1
|
Singh S, Shyu DJH. Perspective on utilization of Bacillus species as plant probiotics for different crops in adverse conditions. AIMS Microbiol 2024; 10:220-238. [PMID: 38525044 PMCID: PMC10955172 DOI: 10.3934/microbiol.2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Plant probiotic bacteria are a versatile group of bacteria isolated from different environmental sources to improve plant productivity and immunity. The potential of plant probiotic-based formulations is successfully seen as growth enhancement in economically important plants. For instance, endophytic Bacillus species acted as plant growth-promoting bacteria, influenced crops such as cowpea and lady's finger, and increased phytochemicals in crops such as high antioxidant content in tomato fruits. The present review aims to summarize the studies of Bacillus species retaining probiotic properties and compare them with the conventional fertilizers on the market. Plant probiotics aim to take over the world since it is the time to rejuvenate and restore the soil and achieve sustainable development goals for the future. Comprehensive coverage of all the Bacillus species used to maintain plant health, promote plant growth, and fight against pathogens is crucial for establishing sustainable agriculture to face global change. Additionally, it will give the latest insight into this multifunctional agent with a detailed biocontrol mechanism and explore the antagonistic effects of Bacillus species in different crops.
Collapse
Affiliation(s)
- Shubhra Singh
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Douglas J. H. Shyu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
2
|
Thammasittirong A, Thammasittirong SNR. Cry4Ba toxin of Bacillus thuringiensis subsp. israelensis uses both domains II and III to bind to its receptor- Aedes aegypti alkaline phosphatase. Heliyon 2023; 9:e19458. [PMID: 37810109 PMCID: PMC10558600 DOI: 10.1016/j.heliyon.2023.e19458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
Receptor binding is one of the crucial steps to exhibit the insecticidal activity of Cry toxins. In addition, binding to receptors is a determining step for the specificity of toxins. In this work, receptor binding domain II was cloned from the full-length Cry4Ba toxin and heterologously expressed in Escherichia coli. The 21 kDa purified protein was characterized as Cry4Ba domain II using Western blotting and tandem mass spectrometry coupled to liquid chromatography. Circular dichroism revealed the correct folding of the isolated domain II fragment, similar to that found in the Cry4Ba protein. Binding analysis using an enzyme-linked immunosorbent assay revealed that the purified Cry4Ba-domain II had bound to the 54 kDa alkaline phosphatase cloned from Aedes aegypti (Aa-mALP) with a dissociation constant of approximately 116.27 ± 11.09 nM. The binding affinity of Cry4Ba-domain II to Aa-mALP was comparable to that of Cry4Ba domain III, suggesting that both domains II and III of the Cry4Ba contributed equally in binding to the Aa-mALP protein. Our findings should provide more valuable insight on the molecular mechanisms in the toxin-receptor interaction of the Cry4Ba toxin.
Collapse
Affiliation(s)
- Anon Thammasittirong
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140, Thailand
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Sutticha Na Ranong Thammasittirong
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140, Thailand
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140, Thailand
| |
Collapse
|
3
|
Engineered chimeric insecticidal crystalline protein improves resistance to lepidopteran insects in rice (Oryza sativa L.) and maize (Zea mays L.). Sci Rep 2022; 12:12529. [PMID: 35869123 PMCID: PMC9307649 DOI: 10.1038/s41598-022-16426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe insecticidal crystalline proteins (Crys) are a family of insect endotoxin functioning in crop protection. As insects keep evolving into tolerance to the existing Crys, it is necessary to discover new Cry proteins to overcome potential threatens. Crys possess three functional domains at their N-termini, and the most active region throughout evolution was found at the domain-III. We swapped domain-IIIs from various Cry proteins and generated seven chimeric proteins. All recombinants were expressed in Escherichia coli and their toxicity was assessed by dietary exposure assays. Three of the seven Crys exhibited a high toxicity to Asian corn borer over the controls. One of them, Cry1Ab-Gc, a chimeric Cry1Ab being replaced with the domain-III of Cry1Gc, showed the highest toxicity to rice stem borer when it was over-expressed in Oryza sativa. Furthermore, it was also transformed into maize, backcrossed into commercial maize inbred lines and then produced hybrid to evaluate their commercial value. Transgenic maize performed significant resistance to the Asian corn borer without affecting the yield. We further showed that this new protein did not have adverse effects on the environment. Our results indicated that domain III swapped of Crys could be used as an efficient method for developing new engineered insecticidal protein.
