1
|
Gryguc A, Maciulaitis J, Mickevicius L, Laurinavicius A, Sutkeviciene N, Grigaleviciute R, Zigmantaite V, Maciulaitis R, Bumblyte IA. Prevention of Transition from Acute Kidney Injury to Chronic Kidney Disease Using Clinical-Grade Perinatal Stem Cells in Non-Clinical Study. Int J Mol Sci 2024; 25:9647. [PMID: 39273595 PMCID: PMC11394957 DOI: 10.3390/ijms25179647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Acute kidney injury (AKI) is widely recognized as a precursor to the onset or rapid progression of chronic kidney disease (CKD). However, there is currently no effective treatment available for AKI, underscoring the urgent need for the development of new strategies to improve kidney function. Human placental mesenchymal stromal cells (hpMSCs) were isolated from donor placentas, cultured, and characterized with regard to yield, viability, flow cytometry, and potency. To mimic AKI and its progression to CKD in a rat model, a dedicated sensitive non-clinical bilateral kidney ischemia-reperfusion injury (IRI) model was utilized. The experimental group received 3 × 105 hpMSCs into each kidney, while the control group received IRI and saline and the untreated group received IRI only. Urine, serum, and kidney tissue samples were collected over a period of 28 days. The hpMSCs exhibited consistent yields, viability, and expression of mesenchymal lineage markers, and were also shown to suppress T cell proliferation in a dose-dependent manner. To ensure optimal donor selection, manufacturing optimization, and rigorous quality control, the rigorous Good Manufacturing Practice (GMP) conditions were utilized. The results indicated that hpMSCs increased rat survival rates and improved kidney function by decreasing serum creatinine, urea, potassium, and fractionated potassium levels. Furthermore, the study demonstrated that hpMSCs can prevent the initial stages of kidney structural fibrosis and improve kidney function in the early stages by mitigating late interstitial fibrosis and tubular atrophy. Additionally, a robust manufacturing process with consistent technical parameters was established.
Collapse
Affiliation(s)
- Agne Gryguc
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Hospital of Lithuanian University of Health Science, 50161 Kaunas, Lithuania
| | - Justinas Maciulaitis
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Lukas Mickevicius
- Department of Urology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Arvydas Laurinavicius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Neringa Sutkeviciene
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ramune Grigaleviciute
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vilma Zigmantaite
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Romaldas Maciulaitis
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Inga Arune Bumblyte
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Hospital of Lithuanian University of Health Science, 50161 Kaunas, Lithuania
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
2
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 PMCID: PMC11639537 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
3
|
Abo-Aziza FAM, Albarrak SM, Zaki AKA, El-Shafey SE. Tumor necrosis factor-alpha antibody labeled-polyethylene glycol-coated nanoparticles: A mesenchymal stem cells-based drug delivery system in the rat model of cisplatin-induced nephrotoxicity. Vet World 2022; 15:2475-2490. [DOI: 10.14202/vetworld.2022.2475-2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: A delivery system consisting of bone marrow mesenchymal stem cells (MSCs) loaded with polyethylene glycol (PEG) coated superparamagnetic iron oxide nanoparticles (SPIONs) was constructed to treat a rat model of cisplatin (Cis)-induced nephrotoxicity with 1/10 of the common dose of anti-tumor necrosis factor-alpha (TNF-α) antibodies (infliximab).
Materials and Methods: Morphology, size, crystallinity, molecular structure, and magnetic properties of uncoated and PEG-coated SPIONs were analyzed. A delivery system consisting of MSCs containing infliximab-labeled PEG-coated SPIONs (Infliximab-PEG-SPIONs-MSCs) was generated and optimized before treatment. Fifty female Wistar rats were divided into five equal groups: Group 1: Untreated control; Group 2 (Cis): Rats were administered Cis through intraperitoneal (i.p.) injection (8 mg/kg) once a week for 4 weeks; Group 3 (Infliximab): Rats were injected once with infliximab (5 mg/kg), i.p. 3 days before Cis administration; Group 4 (Cis + MSCs): Rats were injected with Cis followed by an injection of 2 × 106 MSCs into the tail vein twice at a 1-week interval; and Group 5 (Cis + Infliximab (500 μg/kg)-PEG-SPIONs-MSCs): Rats were injected with the delivery system into the tail vein twice at a 1-week interval. Besides histological examination of the kidney, the Doppler ultrasound scanner was used to scan the kidney with the Gray-color-spectral mode.
Results: In vivo, intra-renal iron uptake indicates the traffic of the delivery system from venous blood to renal tissues. Cis-induced nephrotoxicity resulted in a significant increase in TNF-α and malondialdehyde (MDA) (p < 0.05), bilirubin, creatinine, and uric acid (p < 0.01) levels compared with the untreated control group. The different treatments used in this study resulted in the amelioration of some renal parameters. However, TNF-α levels significantly decreased in Cis + Infliximab and Cis + MSCs (p < 0.05) groups. The serum levels of MDA significantly decreased in Cis + Infliximab (p < 0.05), Cis + MSCs (p < 0.05), and Cis + Infliximab-PEG-SPIONs-MSCs (p < 0.01). Furthermore, the serum activities of antioxidant enzymes were significantly elevated in the Cis + MSCs and Cis + Infliximab-PEG-SPIONs-MSCs groups (p < 0.05) compared to the Cis-induced nephrotoxicity rat model.
Conclusion: With the support of the constructed MSCs-SPIONs infliximab delivery system, it will be possible to track and monitor cell homing after therapeutic application. This infliximab-loading system may help overcome some challenges regarding drug delivery to the target organ, optimize therapeutics' efficacy, and reduce the dose. The outcomes of the current study provide a better understanding of the potential of combining MSCs and antibodies-linked nanoparticles for the treatment of nephrotoxicity. However, further investigation is recommended using different types of other drugs. For new approaches development, we should evaluate whether existing toxicity analysis and risk evaluation strategies are reliable and enough for the variety and complexity of nanoparticles.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Saleh M. Albarrak
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdel-Kader A. Zaki
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
4
|
Mamillapalli R, Cho S, Mutlu L, Taylor HS. Therapeutic role of uterine-derived stem cells in acute kidney injury. Stem Cell Res Ther 2022; 13:107. [PMID: 35279204 PMCID: PMC8917641 DOI: 10.1186/s13287-022-02789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/27/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) causes abrupt deterioration in kidney function that disrupts metabolic, electrolyte and fluid homeostasis. Although the prevalence of AKI is steadily increasing, no definitive treatment options are available, leading to severe morbidity and mortality. We evaluated the role of uterine-derived multipotent stem cells in kidney regeneration after ischemic AKI. METHODS Female C57BL/6J mice were hysterectomized and subsequently subject to AKI by either unilateral or bilateral renal ischemia-reperfusion injury. Uterine-derived cells (UDCs), containing a population of uterine stem cells, were isolated from the uteri of female transgenic DsRed mice and injected intravenously to AKI mice. Engraftment of DsRed cells was analyzed by flow cytometry while serum creatinine levels were determined colorimetrically. Expression of UDC markers and cytokine markers were analyzed by immunohistochemical and qRT-PCR methods, respectively. The Kaplan-Meier method was used to analyze survival time while unpaired t test with Welch's correction used for data analysis between two groups. RESULTS Mice with an intact uterus, and hence an endogenous source of UDCs, had a higher survival rate after bilateral ischemic AKI compared to hysterectomized mice. Mice treated with infusion of exogenous UDCs after hysterectomy/AKI had lower serum creatinine levels and higher survival rates compared to controls that did not receive UDCs. Engraftment of labeled UDCs was significantly higher in kidneys of bilateral ischemic AKI mice compared to those that underwent a sham surgery. When unilateral ischemic AKI was induced, higher numbers of UDCs were found in the injured than non-injured kidney. Immunofluorescence staining demonstrated double-positive DsRed/Lotus tetragonolobus agglutinin (LTA) positive cells and DsRed/CD31 positive cells indicating contribution of UDCs in renal tubular and vascular regeneration. Expression of Cxcl12, Bmp2, Bmp4, and Ctnf in renal tissue was significantly higher in the UDCs injection group than the control group. CONCLUSIONS UDCs engrafted injured kidneys, contributed to proximal tubule and vascular regeneration, improved kidney function and increased survival in AKI mice. UDC administration is a promising new therapy for AKI. Endogenous uterine stem cells likely also preserve kidney function, suggesting a novel interaction between the uterus and kidney. We suggest that hysterectomy may have a detrimental effect on response to renal injury.
