1
|
Gabiatti B, Freire E, Ferreira da Costa J, Ferrarini M, Reichert Assunção de Matos T, Preti H, Munhoz da Rocha I, Guimarães B, Kramer S, Zanchin N, Holetz F. Trypanosoma cruzi eIF4E3- and eIF4E4-containing complexes bind different mRNAs and may sequester inactive mRNAs during nutritional stress. Nucleic Acids Res 2025; 53:gkae1181. [PMID: 39658061 PMCID: PMC11754739 DOI: 10.1093/nar/gkae1181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Many eIF4F and poly(A)-binding protein (PABP) paralogues are found in trypanosomes: six eIF4E, five eIF4G, one eIF4A and two PABPs. They are expressed simultaneously and assemble into different complexes, contrasting the situation in metazoans that use distinct complexes in different cell types/developmental stages. Each eIF4F complex has its own proteins, messenger RNAs (mRNAs) and, consequently, a distinct function. We set out to study the function and regulation of the two eIF4F complexes of the parasite Trypanosoma cruzi and identified the associated proteins and mRNAs of eIF4E3 and eIF4E4 in cells in exponential growth and in nutritional stress, an inducer of differentiation to an infective stage. Upon stress, eIF4G and PABP remain associated with the eIF4E, but the associations with other 43S pre-initiation factors decrease, indicating ribosome attachment is impaired. Most eIF4E3-associated mRNAs encode for proteins involved in anabolic metabolism, while eIF4E4 associate with mRNAs encoding ribosomal proteins as in Trypanosoma brucei. Interestingly, for both eIF4E3/4, more mRNAs were associated in stressed cells than in non-stressed cells, even though these have lower translational efficiencies in stress. In summary, trypanosomes have two co-existing eIF4F complexes associating to different mRNAs, but not stress/differentiation-associated mRNAs. Under stress, both complexes exit translation but remain bound to their mRNA targets.
Collapse
Affiliation(s)
- Bernardo Papini Gabiatti
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
- Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Eden Ribeiro Freire
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Jimena Ferreira da Costa
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Mariana Galvão Ferrarini
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | | | - Henrique Preti
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Isadora Munhoz da Rocha
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Susanne Kramer
- Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Nilson Ivo Tonin Zanchin
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Fabíola Barbieri Holetz
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| |
Collapse
|
2
|
Ciganda M, Sotelo-Silveira J, Dubey AP, Pandey P, Smith JT, Shen S, Qu J, Smircich P, Read LK. Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state. RNA (NEW YORK, N.Y.) 2023; 29:1881-1895. [PMID: 37730435 PMCID: PMC10653379 DOI: 10.1261/rna.079625.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. In kinetoplastid protozoa, including T. brucei, posttranscriptional control mechanisms are the primary means of gene regulation, and these are often mediated by RNA-binding proteins. DRBD18 is a T. brucei RNA-binding protein that reportedly interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We validate the DRBD18 interaction with translating ribosomes and the translation initiation factor, eIF3a. We further show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered, that is, changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. In DRBD18-depleted cells, a set of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. RNA immunoprecipitation/qRT-PCR indicates that DRBD18 associates with members of both repressed and enhanced cohorts. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs.
Collapse
Affiliation(s)
- Martin Ciganda
- Department of Microbiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Ashutosh P Dubey
- Department of Microbiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Parul Pandey
- Department of Microbiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Joseph T Smith
- Department of Microbiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo and NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo and NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, USA
| | - Pablo Smircich
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Laurie K Read
- Department of Microbiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|
3
|
Ceballos-Pérez G, Rico-Jiménez M, Gómez-Liñán C, Estévez AM. Role of the RNA-binding protein ZC3H41 in the regulation of ribosomal protein messenger RNAs in trypanosomes. Parasit Vectors 2023; 16:118. [PMID: 37004055 PMCID: PMC10064699 DOI: 10.1186/s13071-023-05728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Trypanosomes are single-celled eukaryotes that rely heavily on post-transcriptional mechanisms to regulate gene expression. RNA-binding proteins play essential roles in regulating the fate, abundance and translation of messenger RNAs (mRNAs). Among these, zinc finger proteins of the cysteine3histidine (CCCH) class have been shown to be key players in cellular processes as diverse as differentiation, regulation of the cell cycle and translation. ZC3H41 is an essential zinc finger protein that has been described as a component of spliced leader RNA granules and nutritional stress granules, but its role in RNA metabolism is unknown. METHODS Cell cycle analysis in ZC3H41- and Z41AP-depleted cells was carried out using 4',6-diamidino-2-phenylindole staining, microscopic examination and flow cytometry. The identification of ZC3H41 protein partners was done using tandem affinity purification and mass spectrometry. Next-generation sequencing was used to evaluate the effect of ZC3H41 depletion on the transcriptome of procyclic Trypanosoma brucei cells, and also to identify the cohort of mRNAs associated with the ZC3H41/Z41AP complex. Levels of 5S ribosomal RNA (rRNA) species in ZC3H41- and Z41AP-depleted cells were assessed by quantitative reverse transcription-polymerase chain reaction. Surface sensing of translation assays were used to monitor global translation. RESULTS We showed that depletion of the zinc finger protein ZC3H41 resulted in marked cell cycle defects and abnormal cell morphologies. ZC3H41 was found associated with an essential protein, which we named Z41AP, forming a stable heterodimer, and also with proteins of the poly(A)-binding protein 1 complex. The identification of mRNAs associated with the ZC3H41/Z41AP complex revealed that it is primarily composed of ribosomal protein mRNAs, and that binding to target transcripts is diminished upon nutritional stress. In addition, we observed that mRNAs encoding several proteins involved in the maturation of 5S rRNA are also associated with the ZC3H41/Z41AP complex. Finally, we showed that depletion of either ZC3H41 or Z41AP led to the accumulation of 5S rRNA precursors and a decrease of protein translation. CONCLUSIONS We propose that ZC3H41 and Z41AP play important roles in controlling the fate of ribosomal components in response to environmental cues.
Collapse
Affiliation(s)
- Gloria Ceballos-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Miriam Rico-Jiménez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
- Estación Experimental del Zaidín (EEZ), CSIC, Prof. Albareda 1, 18008, Granada, Spain
| | - Claudia Gómez-Liñán
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Antonio M Estévez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain.
| |
Collapse
|
4
|
Ciganda M, Sotelo-Silveira J, Smith JT, Shen S, Qu J, Smircich P, Read LK. Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527724. [PMID: 36798237 PMCID: PMC9934708 DOI: 10.1101/2023.02.08.527724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. Whereas most well-studied organisms rely on transcriptional control as the main regulator of gene expression, post-transcriptional control mechanisms are particularly important in T. brucei , and these are often mediated by RNA-binding proteins. DRBD18 is a T. brucei RNA-binding protein that interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered, i.e . changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. Proteomic analysis validates these data. In DRBD18-depleted cells, a cohort of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs.