Collapse
|
4
|
Dechkla M, Charoenjotivadhanakul S, Imtong C, Visitsattapongse S, Li HC, Angsuthanasombat C. Cry4Aa and Cry4Ba Mosquito-Active Toxins Utilize Different Domains in Binding to a Particular Culex ALP Isoform: A Functional Toxin Receptor Implicating Differential Actions on Target Larvae. Toxins (Basel) 2022; 14:toxins14100652. [PMID: 36287921 PMCID: PMC9607545 DOI: 10.3390/toxins14100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The three-domain Cry4Aa toxin produced from Bacillus thuringiensis subsp. israelensis was previously shown to be much more toxic to Culex mosquito larvae than its closely related toxin—Cry4Ba. The interaction of these two individual toxins with target receptors on susceptible larval midgut cells is likely to be the critical determinant in their differential toxicity. Here, two full-length membrane-bound alkaline phosphatase (mALP) isoforms from Culex quinquefasciatus larvae, Cq-mALP1263and Cq-mALP1264, predicted to be GPI-linked was cloned and functionally expressed in Spodoptera frugiperda (Sf9) cells as 57- and 61-kDa membrane-bound proteins, respectively. Bioinformatics analysis disclosed that both Cq-mALP isoforms share significant sequence similarity to Aedes aegypti-mALP—a Cry4Ba toxin receptor. In cytotoxicity assays, Sf9 cells expressing Cq-mALP1264, but not Cq-mALP1263, showed remarkably greater susceptibility to Cry4Aa than Cry4Ba, while immunolocalization studies revealed that both toxins were capable of binding to each Cq-mALP expressed on the cell membrane surface. Molecular docking of the Cq-mALP1264-modeled structure with individual Cry4 toxins revealed that Cry4Aa could bind to Cq-mALP1264 primarily through particular residues on three surface-exposed loops in the receptor-binding domain—DII, including Thr512, Tyr513 and Lys514 in the β10-β11loop. Dissimilarly, Cry4Ba appeared to utilize only certain residues in its C-terminal domain—DIII to interact with such a Culex counterpart receptor. Ala-substitutions of selected β10-β11loop residues (T512A, Y513A and K514A) revealed that only the K514A mutant displayed a drastic decrease in biotoxicity against C. quinquefasciatus larvae. Further substitution of Lys514 with Asp (K514D) revealed a further decrease in larval toxicity. Furthermore, in silico calculation of the binding affinity change (ΔΔGbind) in Cry4Aa-Cq-mALP1264 interactions upon these single-substitutions revealed that the K514D mutation displayed the largest ΔΔGbind value as compared to three other mutations, signifying an adverse impact of a negative charge at this critical receptor-binding position. Altogether, our present study has disclosed that these two related-Cry4 mosquito-active toxins conceivably exploited different domains in functional binding to the same Culex membrane-bound ALP isoform—Cq-mALP1264 for mediating differential toxicity against Culex target larvae.
Collapse
Affiliation(s)
- Manussawee Dechkla
- Department of Environmental Biology, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok 10300, Thailand
- Correspondence: (M.D.); (C.A.)
| | - Sathapat Charoenjotivadhanakul
- Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Salaya Campus, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Chompounoot Imtong
- Laboratory of Structural Biochemistry and Cell Chemical Biology, Biophysics Institute for Research and Development (BIRD), Fang, Chiang Mai 50110, Thailand
| | - Sarinporn Visitsattapongse
- Department of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Salaya Campus, Mahidol University, Nakorn Pathom 73170, Thailand
- Laboratory of Structural Biochemistry and Cell Chemical Biology, Biophysics Institute for Research and Development (BIRD), Fang, Chiang Mai 50110, Thailand
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (M.D.); (C.A.)
