1
|
Kerpa S, Schulze VR, Holzapfel M, Cvancar L, Fischer M, Maison W. Decoration of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) with N-oxides increases the T 1 relaxivity of Gd-complexes. ChemistryOpen 2024; 13:e202300298. [PMID: 38224205 PMCID: PMC11230940 DOI: 10.1002/open.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
High complex stability and longitudinal relaxivity of Gd-based contrast agents are important requirements for magnetic resonance imaging (MRI) because they ensure patient safety and contribute to measurement sensitivity. Charged and zwitterionic Gd3+-complexes of the well-known chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) provide an excellent basis for the development of safe and sensitive contrast agents. In this report, we describe the synthesis of DOTA-NOx, a DOTA derivative with four N-oxide functionalities via "click" functionalization of the tetraazide DOTAZA. The resulting complexes Gd-DOTA-NOx and Eu-DOTA-NOx are stable compounds in aqueous solution. NMR-spectroscopic characterization revealed a high excess of the twisted square antiprismatic (TSAP) coordination geometry over square antiprismatic (SAP). The longitudinal relaxivity of Gd-DOTA-NOx was found to be r1=7.7 mm-1 s-1 (1.41 T, 37 °C), an unusually high value for DOTA complexes of comparable weight. We attribute this high relaxivity to the steric influence and an ordering effect on outer sphere water molecules surrounding the complex generated by the strongly hydrated N-oxide groups. Moreover, Gd-DOTA-NOx was found to be stable against transchelation with high excess of EDTA (200 eq) over a period of 36 h, and it has a similar in vitro cell toxicity as clinically used DOTA-based GBCAs.
Collapse
Affiliation(s)
- Svenja Kerpa
- Department of Chemistry, Institute of Pharmacy, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Verena R Schulze
- Fraunhofer Institute for Applied Polymer Research IAP, Center for Applied Nanotechnology CAN, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Malte Holzapfel
- Fraunhofer Institute for Applied Polymer Research IAP, Center for Applied Nanotechnology CAN, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Lina Cvancar
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Wolfgang Maison
- Department of Chemistry, Institute of Pharmacy, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| |
Collapse
|
2
|
Qin L, Xiao J, Yang H, Liang J, Li L, Wu S, Peng D. Rapid immunoassays for the detection of quinoxalines and their metabolites residues in animal-derived foods: A review. Food Chem 2024; 443:138539. [PMID: 38320375 DOI: 10.1016/j.foodchem.2024.138539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 02/08/2024]
Abstract
Quinoxalines are a class of veterinary drugs with antibacterial and growth-promoting functions. They are often widely used to treat and prevent animal diseases and are illegally used as animal growth promoters to increase economic benefits. Quinoxalines could be easily metabolized in animals to various residue markers and remain in animal-derived foods, which would pose a serious threat to human health. Consequently, it is necessary to detect the residues of quinoxalines and their metabolites. This article reviewed and evaluated immunoassays for quinoxalines and their metabolites in animal-derived foods, mainly including enzyme-linked immunosorbent assays, fluorescence immunosorbent assays, immunochromatography, and surface plasmon resonance biosensors. In addition, we deeply explored the design of haptens for quinoxalines and their metabolites and analyzed the effect of haptens on antibody performance. This paper aims to provide guidance and references for their accurate and sensitive detection, thereby ensuring food safety and human public health.