Collapse
Affiliation(s)
- Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA.
| | - SiHyun Cho
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, College of Medicine, Yonsei University, Seoul, South Korea
| | - Levent Mutlu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
5
|
Falzarano MS, Grilli A, Zia S, Fang M, Rossi R, Gualandi F, Rimessi P, El Dani R, Fabris M, Lu Z, Li W, Mongini T, Ricci F, Pegoraro E, Bello L, Barp A, Sansone VA, Hegde M, Roda B, Reschiglian P, Bicciato S, Selvatici R, Ferlini A. RNA-seq in DMD urinary stem cells recognized muscle-related transcription signatures and addressed the identification of atypical mutations by whole-genome sequencing. HGG ADVANCES 2022; 3:100054. [PMID: 35047845 PMCID: PMC8756543 DOI: 10.1016/j.xhgg.2021.100054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Urinary stem cells (USCs) are a non-invasive, simple, and affordable cell source to study human diseases. Here we show that USCs are a versatile tool for studying Duchenne muscular dystrophy (DMD), since they are able to address RNA signatures and atypical mutation identification. Gene expression profiling of DMD individuals' USCs revealed a profound deregulation of inflammation, muscle development, and metabolic pathways that mirrors the known transcriptional landscape of DMD muscle and worsens following USCs' myogenic transformation. This pathogenic transcription signature was reverted by an exon-skipping corrective approach, suggesting the utility of USCs in monitoring DMD antisense therapy. The full DMD transcript profile performed in USCs from three undiagnosed DMD individuals addressed three splicing abnormalities, which were decrypted and confirmed as pathogenic variations by whole-genome sequencing (WGS). This combined genomic approach allowed the identification of three atypical and complex DMD mutations due to a deep intronic variation and two large inversions, respectively. All three mutations affect DMD gene splicing and cause a lack of dystrophin protein production, and one of these also generates unique fusion genes and transcripts. Further characterization of USCs using a novel cell-sorting technology (Celector) highlighted cell-type variability and the representation of cell-specific DMD isoforms. Our comprehensive approach to USCs unraveled RNA, DNA, and cell-specific features and demonstrated that USCs are a robust tool for studying and diagnosing DMD.
Collapse
Affiliation(s)
- Maria S Falzarano
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara 44121, Italy
| | - Andrea Grilli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
| | | | | | - Rachele Rossi
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara 44121, Italy
| | - Francesca Gualandi
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara 44121, Italy
| | - Paola Rimessi
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara 44121, Italy
| | - Reem El Dani
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara 44121, Italy
| | - Marina Fabris
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara 44121, Italy
| | | | - Wenyan Li
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Elena Pegoraro
- ERN Neuromuscular Center, Department of Neurosciences, Unit of Neurology, University of Padua, Padua 35122, Italy
| | - Luca Bello
- ERN Neuromuscular Center, Department of Neurosciences, Unit of Neurology, University of Padua, Padua 35122, Italy
| | - Andrea Barp
- The NEMO Clinical Center, Neurorehabilitation Unit, University of Milan, Milan 20162, Italy
| | - Valeria A Sansone
- The NEMO Clinical Center, Neurorehabilitation Unit, University of Milan, Milan 20162, Italy
| | - Madhuri Hegde
- PerkinElmer Genomics, 3950 Shackleford Rd., Ste. 195, Duluth, GA 30096, USA
| | - Barbara Roda
- Stem Sel s.r.l., Bologna 40127, Italy
- Department of Chemistry "G. Ciamician," University of Bologna, Bologna 40126, Italy
| | - Pierluigi Reschiglian
- Stem Sel s.r.l., Bologna 40127, Italy
- Department of Chemistry "G. Ciamician," University of Bologna, Bologna 40126, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Rita Selvatici
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara 44121, Italy
| | - Alessandra Ferlini
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara 44121, Italy
| |
Collapse
|
6
|
Jin Y, Zhang M, Li M, Zhang H, Zhang F, Zhang H, Yin Z, Zhou M, Wan X, Li R, Cao C. Generation of Urine-Derived Induced Pluripotent Stem Cell Line from Patients with Acute Kidney Injury. Cell Reprogram 2021; 23:290-303. [PMID: 34648385 DOI: 10.1089/cell.2021.0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Acute kidney injury (AKI) is mainly characterized by rapid decline of renal function. Currently, the strategy of stem cells might be a therapy to treat AKI. The objective of this study was to obtain human urine-derived cells (HUCs) from patients with AKI, followed by establishing induced pluripotent stem (iPS) cell line. We isolated urine cells from patients with AKI and found that the cells could survive long term with epithelioid morphology and maintain a normal karyotype. The cell line had expression of renal-specific markers and renal development-related genes. After induction, the urine cells cotransfecting with TET-ON vectors were converted into iPS cells. The HUC-derived iPS (HUC-iPS) was positive for alkaline phosphatase staining, and had expression of pluripotency markers, consistent with human embryonic fibroblast-derived iPS cell. Notably, HUC-iPS could be induced to undergo directional kidney precursor cells (KPCs) differentiation under defined conditions, and transplantation of KPCs resulted in reducing kidney damage from ischemia-reperfusion injury in mice. Therefore, we successfully established HUC-iPS cell from patients with AKI and provided a novel stem cell resource for cell therapy in AKI.
Collapse
Affiliation(s)
- Yong Jin
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Shang Z, Jiang Y, Guan X, Wang A, Ma B. Therapeutic Effects of Stem Cells From Different Source on Renal Ischemia- Reperfusion Injury: A Systematic Review and Network Meta-analysis of Animal Studies. Front Pharmacol 2021; 12:713059. [PMID: 34539400 PMCID: PMC8444551 DOI: 10.3389/fphar.2021.713059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
Objective: Although stem cell therapy for renal ischemia-reperfusion injury (RIRI) has made immense progress in animal studies, conflicting results have been reported by the investigators. Therefore, we aimed to systematically evaluate the effects of different stem cells on renal function of animals with ischemia-reperfusion injury and to compare the efficacies of stem cells from various sources. Methods: PubMed, Web of Science, Embase, Cochrane, CNKI, VIP, CBM, and WanFang Data were searched for records until April 2021. Two researchers independently conducted literature screening, data extraction, and literature quality evaluation. Results and conclusion: Seventy-two animal studies were included for data analysis. Different stem cells significantly reduced serum creatinine and blood urea nitrogen levels in the early and middle stages (1 and 7 days) compared to the negative control group, however there was no significant difference in the late stage among all groups (14 days); In the early stage (1 day), the renal histopathological score in the stem cell group was significantly lower than that in the negative control group, and there was no significant difference among these stem cells. In addition, there was no significant difference between stem cell and negative control in proliferation of resident cells, however, significantly less apoptosis of resident cells than negative control. In conclusion, the results showed that stem cells from diverse sources could improve the renal function of RIRI animals. ADMSCs and MDMSCs were the most-researched stem cells, and they possibly hold the highest therapeutic potential. However, the quality of evidence included in this study is low, and there are many risks of bias. The exact efficacy of the stem cells and the requirement for further clinical studies remain unclear.