| |
Collapse
|
5
|
Alam I, Batool K, Idris AL, Tan W, Guan X, Zhang L. Role of Lectin in the Response of Aedes aegypti Against Bt Toxin. Front Immunol 2022; 13:898198. [PMID: 35634312 PMCID: PMC9136036 DOI: 10.3389/fimmu.2022.898198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Aedes aegypti is one of the world’s most dangerous mosquitoes, and a vector of diseases such as dengue fever, chikungunya virus, yellow fever, and Zika virus disease. Currently, a major global challenge is the scarcity of antiviral medicine and vaccine for arboviruses. Bacillus thuringiensis var israelensis (Bti) toxins are used as biological mosquito control agents. Endotoxins, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, and Cyt1Aa, are toxic to mosquitoes. Insect eradication by Cry toxin relies primarily on the interaction of cry toxins with key toxin receptors, such as aminopeptidase (APN), alkaline phosphatase (ALP), cadherin (CAD), and ATP-binding cassette transporters. The carbohydrate recognition domains (CRDs) of lectins and domains II and III of Cry toxins share similar structural folds, suggesting that midgut proteins, such as C-type lectins (CTLs), may interfere with interactions among Cry toxins and receptors by binding to both and alter Cry toxicity. In the present review, we summarize the functional role of C-type lectins in Ae. aegypti mosquitoes and the mechanism underlying the alteration of Cry toxin activity by CTLs. Furthermore, we outline future research directions on elucidating the Bti resistance mechanism. This study provides a basis for understanding Bti resistance, which can be used to develop novel insecticides.
Collapse
Affiliation(s)
- Intikhab Alam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aisha Lawan Idris
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Lingling Zhang,
| |
Collapse
|
6
|
Khorramnejad A, Bel Y, Talaei-Hassanloui R, Escriche B. Activation of Bacillus thuringiensis Cry1I to a 50 kDa stable core impairs its full toxicity to Ostrinia nubilalis. Appl Microbiol Biotechnol 2022; 106:1745-1758. [PMID: 35138453 PMCID: PMC8882101 DOI: 10.1007/s00253-022-11808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Abstract
Bacillus thuringiensis Cry1I insecticidal proteins are structurally similar to other three-domain Cry proteins, although their size, activity spectrum, and expression at the stationary phase are unique among other members of the Cry1 family. The mode of action of Cry1 proteins is not completely understood but the existence of an activation step prior to specific binding is widely accepted. In this study, we attempted to characterize and determine the importance of the activation process in the mode of action of Cry1I, as Cry1Ia protoxin or its partially processed form showed significantly higher toxicity to Ostrinia nubilalis than the fully processed protein either activated with trypsin or with O. nubilalis midgut juice. Oligomerization studies showed that Cry1Ia protoxin, in solution, formed dimers spontaneously, and the incubation of Cry1Ia protoxin with O. nubilalis brush border membrane vesicles (BBMV) promoted the formation of dimers of the partially processed form. While no oligomerization of fully activated proteins after incubation with BBMV was detected. The results of the in vitro competition assays showed that both the Cry1Ia protoxin and the approx. 50 kDa activated proteins bind specifically to the O. nubilalis BBMV and compete for the same binding sites. Accordingly, the in vivo binding competition assays show a decrease in toxicity following the addition of an excess of 50 kDa activated protein. Consequently, as full activation of Cry1I protein diminishes its toxicity against lepidopterans, preventing or decelerating proteolysis might increase the efficacy of this protein in Bt-based products. KEY POINTS: • Processing Cry1I to a 50 kDa stable core impairs its full toxicity to O. nubilalis • Partially processed Cry1Ia protoxin retains the toxicity of protoxin vs O. nubilalis • Protoxin and its final processed forms compete for the same functional binding sites.