Collapse
Affiliation(s)
- Liangni Qin
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxu Xiao
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongfei Yang
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Jixiang Liang
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Li
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixiang Wu
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Peng
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
3
|
Sulaiman AA, Al-Ansari DE, Ali R, Aouida M, Ramotar D. Mft1, identified from a genome-wide screen of the yeast haploid mutants, mediates cell cycle arrest to counteract quinoxaline-induced toxicity. Front Genet 2024; 14:1296383. [PMID: 38283148 PMCID: PMC10811161 DOI: 10.3389/fgene.2023.1296383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024] Open
Abstract
Quinoxaline is a heterocyclic compound with a two-membered ring structure that undergoes redox cycling to produce toxic free radicals. It has antiviral, antibacterial, antifungal, and antitumor activities. However, the biological functions that are involved in mounting a response against the toxic effects of quinoxaline have not been investigated. Herein, we performed a genome-wide screen using the yeast haploid mutant collection and reported the identification of 12 mutants that displayed varying sensitivity towards quinoxaline. No mutant was recovered that showed resistance to quinoxaline. The quinoxaline-sensitive mutants were deleted for genes that encode cell cycle function, as well as genes that belong to other physiological pathways such as the vacuolar detoxification process. Three of the highly sensitive gene-deletion mutants lack the DDC1, DUN1, and MFT1 genes. While Ddc1 and Dun1 are known to perform roles in the cell cycle arrest pathway, the role of Mft1 remains unclear. We show that the mft1Δ mutant is as sensitive to quinoxaline as the ddc1Δ mutant. However, the double mutant ddc1Δ mft1Δ lacking the DDC1 and MFT1 genes, is extremely sensitive to quinoxaline, as compared to the ddc1Δ and mft1Δ single mutants. We further show that the mft1Δ mutant is unable to arrest in the G2/M phase in response to the drug. We conclude that Mft1 performs a unique function independent of Ddc1 in the cell cycle arrest pathway in response to quinoxaline exposure. This is the first demonstration that quinoxaline exerts its toxic effect likely by inducing oxidative DNA damage causing cell cycle arrest. We suggest that clinical applications of quinoxaline and its derivatives should entail targeting cancer cells with defective cell cycle arrest.
Collapse
Affiliation(s)
- Abdallah Alhaj Sulaiman
- Qatar Foundation, Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Dana E. Al-Ansari
- Qatar Foundation, Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Reem Ali
- Qatar Foundation, Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Mustapha Aouida
- Qatar Foundation, Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Dindial Ramotar
- Qatar Foundation, Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
4
|
Zhanteng S, Xia F, Jingrong Z, Zhiming X, Yang L, Shi W, Decheng S. Multi-residue determination of five quinoxalines and three their metabolites in poultry feathers and its application for depletions of olaquindox and quincetone in chickens. J Pharm Biomed Anal 2023; 236:115684. [PMID: 37666119 DOI: 10.1016/j.jpba.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
A method for the simultaneous determination of eight quinoxalines and their metabolites in poultry feathers was developed in this study using ultra-performance liquid chromatography combine with quadrupole linear ion trap electrostatic field orbit trap high resolution mass spectrometer. Specificity, matrix effect, linearity, trueness, repeatability, reproducibility, and stability using the Commission of the European Communities, Regulation (EU) 2021/808. The correlation coefficients were all greater than 0.99. The average recoveries of the eight compounds ranged from 76.1% to 112.8%, with coefficient of variation of less than 15%. The limits of detection and quantification of the method were 0.04-0.1 μg/kg and 0.12-0.3 μg/kg, respectively. The method has been successfully applied to depletions of olaquindox and quincetone in feathers of laying hens. Methylquinoxaline-2-carboxylic acid and quincetone are the main metabolites in olaquindox and quincetone in feather, respectively.
Collapse
Affiliation(s)
- Song Zhanteng
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China; Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Fan Xia
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Zhu Jingrong
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China.
| | - Xiao Zhiming
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Li Yang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Wang Shi
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Suo Decheng
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
5
|
Buravchenko GI, Shchekotikhin AE. Quinoxaline 1,4-Dioxides: Advances in Chemistry and Chemotherapeutic Drug Development. Pharmaceuticals (Basel) 2023; 16:1174. [PMID: 37631089 PMCID: PMC10459860 DOI: 10.3390/ph16081174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
N-Oxides of heterocyclic compounds are the focus of medical chemistry due to their diverse biological properties. The high reactivity and tendency to undergo various rearrangements have piqued the interest of synthetic chemists in heterocycles with N-oxide fragments. Quinoxaline 1,4-dioxides are an example of an important class of heterocyclic N-oxides, whose wide range of biological activity determines the prospects of their practical use in the development of drugs of various pharmaceutical groups. Derivatives from this series have found application in the clinic as antibacterial drugs and are used in agriculture. Quinoxaline 1,4-dioxides present a promising class for the development of new drugs targeting bacterial infections, oncological diseases, malaria, trypanosomiasis, leishmaniasis, and amoebiasis. The review considers the most important methods for the synthesis and key directions in the chemical modification of quinoxaline 1,4-dioxide derivatives, analyzes their biological properties, and evaluates the prospects for the practical application of the most interesting compounds.