Collapse
Affiliation(s)
- Zhizhong Shang
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yanbiao Jiang
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xin Guan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Anan Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bin Ma
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| |
Collapse
|
8
|
Liu Y, Su YY, Yang Q, Zhou T. Stem cells in the treatment of renal fibrosis: a review of preclinical and clinical studies of renal fibrosis pathogenesis. Stem Cell Res Ther 2021; 12:333. [PMID: 34112221 PMCID: PMC8194041 DOI: 10.1186/s13287-021-02391-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Renal fibrosis commonly leads to glomerulosclerosis and renal interstitial fibrosis and the main pathological basis involves tubular atrophy and the abnormal increase and excessive deposition of extracellular matrix (ECM). Renal fibrosis can progress to chronic kidney disease. Stem cells have multilineage differentiation potential under appropriate conditions and are easy to obtain. At present, there have been some studies showing that stem cells can alleviate the accumulation of ECM and renal fibrosis. However, the sources of stem cells and the types of renal fibrosis or renal fibrosis models used in these studies have differed. In this review, we summarize the pathogenesis (including signaling pathways) of renal fibrosis, and the effect of stem cell therapy on renal fibrosis as described in preclinical and clinical studies. We found that stem cells from various sources have certain effects on improving renal function and alleviating renal fibrosis. However, additional clinical studies should be conducted to confirm this conclusion in the future.
Collapse
Affiliation(s)
- Yiping Liu
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Yan-Yan Su
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Qian Yang
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China.
| |
Collapse
|
9
|
de Winter D, Salaets T, Gie A, Deprest J, Levtchenko E, Toelen J. Glomerular developmental delay and proteinuria in the preterm neonatal rabbit. PLoS One 2020; 15:e0241384. [PMID: 33166318 PMCID: PMC7652305 DOI: 10.1371/journal.pone.0241384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023] Open
Abstract
Recent advances in neonatal care have improved the survival rate of those born premature. But prenatal conditions, premature birth and clinical interventions can lead to transient and permanent problems in these fragile patients. Premature birth (<36 gestational weeks) occurs during critical renal development and maturation. Some consequences have been observed but the exact pathophysiology is still not entirely known. This experimental animal study aims to investigate the effect of premature birth on postnatal nephrogenesis in premature neonatal rabbits compared to term rabbits of the same corrected age. We analyzed renal morphology, glomerular maturity and functional parameters (proteinuria and protein/creatinine ratio) in three cohorts of rabbit pups: preterm (G28), preterm at day 7 of life (G28+7) and term at day 4 of life (G31+4). We found no significant differences in kidney volume and weight, and relative kidney volume between the cohorts. Nephrogenic zone width increased significantly over time when comparing G31 + 4 to G28. The renal corpuscle surface area, in the inner cortex and outer cortex, tended to decrease significantly after birth in both preterm and term groups. With regard to glomerular maturity, we found that the kidneys in the preterm cohorts were still in an immature state (presence of vesicles and capillary loop stage). Importantly, significant differences in proteinuria and protein/creatinine ratio were found. G28 + 7 showed increased proteinuria (p = 0.019) and an increased protein/creatinine ratio (p = 0.023) in comparison to G31 +4. In conclusion, these results suggest that the preterm rabbit kidney tends to linger in the immature glomerular stages and shows signs of a reduced renal functionality compared to the kidney born at term, which could in time lead to short- and long-term health consequences.
Collapse
Affiliation(s)
- Derek de Winter
- Faculty of Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- * E-mail:
| | - Thomas Salaets
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Paediatrics, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium
| | - André Gie
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Elena Levtchenko
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Paediatrics, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Paediatrics, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Burdeyron P, Giraud S, Hauet T, Steichen C. Urine-derived stem/progenitor cells: A focus on their characterization and potential. World J Stem Cells 2020; 12:1080-1096. [PMID: 33178393 PMCID: PMC7596444 DOI: 10.4252/wjsc.v12.i10.1080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cell therapy, i.e., the use of cells to repair an affected tissue or organ, is at the forefront of regenerative and personalized medicine. Among the multiple cell types that have been used for this purpose [including adult stem cells such as mesenchymal stem cells or pluripotent stem cells], urine-derived stem cells (USCs) have aroused interest in the past years. USCs display classical features of mesenchymal stem cells such as differentiation capacity and immunomodulation. Importantly, they have the main advantage of being isolable from one sample of voided urine with a cheap and unpainful procedure, which is broadly applicable, whereas most adult stem cell types require invasive procedure. Moreover, USCs can be differentiated into renal cell types. This is of high interest for renal cell therapy-based regenerative approaches. This review will firstly describe the isolation and characterization of USCs. We will specifically present USC phenotype, which is not an object of consensus in the literature, as well as detail their differentiation capacity. In the second part of this review, we will present and discuss the main applications of USCs. These include use as a substrate to generate human induced pluripotent stem cells, but we will deeply focus on the use of USCs for cell therapy approaches with a detailed analysis depending on the targeted organ or system. Importantly, we will also focus on the applications that rely on the use of USC-derived products such as microvesicles including exosomes, which is a strategy being increasingly employed. In the last section, we will discuss the remaining barriers and challenges in the field of USC-based regenerative medicine.
Collapse
Affiliation(s)
- Perrine Burdeyron
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France
| | - Sébastien Giraud
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Service de Biochimie, CHU de Poitiers, Poitiers 86021, France
| | - Thierry Hauet
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France
- Service de Biochimie, CHU de Poitiers, Poitiers 86021, France
| | - Clara Steichen
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France.
| |
Collapse
|
11
|
Keshel SH, Rahimi A, Hancox Z, Ebrahimi M, Khojasteh A, Sefat F. The promise of regenerative medicine in the treatment of urogenital disorders. J Biomed Mater Res A 2020; 108:1747-1759. [PMID: 32270582 DOI: 10.1002/jbm.a.36942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Polymers and scaffolds are the most significant tools in regenerative medicine. Urogenital disorders are an important group of diseases that greatly affect the patient's life expectancy and quality. Reconstruction of urogenital defects is one of the current challenges in regenerative medicine. Regenerative medicine, as well as tissue engineering, may offer suitable approaches, while the tools needed are appropriate materials and cells. Autologous urothelial cells obtained from biopsy, bone marrow-derived stem cells, adipose stem cells and urine-derived stem cells that expressed mesenchymal cell markers are the cells that mainly used. In addition, two main types of biomaterials mainly exist; synthetic polymers and composite scaffolds that are biodegradable polymers with controllable properties and naturally derived biomaterials such as extracellular matrix components and acellular tissue matrices. In this review, we present and evaluate the most appropriate and suitable scaffolds (naturally derived and synthetic polymers) and cells applied in urogenital reconstruction.