Collapse
Affiliation(s)
- Ayda Khorramnejad
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.,Laboratory of Biological Control of Pest, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Yolanda Bel
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.
| | - Reza Talaei-Hassanloui
- Laboratory of Biological Control of Pest, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Baltasar Escriche
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.
| |
Collapse
|
7
|
Novel Nematode-Killing Protein-1 (Nkp-1) from a Marine Epiphytic Bacterium Pseudoalteromonas tunicata. Biomedicines 2021; 9:biomedicines9111586. [PMID: 34829814 PMCID: PMC8615270 DOI: 10.3390/biomedicines9111586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Drug resistance among parasitic nematodes has resulted in an urgent need for the development of new therapies. However, the high re-discovery rate of anti-nematode compounds from terrestrial environments necessitates a new repository for future drug research. Marine epiphytes are hypothesised to produce nematicidal compounds as a defence against bacterivorous predators, thus representing a promising yet underexplored source for anti-nematode drug discovery. The marine epiphytic bacterium Pseudoalteromonas tunicata is known to produce several bioactive compounds. Screening heterologously expressed genomic libraries of P. tunicata against the nematode Caenorhabditis elegans, identified as an E. coli clone (HG8), shows fast-killing activity. Here we show that clone HG8 produces a novel nematode-killing protein-1 (Nkp-1) harbouring a predicted carbohydrate-binding domain with weak homology to known bacterial pore-forming toxins. We found bacteria expressing Nkp-1 were able to colonise the C. elegans intestine, with exposure to both live bacteria and protein extracts resulting in physical damage and necrosis, leading to nematode death within 24 h of exposure. Furthermore, this study revealed C. elegans dar (deformed anal region) and internal hatching may act as a nematode defence strategy against Nkp-1 toxicity. The characterisation of this novel protein and putative mode of action not only contributes to the development of novel anti-nematode applications in the future but reaffirms the potential of marine epiphytic bacteria as a new source of novel biomolecules.
Collapse
|
8
|
Thammasittirong A, Thammasittirong SNR, Imtong C, Charoenjotivadhanakul S, Sakdee S, Li HC, Okonogi S, Angsuthanasombat C. Bacillus thuringiensis Cry4Ba Insecticidal ToxinExploits Leu 615 in Its C-Terminal Domain to Interact with a Target Receptor- Aedes aegypti Membrane-Bound Alkaline Phosphatase. Toxins (Basel) 2021; 13:toxins13080553. [PMID: 34437424 PMCID: PMC8402544 DOI: 10.3390/toxins13080553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
In addition to the receptor-binding domain (DII), the C-terminal domain (DIII) of three-domain Cry insecticidal δ-endotoxins from Bacillus thuringiensis has been implicated in target insect specificity, yet its precise mechanistic role remains unclear. Here, the 21 kDa high-purity isolated DIII fragment derived from the Cry4Ba mosquito-specific toxin was achieved via optimized preparative FPLC, allowing direct rendering analyses for binding characteristics toward its target receptor—Aedes aegypti membrane-bound alkaline phosphatase (Aa-mALP). Binding analysis via dotblotting revealed that the Cry4Ba-DIII truncate was capable of specific binding to nitrocellulose-bound Aa-mALP, with a binding signal comparable to its 65 kDa Cry4Ba-R203Q full-length toxin. Further determination of binding affinity via sandwich ELISA revealed that Cry4Ba-DIII exhibited a rather weak binding to Aa-mALP with a dissociation constant (Kd) of ≈1.1 × 10−7 M as compared with the full-length toxin. Intermolecular docking between the Cry4Ba-R203Q active toxin and Aa-mALP suggested that four Cry4Ba-DIII residues, i.e., Glu522, Asn552, Asn576, and Leu615, are potentially involved in such toxin–receptor interactions. Ala substitutions of each residue (E522A, N552A, N576A and L615A) revealed that only the L615A mutant displayed a drastic decrease in biotoxicity against A. aegypti larvae. Additional binding analysis revealed that the L615A-impaired toxin also exhibited a reduction in binding capability to the surface-immobilized Aa-mALP receptor, while two bio-inactive DII-mutant toxins, Y332A and F364A, which almost entirely lost their biotoxicity, apparently retained a higher degree of binding activity. Altogether, our data disclose a functional importance of the C-terminal domain of Cry4Ba for serving as a potential receptor-binding moiety in which DIII-Leu615 could conceivably be exploited for the binding to Aa-mALP, highlighting its contribution to toxin interactions with such a target receptor in mediating larval toxicity.