Collapse
|
6
|
Zheng X, Al Naggar Y, Wu Y, Liu D, Hu Y, Wang K, Jin X, Peng W. Untargeted metabolomics description of propolis's in vitro antibacterial mechanisms against Clostridium perfringens. Food Chem 2023; 406:135061. [PMID: 36481515 DOI: 10.1016/j.foodchem.2022.135061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Propolis is a natural resinous substance that is collected by honeybees (Apis mellifera) with promising antibacterial effects. Here, we examined the antibacterial activity of Chinese propolis against Clostridium perfringens, a bacterial pathogen that threatens food safety and causes intestinal erosion. The inhibitory effects of the ethanolic extract of Chinese propolis (CPE) on human-associated C. perfringens strains were determined by using the circle of inhibition, the minimum inhibitory concentrations, and bactericidal concentrations. CPE also induced morphological elongation, bacterial cell wall damage, and intracellular material leakage in C. perfringens. Untargeted HPLC-qTOF-MS-based metabolomics analysis of the bacterial metabolic compounds revealed that propolis triggered glycerophospholipid metabolism, one carbon pool by folate, and d-glutamine and d-glutamate metabolism alterations in C. perfringens. Finally, caffeic acid phenethyl ester was identified as the key active ingredient in CPE. This study suggested the usage of propolis as an alternative to antibiotics in controlling C. perfringens.
Collapse
Affiliation(s)
- Xing Zheng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China; Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Yuchen Wu
- Shanghai High School International Division (SHSID), Shanghai 200231, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Wenjun Peng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
7
|
Nemeikaitė-Čėnienė A, Haberkant P, Kučiauskas D, Stein F, Čėnas N. Redox Proteomic Profile of Tirapazamine-Resistant Murine Hepatoma Cells. Int J Mol Sci 2023; 24:ijms24076863. [PMID: 37047836 PMCID: PMC10094930 DOI: 10.3390/ijms24076863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
3-Amino-1,2,4-benzotriazine-1,4-dioxide (tirapazamine, TPZ) and other heteroaromatic N-oxides (ArN→O) exhibit tumoricidal, antibacterial, and antiprotozoal activities. Their action is attributed to the enzymatic single-electron reduction to free radicals that initiate the prooxidant processes. In order to clarify the mechanisms of aerobic mammalian cytotoxicity of ArN→O, we derived a TPZ-resistant subline of murine hepatoma MH22a cells (resistance index, 5.64). The quantitative proteomic of wild-type and TPZ-resistant cells revealed 5818 proteins, of which 237 were up- and 184 down-regulated. The expression of the antioxidant enzymes aldehyde- and alcohol dehydrogenases, carbonyl reductases, catalase, and glutathione reductase was increased 1.6-5.2 times, whereas the changes in the expression of glutathione peroxidase, superoxide dismutase, thioredoxin reductase, and peroxiredoxins were less pronounced. The expression of xenobiotics conjugating glutathione-S-transferases was increased by 1.6-2.6 times. On the other hand, the expression of NADPH:cytochrome P450 reductase was responsible for the single-electron reduction in TPZ and for the 2.1-fold decrease. These data support the fact that the main mechanism of action of TPZ under aerobic conditions is oxidative stress. The unchanged expression of intranuclear antioxidant proteins peroxiredoxin, glutaredoxin, and glutathione peroxidase, and a modest increase in the expression of DNA damage repair proteins, tend to support non-site-specific but not intranuclear oxidative stress as a main factor of TPZ aerobic cytotoxicity.