Collapse
Affiliation(s)
- Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zoe Hancox
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Maryam Ebrahimi
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK.,Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| |
Collapse
|
12
|
Koike Y, Li B, Lee C, Alganabi M, Zhu H, Chusilp S, Lee D, Cheng S, Li Q, Pierro A. The intestinal injury caused by ischemia-reperfusion is attenuated by amniotic fluid stem cells via the release of tumor necrosis factor-stimulated gene 6 protein. FASEB J 2020; 34:6824-6836. [PMID: 32223023 DOI: 10.1096/fj.201902892rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022]
Abstract
Ischemia/reperfusion (I/R) is implicated in the pathogenesis of various acute intestinal injuries. Amniotic fluid stem cells (AFSC) are beneficial in experimental intestinal diseases. Tumor necrosis factor-induced protein 6 (TSG-6) has been shown to exert anti-inflammatory effects. We aimed to investigate if AFSC secreted TSG-6 reduces inflammation and rescues intestinal I/R injury. The superior mesenteric artery of 3-week-old rats was occluded for 90 minutes and green fluorescent protein-labeled AFSC or recombinant TSG-6 was injected intravenously upon reperfusion. AFSC distribution was evaluated at 24, 48, and 72 hours after I/R. AFSC and TSG-6 effects on the intestine were assessed 48 hours postsurgery. Intestinal organoids were used to study the effects of TSG-6 after hypoxia-induced epithelial damage. After I/R-induced intestinal injury, AFSC migrated preferentially to the ileum, the primary site of injury, through blood circulation. Engrafted AFSC reduced ileum injury, inflammation, and oxidative stress. These AFSC-mediated beneficial effects were dependent on secretion of TSG-6. Administration of TSG-6 protected against hypoxia-induced epithelial damage in intestinal organoids. Finally, TSG-6 attenuated intestinal damage during I/R by suppressing genes involved in wound and injury pathways. This study indicates that AFSC or TSG-6 have the potential of rescuing the intestine from the damage caused by I/R.
Collapse
Affiliation(s)
- Yuhki Koike
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Gastrointestinal and Paediatric Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Bo Li
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Lee
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mashriq Alganabi
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Haitao Zhu
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sinobol Chusilp
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dorothy Lee
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shigang Cheng
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Qi Li
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
13
|
Missoum A. Recent Updates on Mesenchymal Stem Cell Based Therapy for Acute Renal Failure. Curr Urol 2020; 13:189-199. [PMID: 31998051 DOI: 10.1159/000499272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury, formerly known as acute renal failure, is a pathological condition in which ischemia or toxic damage contributes to the loss of renal proximal tubule epithelial cells. Pathophysiological events such as oxidative stress, mitochondrial dysfunction, and direct renal tubular epithelial cells toxicity are responsible for the progression of the disease. This devastating decline in renal function affects mostly patients in the intensive care units and requires costly and invasive treatments such as dialysis and organ transplant. Fortunately, recent therapies such as the use of mesenchymal stem cells (MSCs) were proven to be effective in ameliorating renal failure via paracrine and immunomodulatory mechanisms. These fibroblast-like adult stem cells that differentiate multilineagely can be isolated from dental pulps, umbilical cords, amniotic fluids, adipose tissues, and bone marrows. Depending on their sources, the therapeutical application of each MSC type has its own capacities, advantages, and drawbacks. The review discusses and compares the latest research studies on the use of different MSCs sources to treat renal failure. Concerns about the future clinical application of MSCs such as homing, toxicity, and the risk of immune rejection are also highlighted.
Collapse
Affiliation(s)
- Asmaa Missoum
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Minocha E, Sinha RA, Jain M, Chaturvedi CP, Nityanand S. Amniotic fluid stem cells ameliorate cisplatin-induced acute renal failure through induction of autophagy and inhibition of apoptosis. Stem Cell Res Ther 2019; 10:370. [PMID: 31801607 PMCID: PMC6894207 DOI: 10.1186/s13287-019-1476-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background We have recently demonstrated that amniotic fluid stem cells (AFSC) express renal progenitor markers and can be differentiated in vitro into renal lineage cell types, viz, juxtaglomerular and renal proximal tubular epithelial-like cells. Here, we have evaluated the therapeutic efficacy of AFSC in a cisplatin-induced rat model of acute renal failure (ARF) and investigated the underlying mechanisms responsible for their renoprotective effects. Methods ARF was induced in Wistar rats by intra-peritoneal injection of cisplatin (7 mg/kg). Five days after cisplatin injection, rats were randomized into two groups and injected with either AFSC or normal saline intravenously. On days 8 and 12 after cisplatin injection, the blood biochemical parameters, histopathological changes, apoptosis and expression of pro-apoptotic, anti-apoptotic, and autophagy-related proteins in renal tissues were studied in both groups of rats. To further confirm whether the protective effects of AFSC on cisplatin-induced apoptosis were dependent on autophagy, chloroquine, an autophagy inhibitor, was administered by the intra-peritoneal route. Results Administration of AFSC in ARF rats resulted in improvement of renal function and attenuation of renal damage as reflected by significant decrease in blood urea nitrogen, serum creatinine levels, tubular cell apoptosis as assessed by Bax/Bcl2 ratio, and expression of the pro-apoptotic proteins, viz, PUMA, Bax, cleaved caspase-3, and cleaved caspase-9, as compared to the saline-treated group. Furthermore, in the AFSC-treated group as compared to the saline-treated group, there was a significant increase in the activation of autophagy as evident by increased expression of LC3-II, ATG5, ATG7, Beclin1, and phospho-AMPK levels with a concomitant decrease in phospho-p70S6K and p62 expression levels. Chloroquine administration led to significant reduction in the anti-apoptotic effects of the AFSC therapy and further deterioration in the renal structure and function caused by cisplatin. Conclusion AFSC led to amelioration of cisplatin-induced ARF which was mediated by inhibition of apoptosis and activation of autophagy. The protective effects of AFSC were blunted by chloroquine, an inhibitor of autophagy, highlighting that activation of autophagy is an important mechanism of action for the protective role of AFSC in cisplatin-induced renal injury.
Collapse
Affiliation(s)
- Ekta Minocha
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, UP, 226014, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Manali Jain
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, UP, 226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, UP, 226014, India
| | - Soniya Nityanand
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, UP, 226014, India.
| |
Collapse
|
15
|
Abstract
The number of individuals affected by acute kidney injury (AKI) and chronic kidney disease (CKD) is constantly rising. In light of the limited availability of treatment options and their relative inefficacy, cell based therapeutic modalities have been studied. However, not many efforts are put into safety evaluation of such applications. The aim of this study was to review the existing published literature on adverse events reported in studies with genetically modified cells for treatment of kidney disease. A systematic review was conducted by searching PubMed and EMBASE for relevant articles published until June 2018. The search results were screened and relevant articles selected using pre-defined criteria, by two researchers independently. After initial screening of 6894 abstracts, a total number of 97 preclinical studies was finally included for full assessment. Of these, 61 (63%) presented an inappropriate study design for the evaluation of safety parameters. Only 4 studies (4%) had the optimal study design, while 32 (33%) showed sub-optimal study design with either direct or indirect evidence of adverse events. The high heterogeneity of studies included regarding cell type and number, genetic modification, administration route, and kidney disease model applied, combined with the consistent lack of appropriate control groups, makes a reliable safety evaluation of kidney cell-based therapies impossible. Only a limited number of relevant studies included looked into essential safety-related outcomes, such as inflammatory (48%), tumorigenic and teratogenic potential (12%), cell biodistribution (82%), microbiological safety with respect to microorganism contamination and latent viruses' reactivation (1%), as well as overall well-being and animal survival (19%). In conclusion, for benign cell-based therapies, well-designed pre-clinical studies, including all control groups required and good manufacturing processes securing safety, need to be done early in development. Preferably, this should be performed side by side with efficacy evaluation and according to the official guidelines of leading health organizations.