Collapse
|
5
|
Bezerra MJR, Moura DMN, Freire ER, Holetz FB, Reis CRS, Monteiro TTS, Pinto ARS, Zhang N, Rezende AM, Pereira-Neves A, Figueiredo RCBQ, Clayton C, Field MC, Carrington M, de Melo Neto OP. Distinct mRNA and protein interactomes highlight functional differentiation of major eIF4F-like complexes from Trypanosoma brucei. Front Mol Biosci 2022; 9:971811. [PMID: 36275617 PMCID: PMC9585242 DOI: 10.3389/fmolb.2022.971811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Gene expression in pathogenic protozoans of the family Trypanosomatidae has several novel features, including multiple eIF4F-like complexes involved in protein synthesis. The eukaryotic eIF4F complex, formed mainly by eIF4E and eIF4G subunits, is responsible for the canonical selection of mRNAs required for the initiation of mRNA translation. The best-known complexes implicated in translation in trypanosomatids are based on two related pairs of eIF4E and eIF4G subunits (EIF4E3/EIF4G4 and EIF4E4/EIF4G3), whose functional distinctions remain to be fully described. Here, to define interactomes associated with both complexes in Trypanosoma brucei procyclic forms, we performed parallel immunoprecipitation experiments followed by identification of proteins co-precipitated with the four tagged eIF4E and eIF4G subunits. A number of different protein partners, including RNA binding proteins and helicases, specifically co-precipitate with each complex. Highlights with the EIF4E4/EIF4G3 pair include RBP23, PABP1, EIF4AI and the CRK1 kinase. Co-precipitated partners with the EIF4E3/EIF4G4 pair are more diverse and include DRBD2, PABP2 and different zinc-finger proteins and RNA helicases. EIF4E3/EIF4G4 are essential for viability and to better define their role, we further investigated their phenotypes after knockdown. Depletion of either EIF4E3/EIF4G4 mRNAs lead to aberrant morphology with a more direct impact on events associated with cytokinesis. We also sought to identify those mRNAs differentially associated with each complex through CLIP-seq with the two eIF4E subunits. Predominant among EIF4E4-bound transcripts are those encoding ribosomal proteins, absent from those found with EIF4E3, which are generally more diverse. RNAi mediated depletion of EIF4E4, which does not affect proliferation, does not lead to changes in mRNAs or proteins associated with EIF4E3, confirming a lack of redundancy and distinct roles for the two complexes.
Collapse
Affiliation(s)
- Maria J. R. Bezerra
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Eden R. Freire
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Pernambuco, Brazil
| | - Fabiola B. Holetz
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Pernambuco, Brazil
| | | | | | - Adriana R. S. Pinto
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Antonio M. Rezende
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | | | - Christine Clayton
- Heidelberg University Center for Molecular Biology, Heidelberg, Germany
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Osvaldo P. de Melo Neto
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- *Correspondence: Osvaldo P. de Melo Neto,
| |
Collapse
|
6
|
Falk F, Melo Palhares R, Waithaka A, Clayton C. Roles and interactions of the specialized initiation factors EIF4E2, EIF4E5 and EIF4E6 in Trypanosoma brucei: EIF4E2 maintains the abundances of S-phase mRNAs. Mol Microbiol 2022; 118:457-476. [PMID: 36056730 DOI: 10.1111/mmi.14978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Trypanosoma brucei has six versions of the cap-binding translation initiation factor EIF4E. We investigated the functions of EIF4E2, EIF4E3, EIF4E5 and EIF4E6 in bloodstream forms. We confirmed the protein associations previously found in procyclic forms, and detected specific co-purification of some RNA-binding proteins. Bloodstream forms lacking EIF4E5 grew normally and differentiated to replication-incompetent procyclic forms. Depletion of EIF4E6 inhibited bloodstream-form trypanosome growth and translation. EIF4E2 co-purified only the putative RNA binding protein SLBP2. Bloodstream forms lacking EIF4E2 multiplied slowly, had a low maximal cell density, and expressed the stumpy-form marker PAD1, but showed no evidence for enhanced stumpy-form signalling. EIF4E2 knock-out cells differentiated readily to replication-competent procyclic forms. EIF4E2 was strongly associated with a subset of mRNAs that are maximally abundant in S-phase, and these all had decreased abundances in EIF4E2 knock-out cells. Three EIF4E2 target mRNAs are also bound and stabilized by the Pumilio domain protein PUF9. Yeast 2-hybrid results suggested that PUF9 interacts directly with SLBP2, but PUF9 was not detected in EIF4E2 pull-downs. We speculate that the EIF4E2-SLBP2 complex might interact with its target mRNAs, perhaps via PUF9, only early during G1/S, stabilizing the mRNAs in preparation for translation later in S-phase or in early G2.
Collapse
Affiliation(s)
- Franziska Falk
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany
| | - Rafael Melo Palhares
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany.,Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Giessen, IFZ, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Albina Waithaka
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany
| | - Christine Clayton
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
7
|
Falk F, Kamanyi Marucha K, Clayton C. The EIF4E1-4EIP cap-binding complex of Trypanosoma brucei interacts with the terminal uridylyl transferase TUT3. PLoS One 2021; 16:e0258903. [PMID: 34807934 PMCID: PMC8608314 DOI: 10.1371/journal.pone.0258903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Most transcription in Trypanosoma brucei is constitutive and polycistronic. Consequently, the parasite relies on post-transcriptional mechanisms, especially affecting translation initiation and mRNA decay, to control gene expression both at steady-state and for adaptation to different environments. The parasite has six isoforms of the cap-binding protein EIF4E as well as five EIF4Gs. EIF4E1 does not bind to any EIF4G, instead being associated with a 4E-binding protein, 4EIP. 4EIP represses translation and reduces the stability of a reporter mRNA when artificially tethered to the 3’-UTR, whether or not EIF4E1 is present. 4EIP is essential during the transition from the mammalian bloodstream form to the procyclic form that lives in the Tsetse vector. In contrast, EIF4E1 is dispensable during differentiation, but is required for establishment of growing procyclic forms. In Leishmania, there is some evidence that EIF4E1 might be active in translation initiation, via direct recruitment of EIF3. However in T. brucei, EIF4E1 showed no detectable association with other translation initiation factors, even in the complete absence of 4EIP. There was some evidence for interactions with NOT complex components, but if these occur they must be weak and transient. We found that EIF4E1is less abundant in the absence of 4EIP, and RNA pull-down results suggested this might occur through co-translational complex assembly. We also report that 4EIP directly recruits the cytosolic terminal uridylyl transferase TUT3 to EIF4E1/4EIP complexes. There was, however, no evidence that TUT3 is essential for 4EIP function.