Collapse
Affiliation(s)
- Anon Thammasittirong
- Microbial Biotechnology Unit, Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand;
- Correspondence: (A.T.); (C.A.)
| | - Sutticha Na-Ranong Thammasittirong
- Microbial Biotechnology Unit, Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Chompounoot Imtong
- Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand;
| | - Sathapat Charoenjotivadhanakul
- Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Salaya Campus, Mahidol University, Nakorn Pathom 73170, Thailand; (S.C.); (S.S.)
| | - Somsri Sakdee
- Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Salaya Campus, Mahidol University, Nakorn Pathom 73170, Thailand; (S.C.); (S.S.)
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Siriporn Okonogi
- Research Center of Pharmaceutical Nanotechnology, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Salaya Campus, Mahidol University, Nakorn Pathom 73170, Thailand; (S.C.); (S.S.)
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Laboratory of Synthetic Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai 50130, Thailand
- Correspondence: (A.T.); (C.A.)
| |
Collapse
|
9
|
Bourchookarn W, Bourchookarn A, Imtong C, Li HC, Angsuthanasombat C. His 180 in the pore-lining α4 of the Bacillus thuringiensis Cry4Aa δ-endotoxin is crucial for structural arrangements of the α4-α5 transmembrane hairpin and hence biotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140634. [PMID: 33636413 DOI: 10.1016/j.bbapap.2021.140634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
One proposed toxic mechanism of Bacillus thuringiensis Cry δ-endotoxins involves pore formation in target membranes by the α4-α5 transmembrane hairpin constituting their pore-forming domain. Here, nine selected charged and uncharged polar residues in the pore-lining α4 of the Cry4Aa mosquito-active toxin were substituted with Ala. All mutant toxins, i.e., D169A, R171A, Q173A, H178A, Y179A, H180A, Q182A, N183A and E187A, were over-expressed in Escherichia coli as 130-kDa protoxin inclusions at levels comparable to the wild-type toxin. Bioassays against Aedes aegypti larvae revealed that only H178A and H180A mutants displayed a drastic reduction in biotoxicity, albeit almost complete insolubility observed for H178A, but not for H180A inclusions. Further mutagenic analysis showed that replacements of His180 with charged (Arg, Lys, Asp, Glu), small uncharged polar (Ser, Cys) or small non-polar (Gly, Val) residues severely impaired the biotoxicity, unlike substitutions with relatively large uncharged (Asn, Gln, Leu) or aromatic (Phe, Tyr, Trp) residues. Similar to the trypsin-activated wild-type toxin, both bio-active and -inactive H180 mutants were still capable of releasing entrapped calcein from lipid vesicles and producing cation-selective channels with ~130-pS maximum conductance. Analysis of the Cry4Aa structure revealed the existence of a hydrophobic cavity near the critical His180 side-chain. Analysis of simulated structures revealed that His180-to-smaller residue conversions create a gap disrupting such cavity's hydrophobicity and hence structural arrangements of the α4-α5 hairpin. Altogether, our data disclose a critical involvement in Cry4Aa-biotoxicity of His180 exclusively present in the lumen-facing α4 for providing proper environment for the α4-α5 hairpin prior to membrane-inserted pore formation.
Collapse
Affiliation(s)
- Walairat Bourchookarn
- Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Apichai Bourchookarn
- Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand.
| | - Chompounoot Imtong
- Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chanan Angsuthanasombat
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Laboratory of Synthetic Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai 50230, Thailand; Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
| |
Collapse
|
10
|
Wang Y, Quan Y, Yang J, Shu C, Wang Z, Zhang J, Gatehouse AMR, Tabashnik BE, He K. Evolution of Asian Corn Borer Resistance to Bt Toxins Used Singly or in Pairs. Toxins (Basel) 2019; 11:E461. [PMID: 31390820 PMCID: PMC6723947 DOI: 10.3390/toxins11080461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized pest control, but the benefits of this approach have been reduced by the evolution of resistance in pests. The widely adopted 'pyramid strategy' for delaying resistance entails transgenic crops producing two or more distinct toxins that kill the same pest. The limited experimental evidence supporting this strategy comes primarily from a model system under ideal conditions. Here we tested the pyramid strategy under nearly worst-case conditions, including some cross-resistance between the toxins in the pyramid. In a laboratory selection experiment with an artificial diet, we used Bt toxins Cry1Ab, Cry1F, and Cry1Ie singly or in pairs against Ostrinia furnacalis, one of the most destructive pests of corn in Asia. Under the conditions evaluated, pairs of toxins did not consistently delay the evolution of resistance relative to single toxins.