Collapse
|
16
|
Minocha E, Chaturvedi CP, Nityanand S. Renogenic characterization and in vitro differentiation of rat amniotic fluid stem cells into renal proximal tubular- and juxtaglomerular-like cells. In Vitro Cell Dev Biol Anim 2019; 55:138-147. [PMID: 30645697 DOI: 10.1007/s11626-018-00315-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/16/2018] [Indexed: 12/31/2022]
Abstract
The aim of the present study was to investigate the renogenic characteristics of amniotic fluid stem cells (AFSCs) and to evaluate their in vitro differentiation potential into renal proximal tubular-like cells and juxtaglomerular-like cells. We culture expanded AFSCs derived from rat amniotic fluid. The AFSCs grew as adherent spindle-shaped cells and expressed mesenchymal markers CD73, CD90, and CD105 as well as renal progenitor markers WT1, PAX2, SIX2, SALL1, and CITED1. AFSCs exhibited an in vitro differentiation potential into renal proximal tubular epithelial-like cells, as shown by the upregulation of expression of proximal tubular cell-specific genes like AQP1, CD13, PEPT1, GLUT5, OAT1, and OCT1. AFSCs could also be differentiated into juxtaglomerular-like cells as demonstrated by the expression of renin and α-SMA. The AFSCs also expressed pluripotency markers OCT4, NANOG, and SOX2 and could be induced into embryoid bodies with differentiation into all the three germ layers, highlighting the pluripotent nature of these cells. Our results show that amniotic fluid contains a population of primitive stem cells that express renal-progenitor markers and also possess the propensity to differentiate into two renal lineage cell types and, thus, may have a therapeutic potential in renal regenerative medicine.
Collapse
Affiliation(s)
- Ekta Minocha
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India
| | - Soniya Nityanand
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India.
| |
Collapse
|
17
|
Zhuang Q, Ma R, Yin Y, Lan T, Yu M, Ming Y. Mesenchymal Stem Cells in Renal Fibrosis: The Flame of Cytotherapy. Stem Cells Int 2019; 2019:8387350. [PMID: 30766607 PMCID: PMC6350586 DOI: 10.1155/2019/8387350] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022] Open
Abstract
Renal fibrosis, as the fundamental pathological process of chronic kidney disease (CKD), is a pathologic extension of the normal wound healing process characterized by endothelium injury, myofibroblast activation, macrophage migration, inflammatory signaling stimulation, matrix deposition, and remodelling. Yet, the current method of treating renal fibrosis is fairly limited, including angiotensin-converting enzyme inhibition, angiotensin receptor blockade, optimal blood pressure control, and sodium bicarbonate for metabolic acidosis. MSCs are pluripotent adult stem cells that can differentiate into various types of tissue lineages, such as the cartilage (chondrocytes), bone (osteoblasts), fat (adipocytes), and muscle (myocytes). Because of their many advantages like ubiquitous sources, convenient procurement and collection, low immunogenicity, and low adverse effects, with their special identification markers, mesenchymal stem MSC-based therapy is getting more and more attention. Based on the mechanism of renal fibrosis, MSCs mostly participate throughout the renal fibrotic process. According to the latest and overall literature reviews, we aim to elucidate the antifibrotic mechanisms and effects of diverse sources of MSCs on renal fibrosis, assess their efficacy and safety in preliminarily clinical application, answer the controversial questions, and provide novel ideas into the MSC cellular therapy of renal fibrosis.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Ruoyu Ma
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yanshuang Yin
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Tianhao Lan
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Yu
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Yingzi Ming
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| |
Collapse
|
18
|
Human amniotic fluid stem cells have a unique potential to accelerate cutaneous wound healing with reduced fibrotic scarring like a fetus. Hum Cell 2018; 32:51-63. [PMID: 30506493 DOI: 10.1007/s13577-018-0222-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022]
Abstract
Adult wound healing can result in fibrotic scarring (FS) characterized by excess expression of myofibroblasts and increased type I/type III collagen expression. In contrast, fetal wound healing results in complete regeneration without FS, and the mechanism remains unclear. Amniotic fluid cells could contribute to scar-free wound healing, but the effects of human amniotic fluid cells are not well characterized. Here, we determined the effect of human amniotic fluid stem cells (hAFS) on FS during wound healing. Human amniotic fluid was obtained by amniocentesis at 15-17 weeks of gestation. CD117-positive cells were isolated and defined as hAFS. hAFS (1 × 106) suspended in PBS or cell-free PBS were injected around wounds created in the dorsal region of BALB/c mice. Wound size was macroscopically measured, and re-epithelialization in the epidermis, granulation tissue area in the dermis and collagen contents in the regenerated wound were histologically analyzed. The ability of hAFS to engraft in the wound was assessed by tracking hAFS labeled with PKH-26. hAFS fulfilled the minimal criteria for mesenchymal stem cells. hAFS injection into the wound accelerated wound closure via enhancement of re-epithelialization with less FS. The process was characterized by lower numbers of myofibroblasts and higher expression of type III collagen. Finally, transplanted hAFS were clearly observed in the dermis until day 7 implying that hAFS worked in a paracrine manner. hAFS can function in a paracrine manner to accelerate cutaneous wound healing, producing less FS, a process resembling fetal wound healing.
Collapse
|
19
|
Macrin D, Joseph JP, Pillai AA, Devi A. Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Rev Rep 2018; 13:741-756. [PMID: 28812219 DOI: 10.1007/s12015-017-9759-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the recent times, stem cell biology has garnered the attention of the scientific fraternity and the general public alike due to the immense therapeutic potential that it holds in the field of regenerative medicine. A breakthrough in this direction came with the isolation of stem cells from human embryo and their differentiation into cell types of all three germ layers. However, the isolation of mesenchymal stem cells from adult tissues proved to be advantageous over embryonic stem cells due to the ethical and immunological naivety. Mesenchymal Stem Cells (MSCs) isolated from the bone marrow were found to differentiate into multiple cell lineages with the help of appropriate differentiation factors. Furthermore, other sources of stem cells including adipose tissue, dental pulp, and breast milk have been identified. Newer sources of stem cells have been emerging recently and their clinical applications are also being studied. In this review, we examine the eminent sources of Mesenchymal Stem Cells (MSCs), their immunophenotypes, and therapeutic imminence.