Collapse
Affiliation(s)
- Franziska Falk
- DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Kevin Kamanyi Marucha
- DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Christine Clayton
- DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
8
|
Assis LA, Santos Filho MVC, da Cruz Silva JR, Bezerra MJR, de Aquino IRPUC, Merlo KC, Holetz FB, Probst CM, Rezende AM, Papadopoulou B, da Costa Lima TDC, de Melo Neto OP. Identification of novel proteins and mRNAs differentially bound to the Leishmania Poly(A) Binding Proteins reveals a direct association between PABP1, the RNA-binding protein RBP23 and mRNAs encoding ribosomal proteins. PLoS Negl Trop Dis 2021; 15:e0009899. [PMID: 34705820 PMCID: PMC8575317 DOI: 10.1371/journal.pntd.0009899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/08/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Poly(A) Binding Proteins (PABPs) are major eukaryotic RNA-binding proteins (RBPs) with multiple roles associated with mRNA stability and translation and characterized mainly from multicellular organisms and yeasts. A variable number of PABP homologues are seen in different organisms however the biological reasons for multiple PABPs are generally not well understood. In the unicellular Leishmania, dependent on post-transcriptional mechanisms for the control of its gene expression, three distinct PABPs are found, with yet undefined functional distinctions. Here, using RNA-immunoprecipitation sequencing analysis we show that the Leishmania PABP1 preferentially associates with mRNAs encoding ribosomal proteins, while PABP2 and PABP3 bind to an overlapping set of mRNAs distinct to those enriched in PABP1. Immunoprecipitation studies combined to mass-spectrometry analysis identified RBPs differentially associated with PABP1 or PABP2, including RBP23 and DRBD2, respectively, that were investigated further. Both RBP23 and DRBD2 bind directly to the three PABPs in vitro, but reciprocal experiments confirmed preferential co-immunoprecipitation of PABP1, as well as the EIF4E4/EIF4G3 based translation initiation complex, with RBP23. Other RBP23 binding partners also imply a direct role in translation. DRBD2, in contrast, co-immunoprecipitated with PABP2, PABP3 and with RBPs unrelated to translation. Over 90% of the RBP23-bound mRNAs code for ribosomal proteins, mainly absent from the transcripts co-precipitated with DRBD2. These experiments suggest a novel and specific route for translation of the ribosomal protein mRNAs, mediated by RBP23, PABP1 and the associated EIF4E4/EIF4G3 complex. They also highlight the unique roles that different PABP homologues may have in eukaryotic cells associated with mRNA translation.
Collapse
Affiliation(s)
- Ludmila A. Assis
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Moezio V. C. Santos Filho
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Joao R. da Cruz Silva
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Maria J. R. Bezerra
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | - Kleison C. Merlo
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Fabiola B. Holetz
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Christian M. Probst
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Antonio M. Rezende
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Barbara Papadopoulou
- CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology, Laval University, Quebec, Quebec, Canada
| | | | - Osvaldo P. de Melo Neto
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| |
Collapse
|
9
|
Mishra A, Kaur JN, McSkimming DI, Hegedűsová E, Dubey AP, Ciganda M, Paris Z, Read LK. Selective nuclear export of mRNAs is promoted by DRBD18 in Trypanosoma brucei. Mol Microbiol 2021; 116:827-840. [PMID: 34146438 DOI: 10.1111/mmi.14773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 11/27/2022]
Abstract
Kinetoplastids, including Trypanosoma brucei, control gene expression primarily at the posttranscriptional level. Nuclear mRNA export is an important, but understudied, step in this process. The general heterodimeric export factors, Mex67/Mtr2, function in the export of mRNAs and tRNAs in T. brucei, but RNA binding proteins (RBPs) that regulate export processes by controlling the dynamics of Mex67/Mtr2 ribonucleoprotein formation or transport have not been identified. Here, we report that DRBD18, an essential and abundant T. brucei RBP, associates with Mex67/Mtr2 in vivo, likely through its direct interaction with Mtr2. DRBD18 downregulation results in partial accumulation of poly(A)+ mRNA in the nucleus, but has no effect on the localization of intron-containing or mature tRNAs. Comprehensive analysis of transcriptomes from whole-cell and cytosol in DRBD18 knockdown parasites demonstrates that depletion of DRBD18 leads to impairment of nuclear export of a subset of mRNAs. CLIP experiments reveal the association of DRBD18 with several of these mRNAs. Moreover, DRBD18 knockdown leads to a partial accumulation of the Mex67/Mtr2 export receptors in the nucleus. Taken together, the current study supports a model in which DRBD18 regulates the selective nuclear export of mRNAs by promoting the mobilization of export competent mRNPs to the cytosol through the nuclear pore complex.