Collapse
Affiliation(s)
- Yueqin Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yudong Quan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changlong Shu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenying Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Kanglai He
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Erlandson MA, Toprak U, Hegedus DD. Role of the peritrophic matrix in insect-pathogen interactions. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103894. [PMID: 31175854 DOI: 10.1016/j.jinsphys.2019.103894] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 05/12/2023]
Abstract
The peritrophic matrix (PM) is an acellular chitin and glycoprotein layer that lines the invertebrate midgut. The PM has long been considered a physical as well as a biochemical barrier, protecting the midgut epithelium from abrasive food particles, digestive enzymes and pathogens infectious per os. This short review will focus on the latter function, as a barrier to pathogens infectious per os. We focus on the evidence confirming the role of the PM as protective barrier against pathogenic microorganisms of insects, mainly bacteria and viruses, as well as the evolution of a variety of mechanisms used by pathogens to overcome the PM barrier.
Collapse
Affiliation(s)
- Martin A Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada; Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Umut Toprak
- Molecular Entomology Laboratory, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne D Hegedus
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada; Department of Food and Bioproduct Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
12
|
The C-Terminal Domain of the Bacillus thuringiensis Cry4Ba Mosquito-Specific Toxin Serves as a Potential Membrane Anchor. Toxins (Basel) 2019; 11:toxins11020062. [PMID: 30678087 PMCID: PMC6410236 DOI: 10.3390/toxins11020062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
Although the C-terminal domain (DIII) of three-domain Cry insecticidal toxins from Bacillus thuringiensis has been implicated in various biological functions, its exact role still remains to be elucidated. Here, the 21-kDa isolated DIII fragment of the 65-kDa Cry4Ba mosquito-specific toxin was analyzed for its binding characteristics toward lipid-bilayer membranes. When the highly-purified Cry4Ba-DIII protein was structurally verified by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, it revealed the presence of a distinct β-sheet structure, corresponding to its structure embodied in the Cry4Ba crystal structure. Binding analysis via surface plasmon resonance (SPR) spectroscopy revealed that the 21-kDa Cry4Ba-DIII truncate displayed tight binding to immobilized liposome membranes in a two-step manner, exhibiting a dissociation rate constant (kd) comparable to the 65-kDa full-length toxin. Also similar to the Cry4Ba full-length toxin, its isolated DIII truncate was able to anchor a part of its molecule into the immobilized membrane as the SPR signal was still detected after prolonged treatment with proteinase K. However, unlike the full-length active toxin, the DIII truncate was unable to induce membrane permeability of calcein-loaded liposomes or ion-channel formation in planar lipid bilayers. Together, our present data have disclosed a pivotal role of C-terminal DIII in serving as a membrane anchor rather than a pore-forming moiety of the Cry4Ba mosquito-active toxin, highlighting its potential mechanistic contribution to the interaction of the full-length toxin with lipid membranes in mediating toxicity.
Collapse
|
13
|
Radhakrishnan R, Hashem A, Abd_Allah EF. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front Physiol 2017; 8:667. [PMID: 28932199 PMCID: PMC5592640 DOI: 10.3389/fphys.2017.00667] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport, nutrient up-take and the activation of the antioxidant and defense systems. Bacillus association stimulates plant immunity against stresses by altering stress-responsive genes, proteins, phytohormones and related metabolites. This review describes the beneficial effect of Bacillus spp. on crop plants, which improves plant productivity under unfavorable climatic conditions, and the current understanding of the mitigation mechanism of Bacillus spp. in stress-tolerant and/or stress-resistant plants.
Collapse
Affiliation(s)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research InstituteGiza, Egypt
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| |
Collapse
|