Collapse
Affiliation(s)
- Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania
| | - Per Haberkant
- Proteomics Core Facility EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Dalius Kučiauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Frank Stein
- Proteomics Core Facility EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
8
|
Jinno C, Li X, Liu Y. Dietary supplementation of Bacillus subtilis or antibiotics modified intestinal microbiome of weaned pigs under enterotoxigenic Escherichia coli infection. Front Microbiol 2022; 13:1064328. [PMID: 36620005 PMCID: PMC9816667 DOI: 10.3389/fmicb.2022.1064328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Our previous research reported that supplementation of Bacillus subtilis DSM 25841 promoted growth and disease resistance of weaned pigs under enterotoxigenic Escherichia coli (ETEC) challenge and its efficacy is comparable to carbadox. This follow-up study aimed to characterize the effects of ETEC infection, supplementing B. subtilis DSM 25841 or carbadox on intestinal microbiota of pigs. Forty-eight weaned pigs (6.17 ± 0.36 kg BW) were randomly allotted to one of four treatments: negative control (NC), positive control (PC), antibiotics (AGP, 50 mg/kg of carbadox), and direct fed microbials (DFM, 2.56 × 109 CFU/kg of B. subtilis). The experiment lasted 28 days with 7 days before and 21 days after first E. coli inoculation (day 0). Pigs in the PC, AGP, and DFM groups were orally inoculated with F18 ETEC for 3 consecutive days with 1010 CFU per dose per day. Fecal samples were collected on day -7, and day 7 and day 21 post inoculation, digesta samples were collected from jejunum, ileum, and distal colon on day 21 post inoculation to perform 16S rRNA sequencing. Sampling days and locations influenced (p < 0.05) Chao1 index and beta-diversity. Age increased (p < 0.05) the relative abundance of Firmicutes but decreased (p < 0.05) the relative abundance of Bacteroidetes in feces. ETEC infection increased (p < 0.05) the relative abundance of Proteobacteria in feces on day 7 post inoculation. AGP reduced (p < 0.05) relative abundance of Firmicutes and Lactobacillaceae in feces compared with PC and DFM. AGP reduced (p < 0.05) relative abundance of Bifidobacteriaceae in jejunum and ileum, while DFM reduced (p < 0.05) relative abundance of Actinomycetaceae in jejunum and Lachnospiraceae in ileum, compared with PC. Pigs fed with DFM had greater (p < 0.05) relative abundance of Ruminococcaceae, Veillonellaceae, Bifidobacteriaceae in jejunum, Lactobacillaceae in ileum and colon, and Bifidobacteriaceae in colon than pigs in AGP. Current results indicate that carbadox or B. subtilis had stronger influences on microbial diversity and composition in ileum than other intestinal segments and feces. Supplementation of B. subtilis could increase or maintain the relative abundance of beneficial bacteria in ileum compared with carbadox.
Collapse
Affiliation(s)
- Cynthia Jinno
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States,*Correspondence: Yanhong Liu,
| |
Collapse
|
9
|
Agrawal N, Bhardwaj A. An appraisal on synthetic and pharmaceutical perspectives of quinoxaline 1,4-di-N-oxide scaffold. Chem Biol Drug Des 2022; 100:346-363. [PMID: 35610776 DOI: 10.1111/cbdd.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) exhibit multifaceted biological properties, wherein antimicrobial, anticancer, antitrypanosomal, and anti-inflammatory properties are included. Because of their various activities in clinical practice and research, they have a wide spectrum of uses and possibilities. QdNOs have received a significant amount of attention, and research into their medicinal chemistry is still a part of experimental investigation and analytical studies. In this review, QdNOs are classified depending on their actions, which include antibacterial and anti-mycobacterial, anticancer or antitumor, antimalarial, antifungal, and other activities. In a conclusion, it's important to base the development of novel synthetic techniques and the design of new QdNO derivatives on the most up-to-date knowledge gleaned from recent research. With the summarised structure-activity relationship of fascinating QdNOs, this review aims to provide insights into the developments in the chemistry and biological activity of QdNO derivatives.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Aditya Bhardwaj
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
10
|
Buravchenko GI, Maslov DA, Alam MS, Grammatikova NE, Frolova SG, Vatlin AA, Tian X, Ivanov IV, Bekker OB, Kryakvin MA, Dontsova OA, Danilenko VN, Zhang T, Shchekotikhin AE. Synthesis and Characterization of Novel 2-Acyl-3-trifluoromethylquinoxaline 1,4-Dioxides as Potential Antimicrobial Agents. Pharmaceuticals (Basel) 2022; 15:155. [PMID: 35215268 PMCID: PMC8877263 DOI: 10.3390/ph15020155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/25/2023] Open
Abstract
The emergence of drug resistance in pathogens leads to a loss of effectiveness of antimicrobials and complicates the treatment of bacterial infections. Quinoxaline 1,4-dioxides represent a prospective scaffold for search of new compounds with improved chemotherapeutic characteristics. Novel 2-acyl-3-trifluoromethylquinoxaline 1,4-dioxides with alteration of substituents at position 2 and 6 were synthesized via nucleophilic substitution with piperazine moiety and evaluated against a broad panel of bacteria and fungi by measuring their minimal inhibitory concentrations. Their mode of action was assessed by whole-genomic sequencing of spontaneous drug-resistant Mycobacterium smegmatis mutants, followed by comparative genomic analysis, and on an original pDualrep2 system. Most of the 2-acyl-3-trifluoromethylquinoxaline 1,4-dioxides showed high antibacterial properties against Gram-positive strains, including mycobacteria, and the introduction of a halogen atom in the position 6 of the quinoxaline ring further increased their activity, with 13c being the most active compound. The mode of action studies confirmed the DNA-damaging nature of the obtained quinoxaline 1,4-dioxides, while drug-resistance may be provided by mutations in redox homeostasis genes, encoding enzymes potentially involved in the activation of the compounds. This study extends views about the antimicrobial and antifungal activities of the quinoxaline 1,4-dioxides and can potentially lead to the discovery of new antibacterial drugs.