Collapse
Affiliation(s)
- Amartya Mishra
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jan Naseer Kaur
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Daniel I McSkimming
- Bioinformatics and Computational Biology Core, University of Southern Florida, Tampa, FL, USA
| | - Eva Hegedűsová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Ashutosh P Dubey
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Martin Ciganda
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Laurie K Read
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
10
|
de Lima GB, de Lima Cavalcanti TYV, de Brito ANALM, de Assis LA, Andrade-Vieira RP, Freire ER, da Silva Assunção TR, de Souza Reis CR, Zanchin NIT, Guimarães BG, de-Melo-Neto OP. The translation initiation factor EIF4E5 from Leishmania: crystal structure and interacting partners. RNA Biol 2021; 18:2433-2449. [PMID: 33945405 DOI: 10.1080/15476286.2021.1918919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The mRNA cap-binding protein, eIF4E, mediates the recognition of the mRNA 5' end and, as part of the heterotrimeric eIF4F complex, facilitates the recruitment of the ribosomal subunits to initiate eukaryotic translation. Various regulatory events involving eIF4E and a second eIF4F subunit, eIF4G, are required for proper control of translation initiation. In pathogenic trypanosomatids, six eIF4Es and five eIF4Gs have been described, several forming different eIF4F-like complexes with yet unresolved roles. EIF4E5 is one of the least known of the trypanosomatid eIF4Es and has not been characterized in Leishmania species. Here, we used immunoprecipitation assays, combined with mass-spectrometry, to identify major EIF4E5 interacting proteins in L. infantum. A constitutively expressed, HA-tagged, EIF4E5 co-precipitated mainly with EIF4G1 and binding partners previously described in Trypanosoma brucei, EIF4G1-IP, RBP43 and the 14-3-3 proteins. In contrast, no clear co-precipitation with EIF4G2, also previously reported, was observed. EIF4E5 also co-precipitated with protein kinases, possibly associated with cell-cycle regulation, selected RNA binding proteins and histones. Phosphorylated residues were identified and mapped to the Leishmania-specific C-terminal end. Mutagenesis of the tryptophan residue (W53) postulated to mediate interactions with protein partners or of a neighbouring tryptophan conserved in Leishmania (W45) did not substantially impair the identified interactions. Finally, the crystal structure of Leishmania EIF4E5 evidences remarkable differences in the eIF4G interfacing region, when compared with human eIF4E-1 and with its Trypanosoma orthologue. Mapping of its C-terminal end near the cap-binding site also imply relevant differences in cap-binding function and/or regulation.
Collapse
Affiliation(s)
- Gustavo Barbosa de Lima
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Av. Moraes Rego s/n, Recife-PE, Brazil
| | - Thaíse Yasmine Vasconcelos de Lima Cavalcanti
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Av. Moraes Rego s/n, Recife-PE, Brazil.,Programa de Pós-Graduação em Genética, Universidade Federal de Pernambuco, Recife-PE, Brazil
| | - Adriana Neuman Albuquerque Lins Moura de Brito
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Av. Moraes Rego s/n, Recife-PE, Brazil.,Programa de Pós-Graduação em Genética, Universidade Federal de Pernambuco, Recife-PE, Brazil
| | - Ludmilla Arruda de Assis
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Av. Moraes Rego s/n, Recife-PE, Brazil
| | | | - Eden Ribeiro Freire
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Av. Moraes Rego s/n, Recife-PE, Brazil.,Laboratório de Biologia Estrutural e Engenharia de Proteínas, Instituto Carlos Chagas, FIOCRUZ-PR, Curitiba-PR, Brazil
| | | | | | - Nilson Ivo Tonin Zanchin
- Laboratório de Biologia Estrutural e Engenharia de Proteínas, Instituto Carlos Chagas, FIOCRUZ-PR, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Laboratório de Biologia Estrutural e Engenharia de Proteínas, Instituto Carlos Chagas, FIOCRUZ-PR, Curitiba-PR, Brazil
| | | |
Collapse
|
11
|
Melo do Nascimento L, Terrao M, Marucha KK, Liu B, Egler F, Clayton C. The RNA-associated proteins MKT1 and MKT1L form alternative PBP1-containing complexes in Trypanosoma brucei. J Biol Chem 2020; 295:10940-10955. [PMID: 32532821 DOI: 10.1074/jbc.ra120.013306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Indexed: 01/20/2023] Open
Abstract
Control of gene expression in kinetoplastids such as trypanosomes depends heavily on RNA-binding proteins that influence mRNA decay and translation. We previously showed that the trypanosome protein MKT1 forms a multicomponent protein complex: MKT1 interacts with PBP1, which in turn recruits LSM12 and poly(A)-binding protein. MKT1 is recruited to mRNAs by sequence-specific RNA-binding proteins, resulting in stabilization of the bound mRNA. We here show that PBP1, LSM12, and a 117-residue protein, XAC1 (Tb927.7.2780), are present in complexes that contain either MKT1 or an MKT1-like protein, MKT1L (Tb927.10.1490). All five proteins are present predominantly in the complexes, and we found evidence for a minor subset of complexes containing both MKT1 and MKT1L. XAC1-containing complexes reproducibly contained RNA-binding proteins that were previously found associated with MKT1. Moreover, XAC1- or MKT1-containing complexes specifically recruited one of the two poly(A)-binding proteins, PABP2, and one of the six cap-binding translation initiation complexes, EIF4E6-EIF4G5. Yeast two-hybrid assay results indicated that MKT1 directly interacts with EIF4G5. MKT1-PBP1 complexes can therefore interact with mRNAs via their poly(A) tails and caps, as well as through sequence-specific RNA-binding proteins. Correspondingly, MKT1 is associated with many mRNAs, although not with those encoding ribosomal proteins. Meanwhile, MKT1L resembles MKT1 at the C terminus but additionally features an N-terminal extension with low-complexity regions. Although MKT1L depletion inhibited cell proliferation, we found no evidence that it specifically interacts with RNA-binding proteins or mRNA. We speculate that MKT1L may compete with MKT1 for PBP1 binding and thereby modulate the function of MKT1-containing complexes.
Collapse
Affiliation(s)
| | - Monica Terrao
- Heidelberg University Centre for Molecular Biology (ZMBH), Heidelberg, Germany
| | | | - Bin Liu
- Heidelberg University Centre for Molecular Biology (ZMBH), Heidelberg, Germany
| | - Franziska Egler
- Heidelberg University Centre for Molecular Biology (ZMBH), Heidelberg, Germany
| | - Christine Clayton
- Heidelberg University Centre for Molecular Biology (ZMBH), Heidelberg, Germany
| |
Collapse
|
12
|
Roles of the Pumilio domain protein PUF3 in Trypanosoma brucei growth and differentiation. Parasitology 2020; 147:1171-1183. [PMID: 32513341 DOI: 10.1017/s003118202000092x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trypanosomes strongly rely on post-transcriptional mechanisms to control gene expression. Several Opisthokont Pumilio domain proteins are known to suppress expression when bound to mRNAs. The Trypanosoma brucei Pumilio domain protein PUF3 is a cytosolic mRNA-binding protein that suppresses expression when tethered to a reporter mRNA. RNA-binding studies showed that PUF3 preferentially binds to mRNAs with a classical Pumilio-domain recognition motif, UGUA[U/C]AUU. RNA-interference-mediated reduction of PUF3 in bloodstream forms caused a minor growth defect, but the transcriptome was not affected. Depletion of PUF3 also slightly delayed differentiation to the procyclic form. However, both PUF3 genes could be deleted in cultured bloodstream- and procyclic-form trypanosomes. Procyclic forms without PUF3 also grew somewhat slower than wild-type, but ectopic expression of C-terminally tagged PUF3 impaired their viability. PUF3 was not required for RBP10-induced differentiation of procyclic forms to bloodstream forms. Mass spectrometry revealed no PUF3 binding partners that might explain its suppressive activity. We conclude that PUF3 may have a role in fine-tuning gene expression. Since PUF3 is conserved in all Kinetoplastids, including those that do not infect vertebrates, we suggest that it might confer advantages within the invertebrate host.
