states that early life stages of humans and animals are sensitive to environmental stressors and can develop health issues later in life, even if the stress has ceased. Molecular mechanisms supporting DOHaD are still unclear. The mangrove rivulus is a new fish model species naturally reproducing by self-fertilization, making it possible to use isogenic lineages in which all individuals are highly homozygous. This species therefore permits to strongly reduce the confounding factor of genetic variability in order to investigate the effects of environmental stress on the phenotype. After characterizing the molecular phenotype of brain, liver and ovotestis, we obtained true proteomic reaction norms of these three organs in adults after early life stages have been exposed to the common endocrine disruptor 17-α-ethinylestradiol (EE2). Our study demonstrates long-term effects of early-life endocrine disruption at the proteomic level in diverse estrogen-responsive pathways 5 months after the exposure. The lowest tested and environmentally relevant concentration of 4 ng/L had the highest impact on the proteome in brain and liver, highlighting the potency of endocrine disruptors at low concentrations.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology - Institute of Life, Earth and Environment - University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology - Institute of Life, Earth and Environment - University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium
| |
Collapse
|
7
|
Hu Q, Meng Y, Wang D, Tian H, Xiao H. Characterization and function of the T-box 1 gene in Chinese giant salamander Andrias davidianus. Genomics 2018; 111:1351-1359. [PMID: 30244141 DOI: 10.1016/j.ygeno.2018.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 11/25/2022]
Abstract
We characterized the Andrias davidianus T-box 1 (Tbx1) gene. Tbx1 expression was high in testis and low in other examined tissues. Immunohistochemistry detected tbx1 expression in somatic and germ cells 62 days post-hatching (dph), prior to gonad differentiation. At 210 dph, after gonad differentiation, tbx1 was expressed in spermatogonia and testis somatic cells and in granulosa cells in ovary. Tbx1 expression was up-regulated in ovary after high temperature treatment. In the neomale, tbx1 expression showed a similar profile to normal males, and vice-versa for genetic male. Over-expression of tbx1 in females after injection of TBX1 protein down-regulated the female-biased genes cyp19a and foxl2 and up-regulated the male-biased amh gene. When tbx1 was knocked down by tbx1/siRNA, cyp19a and foxl2 expression was up-regulated, and expression of amh, cyp26a, dmrt1, and wt1 was down-regulated. Results suggest that tbx1 influenced sex-related gene expression and participates in regulation of A. davidianus testis development.
Collapse
Affiliation(s)
- Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Dan Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Hanbing Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| |
Collapse
|
8
|
Baroiller JF, D'Cotta H. The Reversible Sex of Gonochoristic Fish: Insights and Consequences. Sex Dev 2016; 10:242-266. [PMID: 27907925 DOI: 10.1159/000452362] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/06/2023] Open
Abstract
Fish sex reversal is a means to understand sex determination and differentiation, but it is also used to control sex in aquaculture. This review discusses sex reversal in gonochoristic fish, with the coexistence of genetic and environmental influences. The different periods of fish sensitivity to sex reversal treatments are presented with the mechanisms implicated. The old players of sex differentiation are revisited with transcriptome data and loss of function studies following hormone- or temperature-induced sex reversal. We also discuss whether cortisol is the universal mediator of sex reversal in fish due to its implication in ovarian meiosis and 11KT increase. The large plasticity in fish for sex reversal is also evident in the brain, with a reversibility existing even in adulthood. Studies on epigenetics are presented, since it links the environment, gene expression, and sex reversal, notably the association of DNA methylation in sex reversal. Manipulations with exogenous factors reverse the primary sex in many fish species under controlled conditions, but several questions arise on whether this can occur under wild conditions and what is the ecological significance. Cases of sex reversal in wild fish populations are shown and their fitness and future perspectives are discussed.
Collapse
|
9
|
Azimzadeh Jamalkandi S, Mozhgani SH, Gholami Pourbadie H, Mirzaie M, Noorbakhsh F, Vaziri B, Gholami A, Ansari-Pour N, Jafari M. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways. Front Microbiol 2016; 7:1688. [PMID: 27872612 PMCID: PMC5098112 DOI: 10.3389/fmicb.2016.01688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.
Collapse
Affiliation(s)
| | - Sayed-Hamidreza Mozhgani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences Tehran, Iran
| | | | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences Tehran, Iran
| | - Behrouz Vaziri
- Protein Chemistry and Proteomics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran Tehran, Iran
| | - Alireza Gholami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Tehran, Iran
| | - Naser Ansari-Pour
- Faculty of New Sciences and Technology, University of TehranTehran, Iran; Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College LondonLondon, UK
| | - Mohieddin Jafari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran Tehran, Iran
| |
Collapse
|