Collapse
Affiliation(s)
- Galina I. Buravchenko
- Gause Institute of New Antibiotics, 119021 Moscow, Russia; (G.I.B.); (N.E.G.); (I.V.I.)
| | - Dmitry A. Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (D.A.M.); (S.G.F.); (A.A.V.); (O.B.B.); (V.N.D.)
| | - Md Shah Alam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (M.S.A.); (X.T.); (T.Z.)
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Svetlana G. Frolova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (D.A.M.); (S.G.F.); (A.A.V.); (O.B.B.); (V.N.D.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Aleksey A. Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (D.A.M.); (S.G.F.); (A.A.V.); (O.B.B.); (V.N.D.)
- Institute of Ecology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (M.S.A.); (X.T.); (T.Z.)
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ivan V. Ivanov
- Gause Institute of New Antibiotics, 119021 Moscow, Russia; (G.I.B.); (N.E.G.); (I.V.I.)
- Organic Chemistry Department, Faculty of Natural Sciences, Mendeleyev University of Chemical Technology, 9 Miusskaya Square, 125190 Moscow, Russia
| | - Olga B. Bekker
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (D.A.M.); (S.G.F.); (A.A.V.); (O.B.B.); (V.N.D.)
| | - Maxim A. Kryakvin
- Chemistry Department, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.A.K.); (O.A.D.)
| | - Olga A. Dontsova
- Chemistry Department, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.A.K.); (O.A.D.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143028 Skolkovo, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (D.A.M.); (S.G.F.); (A.A.V.); (O.B.B.); (V.N.D.)
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (M.S.A.); (X.T.); (T.Z.)
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
11
|
Sviridova DA, Machigov EA, Igonina EV, Zhoshibekova BS, Abilev SK. Studying the Mechanism of Dioxidine Genotoxicity Using Lux Biosensors of Esсherichia coli. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021120098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
DNA interaction, anticancer, antibacterial, ROS and lipid peroxidation studies of quinoxaline based organometallic Re(I) carbonyls. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Quinoxaline 1,4-di-N-oxides: a review of the importance of their structure in the development of drugs against infectious diseases and cancer. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02731-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Metabolomic Profile of Weaned Pigs Challenged with E. coli and Supplemented with Carbadox or Bacillus subtilis. Metabolites 2021; 11:metabo11020081. [PMID: 33573321 PMCID: PMC7911053 DOI: 10.3390/metabo11020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study explored the metabolomic profiles in ileal mucosa and colon digesta in response to enterotoxigenic Escherichia coli F18 (ETEC) infection and dietary use of probiotics and low-dose antibiotics. Weaned pigs (n = 48, 6.17 ± 0.36 kg body weight) were randomly allotted to one of four treatments. Pigs in the negative control (NC) were fed a basal diet without ETEC challenge, whereas pigs in the positive control (PC), antibiotic, and probiotic groups were fed the basal diet, basal diet supplemented with 50 mg/kg of carbadox, or 500 mg/kg of Bacillus subtilis, respectively, and orally challenged with ETEC F18. All pigs were euthanized at day 21 post-inoculation to collect ileal mucosa and colon digesta for untargeted metabolomic profiling using gas chromatography coupled with time-of-flight mass spectrometry. Multivariate analysis highlighted a more distinct metabolomic profile of ileal mucosa metabolites in NC compared to the ETEC-challenged groups. The relative abundance of 19 metabolites from the ileal mucosa including polyamine, nucleotide, monosaccharides, fatty acids, and organic acids was significantly different between the NC and PC groups (q < 0.1). In colon digesta, differential metabolites including 2-monoolein, lactic acid, and maltose were reduced in the carbadox group compared with the probiotics group. In conclusion, several differential metabolites and metabolic pathways were identified in ileal mucosa, which may suggest an ongoing intestinal mucosal repair in the ileum of ETEC-challenged pigs on day 21 post-inoculation.