Collapse
|
13
|
Regulation of Translation in the Protozoan Parasite Leishmania. Int J Mol Sci 2020; 21:ijms21082981. [PMID: 32340274 PMCID: PMC7215931 DOI: 10.3390/ijms21082981] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis represents a serious health problem worldwide and drug resistance is a growing concern. Leishmania parasites use unusual mechanisms to control their gene expression. In contrast to many other species, they do not have transcriptional regulation. The lack of transcriptional control is mainly compensated by post-transcriptional mechanisms, including tight translational control and regulation of mRNA stability/translatability by RNA-binding proteins. Modulation of translation plays a major role in parasite survival and adaptation to dramatically different environments during change of host; however, our knowledge of fine molecular mechanisms of translation in Leishmania remains limited. Here, we review the current progress in our understanding of how changes in the translational machinery promote parasite differentiation during transmission from a sand fly to a mammalian host, and discuss how translational reprogramming can contribute to the development of drug resistance.
Collapse
|
14
|
An T, Liu Y, Gourguechon S, Wang CC, Li Z. CDK Phosphorylation of Translation Initiation Factors Couples Protein Translation with Cell-Cycle Transition. Cell Rep 2019; 25:3204-3214.e5. [PMID: 30540951 PMCID: PMC6350937 DOI: 10.1016/j.celrep.2018.11.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/18/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
Protein translation in eukaryotes is cell-cycle dependent, with translation rates more robust in G1 phase of the cell cycle than in mitosis. However, whether the fundamental cell-cycle control machinery directly activates protein translation during the G1/S cell-cycle transition remains unknown. Using the early divergent eukaryote Trypanosoma brucei as a model organism, we report that the G1 cyclin-dependent kinase CRK1 phosphorylates two translation initiation factors, eIF4E4 and PABP1, to promote the G1/S cell-cycle transition and global protein translation. Phosphorylation of eIF4E4 by CRK1 enhances binding to the m7G cap structure and interaction with eIF4E4 and eIF4G3, and phosphorylation of PABP1 by CRK1 promotes association with the poly(A) sequence, self-interaction, and interaction with eIF4E4. These findings demonstrate that cyclin-dependent kinase-mediated regulation of translation initiation factors couples global protein translation with the G1/S cell-cycle transition. Protein translation is cell-cycle dependent, with more robust translation rates in the G1 phase of the cell cycle than in mitosis. An et al. show that the G1 cyclin-dependent kinase CRK1 phosphorylates translation initiation factors eIF4E4 and PABP1 to couple protein translation initiation with the G1/S cell-cycle transition.
Collapse
Affiliation(s)
- Tai An
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yi Liu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Stéphane Gourguechon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ching C Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Terrao M, Marucha KK, Mugo E, Droll D, Minia I, Egler F, Braun J, Clayton C. The suppressive cap-binding complex factor 4EIP is required for normal differentiation. Nucleic Acids Res 2019; 46:8993-9010. [PMID: 30124912 PMCID: PMC6158607 DOI: 10.1093/nar/gky733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
Trypanosoma brucei live in mammals as bloodstream forms and in the Tsetse midgut as procyclic forms. Differentiation from one form to the other proceeds via a growth-arrested stumpy form with low messenger RNA (mRNA) content and translation. The parasites have six eIF4Es and five eIF4Gs. EIF4E1 pairs with the mRNA-binding protein 4EIP but not with any EIF4G. EIF4E1 and 4EIP each inhibit expression when tethered to a reporter mRNA, but while tethered EIF4E1 suppresses only when 4EIP is present, suppression by tethered 4EIP does not require the interaction with EIF4E1. In growing bloodstream forms, 4EIP is preferentially associated with unstable mRNAs. Bloodstream- or procyclic-form trypanosomes lacking 4EIP have only a marginal growth disadvantage. Bloodstream forms without 4EIP are, however, defective in translation suppression during stumpy-form differentiation and cannot subsequently convert to growing procyclic forms. Intriguingly, the differentiation defect can be complemented by a truncated 4EIP that does not interact with EIF4E1. In contrast, bloodstream forms lacking EIF4E1 have a growth defect, stumpy formation seems normal, but they appear unable to grow as procyclic forms. We suggest that 4EIP and EIF4E1 fine-tune mRNA levels in growing cells, and that 4EIP contributes to translation suppression during differentiation to the stumpy form.
Collapse
Affiliation(s)
- Monica Terrao
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Kevin K Marucha
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Elisha Mugo
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Dorothea Droll
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Igor Minia
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Franziska Egler
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Johanna Braun
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Christine Clayton
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| |
Collapse
|
16
|
Abstract
In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans-splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.
Collapse
Affiliation(s)
- Christine Clayton
- University of Heidelberg Center for Molecular Biology (ZMBH), Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| |
Collapse
|
17
|
Mudogo CN, Werner SF, Mogk S, Betzel C, Duszenko M. The conserved hypothetical protein Tb427.10.13790 is required for cytokinesis in Trypanosoma brucei. Acta Trop 2018; 188:34-40. [PMID: 30153427 DOI: 10.1016/j.actatropica.2018.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022]
Abstract
Trypanosoma brucei, a flagellated protozoan causing the deadly tropical disease Human African Trypanosomiasis (HAT), affects people in sub-Saharan Africa. HAT therapy relies upon drugs which use is limited by toxicity and rigorous treatment regimes, while development of vaccines remains elusive, due to the effectiveness of the parasite´s antigenic variation. Here, we evaluate a hypothetical protein Tb427.10.13790, as a potential drug target. This protein is conserved among all kinetoplastids, but lacks homologs in all other pro- and eukaryotes. Knockdown of Tb427.10.13790 resulted in appearance of monster cells containing multiple nuclei and multiple flagella, a considerable enlargement of the flagellar pocket and eventually a lethal phenotype. Furthermore, analysis of kinetoplast and nucleus division in the knockdown cell line revealed a partial cell cycle arrest and failure to initiate cytokinesis. Likewise, overexpression of the respective protein fused with enhanced green fluorescent protein was also lethal for T. brucei. In these cells, the labelled protein appeared as a single dot near kinetoplast and flagellar pocket. Our results reveal that Tb427.10.13790 is essential for the parasite´s viability and may be a suitable new anti-trypanosomatid drug target candidate. Furthermore, we suggest that it might be worthwhile to investigate also other of the many so far just annotated trypanosome genes as a considerable number of them to lack human homologs but may be of critical importance for the kinetoplastid parasites.