Collapse
Affiliation(s)
- Dannie Macrin
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - Joel P Joseph
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | | | - Arikketh Devi
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
20
|
Torres Crigna A, Daniele C, Gamez C, Medina Balbuena S, Pastene DO, Nardozi D, Brenna C, Yard B, Gretz N, Bieback K. Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Front Med (Lausanne) 2018; 5:179. [PMID: 29963554 PMCID: PMC6013716 DOI: 10.3389/fmed.2018.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Within the last years, the use of stem cells (embryonic, induced pluripotent stem cells, or hematopoietic stem cells), Progenitor cells (e.g., endothelial progenitor cells), and most intensely mesenchymal stromal cells (MSC) has emerged as a promising cell-based therapy for several diseases including nephropathy. For patients with end-stage renal disease (ESRD), dialysis or finally organ transplantation are the only therapeutic modalities available. Since ESRD is associated with a high healthcare expenditure, MSC therapy represents an innovative approach. In a variety of preclinical and clinical studies, MSC have shown to exert renoprotective properties, mediated mainly by paracrine effects, immunomodulation, regulation of inflammation, secretion of several trophic factors, and possibly differentiation to renal precursors. However, studies are highly diverse; thus, knowledge is still limited regarding the exact mode of action, source of MSC in comparison to other stem cell types, administration route and dose, tracking of cells and documentation of therapeutic efficacy by new imaging techniques and tissue visualization. The aim of this review is to provide a summary of published studies of stem cell therapy in acute and chronic kidney injury, diabetic nephropathy, polycystic kidney disease, and kidney transplantation. Preclinical studies with allogeneic or xenogeneic cell therapy were first addressed, followed by a summary of clinical trials carried out with autologous or allogeneic hMSC. Studies were analyzed with respect to source of cell type, mechanism of action etc.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Cristina Daniele
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Carolina Gamez
- Department for Experimental Orthopaedics and Trauma Surgery, Medical Faculty Mannheim, Orthopaedic and Trauma Surgery Centre (OUZ), Heidelberg University, Mannheim, Germany
| | - Sara Medina Balbuena
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Diego O. Pastene
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniela Nardozi
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Cinzia Brenna
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Karen Bieback
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| |
Collapse
|
21
|
Da Sacco S, Perin L, Sedrakyan S. Amniotic fluid cells: current progress and emerging challenges in renal regeneration. Pediatr Nephrol 2018. [PMID: 28620747 DOI: 10.1007/s00467-017-3711-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amniotic fluid (AF) contains a heterogeneous population of cells that have been identified to possess pluripotent and progenitor-like characteristics. These cells have been applied in various regenerative medicine applications ranging from in vitro cell differentiation to tissue engineering to cellular therapies for different organs including the heart, the liver, the lung, and the kidneys. In this review, we examine the different methodologies used for the derivation of amniotic fluid stem cells and renal progenitors, and their application in renal repair and regeneration. Moreover, we discuss the recent achievements and newly emerging challenges in our understanding of their biology, their immunoregulatory characteristics, and their paracrine-mediated therapeutic potential for the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA.
| |
Collapse
|
22
|
Zhao H, Alam A, Soo AP, George AJT, Ma D. Ischemia-Reperfusion Injury Reduces Long Term Renal Graft Survival: Mechanism and Beyond. EBioMedicine 2018; 28:31-42. [PMID: 29398595 PMCID: PMC5835570 DOI: 10.1016/j.ebiom.2018.01.025] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 01/10/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) during renal transplantation often initiates non-specific inflammatory responses that can result in the loss of kidney graft viability. However, the long-term consequence of IRI on renal grafts survival is uncertain. Here we review clinical evidence and laboratory studies, and elucidate the association between early IRI and later graft loss. Our critical analysis of previous publications indicates that early IRI does contribute to later graft loss through reduction of renal functional mass, graft vascular injury, and chronic hypoxia, as well as subsequent fibrosis. IRI is also known to induce kidney allograft dysfunction and acute rejection, reducing graft survival. Therefore, attempts have been made to substitute traditional preserving solutions with novel agents, yielding promising results. Ischaemia reperfusion injury (IRI) potentiates delayed renal graft function and causes reduction in renal graft survival IRI causes innate immune system activation, hypoxic injury, inflammation and graft vascular disease Reducing prolonged cold ischaemic time improves graft survival Novel protective strategies include mesenchymal stem cells, machine perfusion, and ex vivo preservation solution saturated with gas. Further studies are needed to investigate the long-term effects of novel ex vivo preservation agents
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Aurelie Pac Soo
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | | | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| |
Collapse
|
23
|
Effect of adipose-derived mesenchymal stem cell transplantation on vascular calcification in rats with adenine-induced kidney disease. Sci Rep 2017; 7:14036. [PMID: 29070880 PMCID: PMC5656613 DOI: 10.1038/s41598-017-14492-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/11/2017] [Indexed: 12/29/2022] Open
Abstract
Previous studies have investigated the use of mesenchymal stem cells (MSCs) to treat damaged kidneys. However, the effect of adipose-derived MSCs (ASCs) on vascular calcification in chronic kidney disease (CKD) is still poorly understood. In the present study, we explored the potential of ASCs for the treatment of CKD and vascular calcification. CKD was induced in male Sprague-Dawley rats by feeding them a diet containing 0.75% adenine for 4 weeks. ASCs transplantation significantly reduced serum inorganic phosphorus (Pi) as compared to that in the control. The histopathology of the kidneys showed a greater dilation of tubular lumens and interstitial fibrosis in the control group. Calcium and Pi contents of the aorta in the ASCs transplantation group were lower than those in the control group. Von Kossa staining of the thoracic aorta media revealed that ASCs transplantation suppressed vascular calcification. Thus, this study revealed that autogenic ASCs transplantation inhibits kidney damage and suppresses the progression of vascular calcification in the CKD rat model, suggesting that autogenic ASCs transplantation is a novel approach for preventing the progression of CKD and vascular calcification.
Collapse
|
24
|
Lesage F, Zia S, Jiménez J, Deprest J, Toelen J. The amniotic fluid as a source of mesenchymal stem cells with lung-specific characteristics. Prenat Diagn 2017; 37:1093-1099. [PMID: 28842991 DOI: 10.1002/pd.5147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 11/11/2022]
Abstract
The amniotic fluid is a clinically accessible source of mesenchymal stem cells (AF-MSC) during gestation, which enables autologous cellular therapy for perinatal disorders. The origin of AF-MSC remains elusive: renal and neuronal progenitors have been isolated from the AF-MSC pool, yet no cells with pulmonary characteristics. We analyzed gene expression of pulmonary and renal markers of 212 clonal lines of AF-MSC isolated from amniocentesis samples. AF-MSC were cultured on dishes coated with extracellular matrix (ECM) proteins from decellularized fetal rabbit lungs. In vivo differentiation potential of AF-MSC that expressed markers suggestive of lung fate was tested by renal subcapsular injections in immunodeficient mice. Of all the isolated AF-MSC lines, 26% were positive for lung endodermal markers FOXA2 and NKX2.1 and lacked expression of renal markers (KSP). This AF-MSC subpopulation expressed other lung-specific factors, including IRX1, P63, FOXP2, LGR6, SFTC, and PDPN. Pulmonary marker expression decreased over passages when AF-MSC were cultured under conventional conditions, yet remained more stable when culturing the cells on lung ECM-coated dishes. Renal subcapsular injection of AF-MSC expressing lung-specific markers resulted in engrafted cells that were SPTB positive. These data suggest that FOXA2+/NKX2.1+/KSP- AF-MSC lines have lung characteristics which are supported by culture on lung ECM-coated dishes.