Collapse
|
15
|
Rivera G. Quinoxaline 1,4-di-N-Oxide Derivatives: Are They Unselective or Selective Inhibitors? Mini Rev Med Chem 2021; 22:15-25. [PMID: 33573542 DOI: 10.2174/1389557521666210126142541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND For decades, the quinoxaline 1,4-di-N-oxide ring has been considered a privileged structure to develop new antibacterial, antitumoural, and antiprotozoal agents, among others, however its mechanism of action is not clear. OBJECTIVE The main aim of this mini-review was to analyze the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives reported as antibacterial, antitumoural and antiprotozoal agents. RESULTS Initially, the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives against bacteria, tumoural cell lines, and parasites has been described as nonspecific, but recently, the results against different organisms have shown that these compounds have an inhibitory action on specific targets such as trypanothione reductase, triosephosphate isomerase, and other essential enzymes. CONCLUSION In summary, quinoxaline 1,4-di-N-oxide is a scaffold to develop new anti-Mycobacterium tuberculosis, antitumoural and antiprotozoal agents, however, understanding the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives in each microorganism could contribute to the development of new, and more potent selective drugs.
Collapse
Affiliation(s)
- Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| |
Collapse
|
16
|
He Y, Kim K, Kovanda L, Jinno C, Song M, Chase J, Li X, Tan B, Liu Y. Bacillus subtilis: a potential growth promoter in weaned pigs in comparison to carbadox. J Anim Sci 2020; 98:5900678. [PMID: 32877510 DOI: 10.1093/jas/skaa290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
The study was conducted to investigate the efficacy of a probiotic Bacillus subtilis strain on growth performance, diarrhea, systemic immunity, and intestinal health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli and to compare the efficacy of B. subtilis with that of carbadox. Weaned pigs (n = 48, 6.17 ± 0.36 kg body weight [BW]) were individually housed in disease containment rooms and randomly allotted to one of four dietary treatments: negative control (NC, control diet without E. coli challenge), positive control (PC, control diet with E. coli challenge), and supplementation of 50 mg/kg of carbadox (antibiotic growth promotor [AGP]) or 2.56 × 109 CFU/kg of B. subtilis probiotics (PRO). The experiment lasted for 28 d with 7 d before and 21 d after the first E. coli inoculation. Fecal and blood samples were collected on days 0, 3, 7, 14, and 21 post inoculation (PI) to analyze β-hemolytic coliforms and complete blood cell count, respectively. Diarrhea score was recorded daily for each pig to calculate the frequency of diarrhea. All pigs were euthanized at day 21 PI to collect jejunal and ileal mucosa for gene expression analysis. Pigs in AGP had greater (P < 0.05) BW on days 7, 14, and 21 PI than pigs in PC and PRO groups. Supplementation of PRO enhanced pigs' BW on day 21 PI compared with the PC. Escherichia coli F18 challenge reduced (P < 0.05) average daily gain (ADG) and feed efficiency from day 0 to 21 PI, while supplementation of carbadox or PRO enhanced ADG and feed efficiency in E. coli F18-challenged pigs from day 0 to 21 PI. Pigs in AGP and PRO groups had reduced (P < 0.05) frequency of diarrhea throughout the experiment and fecal β-hemolytic coliforms on day 7 PI than pigs in the PC. Pigs in PRO had greater (P < 0.05) gene expression of CLDN1 in jejunal mucosa than pigs in the PC. Supplementation of carbadox or PRO reduced (P < 0.05) the gene expression of IL6 and PTGS2 in ileal mucosa of E. coli-infected pigs compared with pigs in the PC. Pigs in the PRO group had lower (P < 0.05) white blood cell number and neutrophil count, and serum haptoglobin concentration on day 7 PI, and less (P < 0.05) monocyte count on day 14 PI, compared with PC. In conclusion, supplementation of probiotic B. subtilis could enhance disease resistance and promote the growth performance of weaned pigs under disease challenge conditions. The potential mechanisms include but not limited to enhanced gut barrier integrity and local and systemic immune responses of weaned pigs.