Collapse
Affiliation(s)
- Celestin Nzanzu Mudogo
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; Institute of Biochemistry and Molecular Biology, University of Hamburg, Laboratory for Structural Biology of Infection and Inflammation, Hamburg, Germany; Department of Basic Sciences, School of Medicine, University of Kinshasa, Democratic Republic of Congo.
| | | | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Laboratory for Structural Biology of Infection and Inflammation, Hamburg, Germany.
| | - Michael Duszenko
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
18
|
Chakraborty C, Clayton C. Stress susceptibility in Trypanosoma brucei lacking the RNA-binding protein ZC3H30. PLoS Negl Trop Dis 2018; 12:e0006835. [PMID: 30273340 PMCID: PMC6181440 DOI: 10.1371/journal.pntd.0006835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/11/2018] [Accepted: 09/11/2018] [Indexed: 01/17/2023] Open
Abstract
Trypanosomes rely on post-transcriptional mechanisms and mRNA-binding proteins for control of gene expression. Trypanosoma brucei ZC3H30 is an mRNA-binding protein that is expressed in both the bloodstream form (which grows in mammals) and the procyclic form (which grows in the tsetse fly midgut). Attachment of ZC3H30 to an mRNA causes degradation of that mRNA. Cells lacking ZC3H30 showed no growth defect under normal culture conditions; but they were more susceptible than wild-type cells to heat shock, starvation, and treatment with DTT, arsenite or ethanol. Transcriptomes of procyclic-form trypanosomes lacking ZC3H30 were indistinguishable from those of cells in which ZC3H30 had been re-expressed, but un-stressed bloodstream forms lacking ZC3H30 had about 2-fold more HSP70 mRNA. Results from pull-downs suggested that ZC3H30 mRNA binding may not be very specific. ZC3H30 was found in stress-induced granules and co-purified with another stress granule protein, Tb927.8.3820; but RNAi targeting Tb927.8.3820 did not affect either ZC3H30 granule association or stress resistance. The conservation of the ZC3H30 gene in both monogenetic and digenetic kinetoplastids, combined with the increased stress susceptibility of cells lacking it, suggests that ZC3H30 confers a selective advantage in the wild, where the parasites are subject to temperature fluctuations and immune attack in both the insect and mammalian hosts.
Collapse
Affiliation(s)
| | - Christine Clayton
- Zentrum für Molekular Biologie, Universität Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
19
|
Zoltner M, Krienitz N, Field MC, Kramer S. Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. PLoS Negl Trop Dis 2018; 12:e0006679. [PMID: 30040867 PMCID: PMC6075789 DOI: 10.1371/journal.pntd.0006679] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/03/2018] [Accepted: 07/10/2018] [Indexed: 01/17/2023] Open
Abstract
Poly(A)-binding proteins (PABPs) regulate mRNA fate by controlling stability and translation through interactions with both the poly(A) tail and eIF4F complex. Many organisms have several paralogs of PABPs and eIF4F complex components and it is likely that different eIF4F/PABP complex combinations regulate distinct sets of mRNAs. Trypanosomes have five eIF4G paralogs, six of eIF4E and two PABPs, PABP1 and PABP2. Under starvation, polysomes dissociate and the majority of mRNAs, most translation initiation factors and PABP2 reversibly localise to starvation stress granules. To understand this more broadly we identified a protein interaction cohort for both T. brucei PABPs by cryo-mill/affinity purification-mass spectrometry. PABP1 very specifically interacts with the previously identified interactors eIF4E4 and eIF4G3 and few others. In contrast PABP2 is promiscuous, with a larger set of interactors including most translation initiation factors and most prominently eIF4G1, with its two partners TbG1-IP and TbG1-IP2. Only RBP23 was specific to PABP1, whilst 14 RNA-binding proteins were exclusively immunoprecipitated with PABP2. Significantly, PABP1 and associated proteins are largely excluded from starvation stress granules, but PABP2 and most interactors translocate to granules on starvation. We suggest that PABP1 regulates a small subpopulation of mainly small-sized mRNAs, as it interacts with a small and distinct set of proteins unable to enter the dominant pathway into starvation stress granules and localises preferentially to a subfraction of small polysomes. By contrast PABP2 likely regulates bulk mRNA translation, as it interacts with a wide range of proteins, enters stress granules and distributes over the full range of polysomes.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nina Krienitz
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susanne Kramer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
20
|
Shirokikh NE, Preiss T. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1473. [PMID: 29624880 DOI: 10.1002/wrna.1473] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Gene expression universally relies on protein synthesis, where ribosomes recognize and decode the messenger RNA template by cycling through translation initiation, elongation, and termination phases. All aspects of translation have been studied for decades using the tools of biochemistry and molecular biology available at the time. Here, we focus on the mechanism of translation initiation in eukaryotes, which is remarkably more complex than prokaryotic initiation and is the target of multiple types of regulatory intervention. The "consensus" model, featuring cap-dependent ribosome entry and scanning of mRNA leader sequences, represents the predominantly utilized initiation pathway across eukaryotes, although several variations of the model and alternative initiation mechanisms are also known. Recent advances in structural biology techniques have enabled remarkable molecular-level insights into the functional states of eukaryotic ribosomes, including a range of ribosomal complexes with different combinations of translation initiation factors that are thought to represent bona fide intermediates of the initiation process. Similarly, high-throughput sequencing-based ribosome profiling or "footprinting" approaches have allowed much progress in understanding the elongation phase of translation, and variants of them are beginning to reveal the remaining mysteries of initiation, as well as aspects of translation termination and ribosomal recycling. A current view on the eukaryotic initiation mechanism is presented here with an emphasis on how recent structural and footprinting results underpin axioms of the consensus model. Along the way, we further outline some contested mechanistic issues and major open questions still to be addressed. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| |
Collapse
|
21
|
de Melo Neto OP, da Costa Lima TDC, Merlo KC, Romão TP, Rocha PO, Assis LA, Nascimento LM, Xavier CC, Rezende AM, Reis CRS, Papadopoulou B. Phosphorylation and interactions associated with the control of the Leishmania Poly-A Binding Protein 1 (PABP1) function during translation initiation. RNA Biol 2018; 15:739-755. [PMID: 29569995 DOI: 10.1080/15476286.2018.1445958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Poly-A Binding Protein (PABP) is a conserved eukaryotic polypeptide involved in many aspects of mRNA metabolism. During translation initiation, PABP interacts with the translation initiation complex eIF4F and enhances the translation of polyadenylated mRNAs. Schematically, most PABPs can be divided into an N-terminal RNA-binding region, a non-conserved linker segment and the C-terminal MLLE domain. In pathogenic Leishmania protozoans, three PABP homologues have been identified, with the first one (PABP1) targeted by phosphorylation and shown to co-immunoprecipitate with an eIF4F-like complex (EIF4E4/EIF4G3) implicated in translation initiation. Here, PABP1 phosphorylation was shown to be linked to logarithmic cell growth, reminiscent of EIF4E4 phosphorylation, and coincides with polysomal association. Phosphorylation targets multiple serine-proline (SP) or threonine-proline (TP) residues within the PABP1 linker region. This is an essential protein, but phosphorylation is not needed for its association with polysomes or cell viability. Mutations which do impair PABP1 polysomal association and are required for viability do not prevent phosphorylation, although further mutations lead to a presumed inactive protein largely lacking phosphorylated isoforms. Co-immunoprecipitation experiments were carried out to investigate PABP1 function further, identifying several novel protein partners and the EIF4E4/EIF4G3 complex, but no other eIF4F-like complex or subunit. A novel, direct interaction between PABP1 and EIF4E4 was also investigated and found to be mediated by the PABP1 MLLE binding to PABP Interacting Motifs (PAM2) within the EIF4E4 N-terminus. The results shown here are consistent with phosphorylation of PABP1 being part of a novel pathway controlling its function and possibly translation in Leishmania.