Collapse
Affiliation(s)
- Flore Lesage
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium
| | - Silvia Zia
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium
| | - Julio Jiménez
- Department of Obstetrics and Gynaecology, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Jan Deprest
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium.,University Hospitals Leuven, Department of Obstetrics and Gynecology, Leuven, Belgium.,Research Department of Maternal Fetal Medicine, UCL Institute for Women's Health, University College London, London, UK
| | - Jaan Toelen
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium.,University Hospitals Leuven, Department of Pediatrics, Leuven, Belgium
| |
Collapse
|
25
|
Kehl D, Generali M, Görtz S, Geering D, Slamecka J, Hoerstrup SP, Bleul U, Weber B. Amniotic Fluid Cells Show Higher Pluripotency-Related Gene Expression Than Allantoic Fluid Cells. Stem Cells Dev 2017; 26:1424-1437. [DOI: 10.1089/scd.2016.0352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Debora Kehl
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Sabrina Görtz
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Diego Geering
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Jaroslav Slamecka
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Ulrich Bleul
- Clinic of Reproductive Medicine, Department of Farm Animals, Vetsuisse-Faculty University of Zurich, Zurich, Switzerland
| | - Benedikt Weber
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Lesage F, Pranpanus S, Bosisio FM, Jacobs M, Ospitalieri S, Toelen J, Deprest J. Minimal modulation of the host immune response to SIS matrix implants by mesenchymal stem cells from the amniotic fluid. Hernia 2017; 21:973-982. [PMID: 28752425 DOI: 10.1007/s10029-017-1635-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/11/2017] [Indexed: 01/26/2023]
Abstract
PURPOSE Surgical restoration of soft tissue defects often requires implantable devices. The clinical outcome of the surgery is determined by the properties inherent to the used matrix. Mesenchymal stem cells (MSC) modulate the immune processes after in vivo transplantation and their addition to matrices is associated with constructive remodeling. Herein we evaluate the potential of MSC derived from the amniotic fluid (AF-MSC), an interesting MSC source for cell therapeutic applications in the perinatal period, for immune modulation when added to a biomaterial. METHODS We implant cell free small intestinal submucosa (SIS) or SIS seeded with AF-MSC at a density of 1 × 105/cm2 subcutaneously at the abdominal wall in immune competent rats. The host immune response is evaluated at 3, 7 and 14 days postoperatively. RESULTS The matrix-specific or cellular characteristics are not altered after 24 h of in vitro co-culture of SIS with AF-MSC. The host immune response was not different between animals implanted with cell free or AF-MSC-seeded SIS in terms of cellular infiltration, vascularity, macrophage polarization or scaffold replacement. Profiling the mRNA expression level of inflammatory cytokines at the matrix interface shows a significant reduction in the expression of the pro-inflammatory marker Tnf-α and a trend towards lower iNos expression upon AF-MSC-seeding of the SIS matrix. Anti-inflammatory marker expression does not alter upon cell seeding of matrix implants. CONCLUSION We conclude that SIS is a suitable substrate for in vitro culture of AF-MSC and fibroblasts. AF-MSC addition to SIS does not significantly modulate the host immune response after subcutaneous implantation in rats.
Collapse
Affiliation(s)
- F Lesage
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - S Pranpanus
- Department of Obstetrics and Gynecology, Prince of Songkla University, Songkhla, Thailand
| | - F M Bosisio
- Department of Imaging and Pathology, KU Leuven-University of Leuven, Leuven, Belgium
- Università Degli Studi di Milano-Bicocca, Milan, Italy
| | - M Jacobs
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - S Ospitalieri
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - J Toelen
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - J Deprest
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium.
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
27
|
DiCarlo AL, Tamarat R, Rios CI, Benderitter M, Czarniecki CW, Allio TC, Macchiarini F, Maidment BW, Jourdain JR. Cellular Therapies for Treatment of Radiation Injury: Report from a NIH/NIAID and IRSN Workshop. Radiat Res 2017; 188:e54-e75. [PMID: 28605260 DOI: 10.1667/rr14810.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, there has been increasing concern over the possibility of a radiological or nuclear incident occurring somewhere in the world. Intelligence agencies frequently report that terrorist groups and rogue nations are seeking to obtain radiological or nuclear weapons of mass destruction. In addition, there exists the real possibility that safety of nuclear power reactors could be compromised by natural (such as the tsunami and subsequent Fukushima accident in Japan in March, 2011) or accidental (Three Mile Island, 1979 and Chernobyl, 1986) events. Although progress has been made by governments around the world to prepare for these events, including the stockpiling of radiation countermeasures, there are still challenges concerning care of patients injured during a radiation incident. Because the deleterious and pathological effects of radiation are so broad, it is desirable to identify medical countermeasures that can have a beneficial impact on several tissues and organ systems. Cellular therapies have the potential to impact recovery and tissue/organ regeneration for both early and late complications of radiation exposure. These therapies, which could include stem or blood progenitor cells, mesenchymal stromal cells (MSCs) or cells derived from other tissues (e.g., endothelium or placenta), have shown great promise in treating other nonradiation injuries to and diseases of the bone marrow, skin, gastrointestinal tract, brain, lung and heart. To explore the potential use of these therapies in the treatment of victims after acute radiation exposure, the National Institute of Allergy and Infectious Diseases co-sponsored an international workshop in July, 2015 in Paris, France with the Institut de Radioprotection et de Sûreté Nucléaire. The workshop included discussions of data available from testing in preclinical models of radiation injury to different organs, logistics associated with the practical use of cellular therapies for a mass casualty incident, as well as international regulatory requirements for authorizing such drug products to be legally and readily used in such incidents. This report reviews the data presented, as well as key discussion points from the meeting.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Radia Tamarat
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Carmen I Rios
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Marc Benderitter
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | | | - Francesca Macchiarini
- e Previously -RNCP, DAIT, NIAID, NIH; now National Institute on Aging (NIA), NIH, Bethesda, Maryland
| | | | - Jean-Rene Jourdain
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
28
|
Mori da Cunha MGMC, Zia S, Beckmann DV, Carlon MS, Arcolino FO, Albersen M, Pippi NL, Graça DL, Gysemans C, Carmeliet P, Levtchenko E, Deprest J, Toelen J. Vascular Endothelial Growth Factor Up-regulation in Human Amniotic Fluid Stem Cell Enhances Nephroprotection After Ischemia-Reperfusion Injury in the Rat. Crit Care Med 2017; 45:e86-e96. [PMID: 27548820 DOI: 10.1097/ccm.0000000000002020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate if the up-regulation of vascular endothelial growth factor strengthens the protective effect of amniotic fluid stem cells in a renal ischemia-reperfusion injury model. DESIGN Randomized animal study. SETTINGS University research laboratory. SUBJECTS A total of 40 males 12-week-old Wistar rats were subjected to ischemia-reperfusion and assigned to four groups: amniotic fluid stem cells, vascular endothelial growth factor-amniotic fluid stem cells in two different doses, and vehicle. Ten animals were used as sham-controls. INTERVENTION Six hours after induction of renal ischemia-reperfusion injury, amniotic fluid stem cells, vascular endothelial growth factor-amniotic fluid stem cells in two different doses, or vehicle were injected intraarterially. MEASUREMENTS AND MAIN RESULTS Analyses were performed at 24 hours, 48 hours, and 2 months after treatment. Outcome measures included serum creatinine, urine microprotenuira, and immunohistomorphometric analyses. Vascular endothelial growth factor-amniotic fluid stem cells induced a significantly higher nephroprotection than amniotic fluid stem cells. This effect was mediated mainly by immunomodulation, which led to lower macrophage infiltration and higher presence of regulatory T cell after ischemia-reperfusion injury. At medium term, it inhibited the progression toward chronic kidney disease. Vascular endothelial growth factor-amniotic fluid stem cells can worsen the ischemia-reperfusion injury when delivered in a high dose. CONCLUSIONS Up-regulation of vascular endothelial growth factor enhances the therapeutic effect of human amniotic fluid stem cells in rats with renal ischemia-reperfusion injury, mainly by mitogenic, angiogenic, and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Marina Gabriela Monteiro Carvalho Mori da Cunha