Collapse
Affiliation(s)
- Yijie He
- Department of Animal Science, University of California, Davis, CA
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA
| | - Cynthia Jinno
- Department of Animal Science, University of California, Davis, CA
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jennifer Chase
- School of Veterinary Medicine, University of California, Davis, CA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA
| |
Collapse
|
17
|
Nemeikaitė-Čėnienė A, Šarlauskas J, Misevičienė L, Marozienė A, Jonušienė V, Lesanavičius M, Čėnas N. Aerobic Cytotoxicity of Aromatic N-Oxides: The Role of NAD(P)H:Quinone Oxidoreductase (NQO1). Int J Mol Sci 2020; 21:ijms21228754. [PMID: 33228195 PMCID: PMC7699506 DOI: 10.3390/ijms21228754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
Derivatives of tirapazamine and other heteroaromatic N-oxides (ArN→O) exhibit tumoricidal, antibacterial, and antiprotozoal activities, which are typically attributed to bioreductive activation and free radical generation. In this work, we aimed to clarify the role of NAD(P)H:quinone oxidoreductase (NQO1) in ArN→O aerobic cytotoxicity. We synthesized 9 representatives of ArN→O with uncharacterized redox properties and examined their single-electron reduction by rat NADPH:cytochrome P-450 reductase (P-450R) and Plasmodium falciparum ferredoxin:NADP+ oxidoreductase (PfFNR), and by rat NQO1. NQO1 catalyzed both redox cycling and the formation of stable reduction products of ArN→O. The reactivity of ArN→O in NQO1-catalyzed reactions did not correlate with the geometric average of their activity towards P-450R- and PfFNR, which was taken for the parameter of their redox cycling efficacy. The cytotoxicity of compounds in murine hepatoma MH22a cells was decreased by antioxidants and the inhibitor of NQO1, dicoumarol. The multiparameter regression analysis of the data of this and a previous study (DOI: 10.3390/ijms20184602) shows that the cytotoxicity of ArN→O (n = 18) in MH22a and human colon carcinoma HCT-116 cells increases with the geometric average of their reactivity towards P-450R and PfFNR, and with their reactivity towards NQO1. These data demonstrate that NQO1 is a potentially important target of action of heteroaromatic N-oxides.
Collapse
Affiliation(s)
- Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Jonas Šarlauskas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Lina Misevičienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Audronė Marozienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Violeta Jonušienė
- Institute of Biosciences of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| | - Mindaugas Lesanavičius
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
- Correspondence: ; Tel.: +370-5-223-4392
| |
Collapse
|
18
|
Gu Y, Wang S, Huang L, Sa W, Li J, Huang J, Dai M, Cheng G. Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox. Antibiotics (Basel) 2020; 9:E791. [PMID: 33182563 PMCID: PMC7696260 DOI: 10.3390/antibiotics9110791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/31/2023] Open
Abstract
Quinoxaline1,4-di-N-oxides (QdNOs) are a class of important antibacterial drugs of veterinary use, of which the drug resistance mechanism has not yet been clearly explained. This study investigated the molecular mechanism of development of resistance in Escherichia coli (E. coli) under the pressure of sub-inhibitory concentration (sub-MIC) of olaquindox (OLA), a representative QdNOs drug. In vitro challenge of E. coli with 1/100× MIC to 1/2× MIC of OLA showed that the bacteria needed a longer time to develop resistance and could only achieve low to moderate levels of resistance as well as form weak biofilms. The transcriptomic and genomic profiles of the resistant E. coli induced by sub-MIC of OLA demonstrated that genes involved in tricarboxylic acid cycle, oxidation-reduction process, biofilm formation, and efflux pumps were up-regulated, while genes involved in DNA repair and outer membrane porin were down-regulated. Mutation rates were significantly increased in the sub-MIC OLA-treated bacteria and the mutated genes were mainly involved in the oxidation-reduction process, DNA repair, and replication. The SNPs were found in degQ, ks71A, vgrG, bigA, cusA, and DR76-4702 genes, which were covered in both transcriptomic and genomic profiles. This study provides new insights into the resistance mechanism of QdNOs and increases the current data pertaining to the development of bacterial resistance under the stress of antibacterials at sub-MIC concentrations.