Collapse
Affiliation(s)
| | | | - Kleison C Merlo
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | - Tatiany P Romão
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Ludmila A Assis
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Camila C Xavier
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | | | - Barbara Papadopoulou
- c CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology , Laval University , Quebec , QC , Canada
| |
Collapse
|
22
|
Brito Querido J, Mancera-Martínez E, Vicens Q, Bochler A, Chicher J, Simonetti A, Hashem Y. The cryo-EM Structure of a Novel 40S Kinetoplastid-Specific Ribosomal Protein. Structure 2017; 25:1785-1794.e3. [DOI: 10.1016/j.str.2017.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/20/2017] [Accepted: 09/20/2017] [Indexed: 12/01/2022]
|
23
|
The Role of Cytoplasmic mRNA Cap-Binding Protein Complexes in Trypanosoma brucei and Other Trypanosomatids. Pathogens 2017; 6:pathogens6040055. [PMID: 29077018 PMCID: PMC5750579 DOI: 10.3390/pathogens6040055] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 11/16/2022] Open
Abstract
Trypanosomatid protozoa are unusual eukaryotes that are well known for having unusual ways of controlling their gene expression. The lack of a refined mode of transcriptional control in these organisms is compensated by several post-transcriptional control mechanisms, such as control of mRNA turnover and selection of mRNA for translation, that may modulate protein synthesis in response to several environmental conditions found in different hosts. In other eukaryotes, selection of mRNA for translation is mediated by the complex eIF4F, a heterotrimeric protein complex composed by the subunits eIF4E, eIF4G, and eIF4A, where the eIF4E binds to the 5'-cap structure of mature mRNAs. In this review, we present and discuss the characteristics of six trypanosomatid eIF4E homologs and their associated proteins that form multiple eIF4F complexes. The existence of multiple eIF4F complexes in trypanosomatids evokes exquisite mechanisms for differential mRNA recognition for translation.
Collapse
|
24
|
Minia I, Merce C, Terrao M, Clayton C. Translation Regulation and RNA Granule Formation after Heat Shock of Procyclic Form Trypanosoma brucei: Many Heat-Induced mRNAs Are also Increased during Differentiation to Mammalian-Infective Forms. PLoS Negl Trop Dis 2016; 10:e0004982. [PMID: 27606618 PMCID: PMC5015846 DOI: 10.1371/journal.pntd.0004982] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/16/2016] [Indexed: 11/18/2022] Open
Abstract
African trypanosome procyclic forms multiply in the midgut of tsetse flies, and are routinely cultured at 27°C. Heat shocks of 37°C and above result in general inhibition of translation, and severe heat shock (41°C) results in sequestration of mRNA in granules. The mRNAs that are bound by the zinc-finger protein ZC3H11, including those encoding refolding chaperones, escape heat-induced translation inhibition. At 27°C, ZC3H11 mRNA is predominantly present as an untranslated cytosolic messenger ribonucleoprotein particle, but after heat shocks of 37°C—41°C, the ZC3H11 mRNA moves into the polysomal fraction. To investigate the scope and specificities of heat-shock translational regulation and granule formation, we analysed the distributions of mRNAs on polysomes at 27°C and after 1 hour at 39°C, and the mRNA content of 41°C heat shock granules. We found that mRNAs that bind to ZC3H11 remained in polysomes at 39°C and were protected from sequestration in granules at 41°C. As previously seen for starvation stress granules, the mRNAs that encode ribosomal proteins were excluded from heat-shock granules. 70 mRNAs moved towards the polysomal fraction after the 39°C heat shock, and 260 increased in relative abundance. Surprisingly, many of these mRNAs are also increased when trypanosomes migrate to the tsetse salivary glands. It therefore seems possible that in the wild, temperature changes due to diurnal variations and periodic intake of warm blood might influence the efficiency with which procyclic forms develop into mammalian-infective forms. When trypanosomes are inside tsetse flies, they have to cope with temperature variations from below 20°C up to 37°C, due to diurnal variations and periodic intake of warm blood. In the laboratory, procyclic forms (the form that multiplies in the midgut), are routinely cultured at 27°C. When procyclic forms are heated to temperatures of 37°C and above, they decrease protein production, and at 41°C, mRNAs aggregate into granules. We show here that quite a large number of mRNAs are not included in granules and continue to be used for making proteins. Some of the proteins that continue to be made are needed in order to defend the cells against the effects of heat shock. Interestingly, however, a moderate heat shock stimulates expression of genes needed for the parasites to develop further into forms that can colonise the salivary glands. It thus seems possible that in the field, temperature variations might influence the efficiency with which of trypanosomes in tsetse flies become infective for mammals.