- 1Department of Development and Regeneration, Organ System Cluster, Fetal Therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium. 2Experimental Veterinary Surgery Laboratory, Department of Small Animals, Universidade Federal de Santa Maria, Santa Maria, Brazil. 3Department of Pharmaceutical and Pharmacological Sciences, Molecular Virology and Gene Therapy, Group Biomedical Sciences, KU Leuven, Leuven, Belgium. 4Department of Development and Regeneration, Organ System Cluster, Laboratory of Pediatric Nephrology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium. 5Department of Urology, University Hospitals Leuven, Leuven, Belgium. 6Department of Clinical and Experimental Medicine, Clinical and Experimental Endocrinology, Leuven, Belgium. 7Department of Oncology, Vesalius Research Center, Laboratory of Angiogenesis and Vascular Metabolism, VIB, KU Leuven, Leuven, Belgium. 8Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium. 9Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jansen K, Schuurmans CCL, Jansen J, Masereeuw R, Vermonden T. Hydrogel-Based Cell Therapies for Kidney Regeneration: Current Trends in Biofabrication and In Vivo Repair. Curr Pharm Des 2017; 23:3845-3857. [PMID: 28699526 PMCID: PMC6302346 DOI: 10.2174/1381612823666170710155726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
Facing the problems of limited renal regeneration capacity and the persistent shortage of donor kidneys, dialysis remains the only treatment option for many end-stage renal disease patients. Unfortunately, dialysis is only a medium-term solution because large and protein-bound uremic solutes are not efficiently cleared from the body and lead to disease progression over time. Current strategies for improved renal replacement therapies (RRTs) range from whole organ engineering to biofabrication of renal assist devices and biological injectables for in vivo regeneration. Notably, all approaches coincide with the incorporation of cellular components and biomimetic micro-environments. Concerning the latter, hydrogels form promising materials as scaffolds and cell carrier systems due to the demonstrated biocompatibility of most natural hydrogels, tunable biochemical and mechanical properties, and various application possibilities. In this review, the potential of hydrogel-based cell therapies for kidney regeneration is discussed. First, we provide an overview of current trends in the development of RRTs and in vivo regeneration options, before examining the possible roles of hydrogels within these fields. We discuss major application-specific hydrogel design criteria and, subsequently, assess the potential of emergent biofabrication technologies, such as micromolding, microfluidics and electrodeposition for the development of new RRTs and injectable stem cell therapies.
Collapse
Affiliation(s)
- Katja Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Carl C L Schuurmans
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Jitske Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Rosalinde Masereeuw
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Tina Vermonden
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| |
Collapse
|
30
|
Mesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical Evidence. Stem Cells Int 2016; 2016:4798639. [PMID: 27721835 PMCID: PMC5046016 DOI: 10.1155/2016/4798639] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells form a population of self-renewing, multipotent cells that can be isolated from several tissues. Multiple preclinical studies have demonstrated that the administration of exogenous MSC could prevent renal injury and could promote renal recovery through a series of complex mechanisms, in particular via immunomodulation of the immune system and release of paracrine factors and microvesicles. Due to their therapeutic potentials, MSC are being evaluated as a possible player in treatment of human kidney disease, and an increasing number of clinical trials to assess the safety, feasibility, and efficacy of MSC-based therapy in various kidney diseases have been proposed. In the present review, we will summarize the current knowledge on MSC infusion to treat acute kidney injury, chronic kidney disease, diabetic nephropathy, focal segmental glomerulosclerosis, systemic lupus erythematosus, and kidney transplantation. The data obtained from these clinical trials will provide further insight into safety, feasibility, and efficacy of MSC-based therapy in renal pathologies and allow the design of consensus protocol for clinical purpose.
Collapse
|
31
|
Arcolino FO, Zia S, Held K, Papadimitriou E, Theunis K, Bussolati B, Raaijmakers A, Allegaert K, Voet T, Deprest J, Vriens J, Toelen J, van den Heuvel L, Levtchenko E. Urine of Preterm Neonates as a Novel Source of Kidney Progenitor Cells. J Am Soc Nephrol 2016; 27:2762-70. [PMID: 26940093 DOI: 10.1681/asn.2015060664] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
In humans, nephrogenesis is completed prenatally, with nephrons formed until 34 weeks of gestational age. We hypothesized that urine of preterm neonates born before the completion of nephrogenesis is a noninvasive source of highly potent stem/progenitor cells. To test this hypothesis, we collected freshly voided urine at day 1 after birth from neonates born at 31-36 weeks of gestational age and characterized isolated cells using a single-cell RT-PCR strategy for gene expression analysis and flow cytometry and immunofluorescence for protein expression analysis. Neonatal stem/progenitor cells expressed markers of nephron progenitors but also, stromal progenitors, with many single cells coexpressing these markers. Furthermore, these cells presented mesenchymal stem cell features and protected cocultured tubule cells from cisplatin-induced apoptosis. Podocytes differentiated from the neonatal stem/progenitor cells showed upregulation of podocyte-specific genes and proteins, albumin endocytosis, and calcium influx via podocyte-specific transient receptor potential cation channel, subfamily C, member 6. Differentiated proximal tubule cells showed upregulation of specific genes and significantly elevated p-glycoprotein activity. We conclude that urine of preterm neonates is a novel noninvasive source of kidney progenitors that are capable of differentiation into mature kidney cells and have high potential for regenerative kidney repair.
Collapse
Affiliation(s)
- Fanny Oliveira Arcolino
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Silvia Zia
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Katharina Held
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Koen Theunis
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Anke Raaijmakers
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Karel Allegaert
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Neonatal Intensive Care Unit, Universitaire Ziekenhuizen Leuven, Leuven, Belgium; and
| | - Thierry Voet
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Joris Vriens
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Lambertus van den Heuvel
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| |
Collapse
|
32
|
Dziadosz M, Basch RS, Young BK. Human amniotic fluid: a source of stem cells for possible therapeutic use. Am J Obstet Gynecol 2016; 214:321-7. [PMID: 26767797 DOI: 10.1016/j.ajog.2015.12.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/22/2015] [Accepted: 12/31/2015] [Indexed: 12/23/2022]
Abstract
Stem cells are undifferentiated cells with the capacity for differentiation. Amniotic fluid cells have emerged only recently as a possible source of stem cells for clinical purposes. There are no ethical or sampling constraints for the use of amniocentesis as a standard clinical procedure for obtaining an abundant supply of amniotic fluid cells. Amniotic fluid cells of human origin proliferate rapidly and are multipotent with the potential for expansion in vitro to multiple cell lines. Tissue engineering technologies that use amniotic fluid cells are being explored. Amniotic fluid cells may be of clinical benefit for fetal therapies, degenerative disease, and regenerative medicine applications. We present a comprehensive review of the evolution of human amniotic fluid cells as a possible modality for therapeutic use.
Collapse
Affiliation(s)
- Margaret Dziadosz
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY
| | - Ross S Basch
- Department of Pathology, New York University Langone Medical Center, New York, NY
| | - Bruce K Young
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY.
| |
Collapse
|