Collapse
Affiliation(s)
- Igor Minia
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Clementine Merce
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Monica Terrao
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
25
|
Regulating a Post-Transcriptional Regulator: Protein Phosphorylation, Degradation and Translational Blockage in Control of the Trypanosome Stress-Response RNA-Binding Protein ZC3H11. PLoS Pathog 2016; 12:e1005514. [PMID: 27002830 PMCID: PMC4803223 DOI: 10.1371/journal.ppat.1005514] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
The life cycle of the mammalian pathogen Trypanosoma brucei involves commuting between two markedly different environments: the homeothermic mammalian host and the poikilothermic invertebrate vector. The ability to resist temperature and other stresses is essential for trypanosome survival. Trypanosome gene expression is mainly post-transcriptional, but must nevertheless be adjusted in response to environmental cues, including host-specific physical and chemical stresses. We investigate here the control of ZC3H11, a CCCH zinc finger protein which stabilizes stress response mRNAs. ZC3H11 protein levels increase at least 10-fold when trypanosomes are stressed by heat shock, proteasome inhibitors, ethanol, arsenite, and low doses of puromycin, but not by various other stresses. We found that increases in protein stability and translation efficiency both contribute to ZC3H11 accumulation. ZC3H11 is an in vitro substrate for casein kinase 1 isoform 2 (CK1.2), and results from CK1.2 depletion and other experiments suggest that phosphorylation of ZC3H11 can promote its instability in vivo. Results from sucrose density centrifugation indicate that under normal culture conditions translation initiation on the ZC3H11 mRNA is repressed, but after suitable stresses the ZC3H11 mRNA moves to heavy polysomes. The ZC3H11 3'-UTR is sufficient for translation suppression and a region of 71 nucleotides is required for the regulation. Since the control works in both bloodstream forms, where ZC3H11 translation is repressed at 37°C, and in procyclic forms, where ZC3H11 translation is activated at 37°C, we predict that this regulatory RNA sequence is targeted by repressive trans acting factor that is released upon stress. Like other organisms, the mammalian pathogen Trypanosoma brucei is able to sense environmental changes and to change its gene expression accordingly. In contrast with other organisms, however, trypanosomes and related kinetoplastids effect these changes almost exclusively by controlling the translation of mRNAs into protein, and by adjusting the rate at which the mRNAs are degraded. ZC3H11 is an RNA binding protein, which stabilizes mRNAs that encode chaperones. Chaperones are needed to refold proteins after stress. Under normal growth conditions ZC3H11 protein is very unstable, and in addition, not much of the protein is made. Although ZC3H11 mRNA is present under normal, unstressed conditions, most of it is not translated. However, when the cells were stressed by elevated temperature, arsenite, ethanol, puromycin or proteasome inhibitors the amount of ZC3H11 rose almost 10-fold. This was caused by a combination of increased protein stability and enhanced translation of the mRNA. We found that a 71 nucleotide segment of the 3'-untranslated region of the ZC3H11 mRNA was responsible for the regulated translational blockage. We also obtained evidence that casein kinase 1 isoform 2 might phosphorylate ZC3H11, and that phosphorylation can promote ZC3H11 protein degradation. Overall, our results show that the increase in the ZC3H11 level after stress occurs because of changes in protein synthesis, phosphorylation, and stability.
Collapse
|
26
|
Lueong S, Merce C, Fischer B, Hoheisel JD, Erben ED. Gene expression regulatory networks in Trypanosoma brucei: insights into the role of the mRNA-binding proteome. Mol Microbiol 2016; 100:457-71. [PMID: 26784394 DOI: 10.1111/mmi.13328] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Control of gene expression at the post-transcriptional level is essential in all organisms, and RNA-binding proteins play critical roles from mRNA synthesis to decay. To fully understand this process, it is necessary to identify the complete set of RNA-binding proteins and the functional consequences of the protein-mRNA interactions. Here, we provide an overview of the proteins that bind to mRNAs and their functions in the pathogenic bloodstream form of Trypanosoma brucei. We describe the production of a small collection of open-reading frames encoding proteins potentially involved in mRNA metabolism. With this ORFeome collection, we used tethering to screen for proteins that play a role in post-transcriptional control. A yeast two-hybrid screen showed that several of the discovered repressors interact with components of the CAF1/NOT1 deadenylation complex. To identify the RNA-binding proteins, we obtained the mRNA-bound proteome. We identified 155 high-confidence candidates, including many not previously annotated as RNA-binding proteins. Twenty seven of these proteins affected reporter expression in the tethering screen. Our study provides novel insights into the potential trypanosome mRNPs composition, architecture and function.
Collapse
Affiliation(s)
- Smiths Lueong
- Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Clementine Merce
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282
| | - Bernd Fischer
- Computational Genome Biology, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg
| | - Jörg D Hoheisel
- Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Esteban D Erben
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282
| |
Collapse
|
27
|
Inchaustegui Gil DP, Clayton C. Purification of Messenger Ribonucleoprotein Particles via a Tagged Nascent Polypeptide. PLoS One 2016; 11:e0148131. [PMID: 26808308 PMCID: PMC4726818 DOI: 10.1371/journal.pone.0148131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022] Open
Abstract
The cytoplasmic fates of mRNAs are influenced by interactions between RNA-binding proteins and cis regulatory motifs. In the cytoplasm, mRNAs are present as messenger ribonucleoprotein particles, which include not only proteins that bind directly to the mRNA, but also additional proteins that are recruited via protein-protein interactions. Many labs have sought to purify such particles from cells, with limited success. We here describe a simple two-step procedure to purify actively translated mRNAs, with their associated proteins, from polysomes. We use a reporter mRNA that encodes a protein with three streptavidin binding peptides at the N-terminus. The polysomal reporter mRNA, with associated proteins, is purified via binding to a streptavidin matrix. The method takes four days, and can be applied in any cell that can be genetically manipulated. Using Trypanosoma brucei as a model system, we routinely purified 8% of the input reporter mRNA, with roughly 22-fold enrichment relative to un-tagged mRNAs, a final reporter-mRNA:total-mRNA ratio of about 1:10, and a protein purification factor of slightly over 1000-fold. Although the overall reporter mRNP composition is masked by the presence of proteins that are associated with many polysomal mRNAs, our method can be used to detect association of an RNA-binding protein that binds to specifically to a reporter mRNA.
Collapse
Affiliation(s)
- Diana P. Inchaustegui Gil
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- * E-mail:
| |
Collapse
|