Collapse
Affiliation(s)
- Yufeng Gu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuge Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Sa
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
| | - Jun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
| | - Junhong Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Menghong Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
| | - Guyue Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Buravchenko GI, Scherbakov AM, Korlukov AА, Dorovatovskii PV, Shchekotikhin AE. Revision of the Regioselectivity of the Beirut Reaction of Monosubstituted Benzofuroxans with Benzoylacetonitrile. 6-Substituted quinoxaline-2-carbonitrile 1,4- dioxides: Structural Characterization and Estimation of Anticancer Activity and Hypoxia Selectivity. Curr Org Synth 2020; 17:29-39. [PMID: 32103715 DOI: 10.2174/1570179416666191210100754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quinoxaline 1,4-dioxides have a broad range of biological activity that causes a growing interest in their derivatives for drug discovery. Recent studies demonstrated that quinoxaline 1,4- dioxides have a promising anticancer activity and good hypoxia-selectivity. OBJECTIVE The preparation, isolation, structure characterization, and screening for anticancer activity of the first representatives of 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides have been described. MATERIALS AND METHODS A series of 7- and 6-halogeno-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides was synthesized by the Beirut reaction. The cytotoxicity was assessed by MTT test (72 h incubation) in normoxia (21% O2) and hypoxia (1% O2) conditions. RESULTS We found that during the Beirut reaction between a benzofuroxan bearing an electron withdrawing group and benzoylacetonitrile in the presence of triethylamine, in addition to well-known 7-substituted quinoxaline-2-carbonitrile 1,4-dioxides 7-11a, the 6-isomers 7-11b are formed. Moreover, the yield of the 6- isomers increased with the increase in the electron-withdrawing character of the substituent. For benzofuroxans with CO2Me and CF3 groups, 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides 10-11b were the major products. Despite similarities in physicochemical and spectroscopic properties, the obtained isomers exhibit considerable differences in their anticancer activity and hypoxia selectivity. CONCLUSION Substituents and their electronic effects play a key role in the formation of 7- and 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides in the Beirut reaction and in the cytotoxicity properties of the obtained isomers.
Collapse
Affiliation(s)
- Galina I Buravchenko
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russian Federation.,Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russian Federation
| | - Alexander M Scherbakov
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye sh., Moscow 115522, Russian Federation
| | - Alexander А Korlukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., Moscow 119991, Russian Federation.,Pirogov Russian National Research Medical University, 1 Ostrovitianov str., Moscow 117997, Russian Federation
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova pl., Moscow 123182, Russian Federation
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russian Federation.,Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russian Federation
| |
Collapse
|
20
|
Antibacterial activity of cyadox against Clostridium perfringens in broilers and a dosage regimen design based on pharmacokinetic-pharmacodynamic modeling. Microb Pathog 2020; 141:103981. [PMID: 31962185 DOI: 10.1016/j.micpath.2020.103981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/29/2022]
Abstract
Necrotic enteritis is an intestinal disease caused by Clostridium perfringens (C. perfringens) that results in high economic losses to the poultry industry. The purpose of this study was to investigate the antibacterial activity of cyadox against C. perfringens and to formulate its dosage regimen based on pharmacokinetics/pharmacodynamics (PK/PD) modeling in broilers. The PK parameters of cyadox in ileum of healthy and infected broilers following oral administration at 30 mg/kg body weight (BW) were investigated and PD study the MIC, MBC, MPC, and PAE were determined. The time-killing curves were established in vitro and ex vivo to evaluate the antibacterial activity of cyadox against C. perfringens. The results revealed that the MIC of cyadox against C. perfringens was 1-16 μg/mL. After oral administration of cyadox, the peak concentration (Cmax), maximum concentration time (Tmax), and area under the concentration-time curve (AUC) in ileum content of broilers were 143.55-161.48 μg/mL, 1.08-1.25 h, and 359.51-405.69 μg h/mL respectively. After Integrating the in vivo PK and ex vivo PD data the AUC24h/MIC values needed for bacteriostatic, bactericidal and bacterial eradication were 27.71 h, 78.93 h, and 165.14 h, respectively. By model validation, the cure rate was 85.71%. In conclusion, a dosage regimen of 14.02 mg/kg repeated after every 12 h for 3-5days was expected to be therapeutically effective in broilers against C. perfringens with MIC ≤2 μg/mL.
Collapse
|
21
|
Ahammed KS, Pal R, Chakraborty J, Kanungo A, Purnima PS, Dutta S. DNA Structural Alteration Leading to Antibacterial Properties of 6-Nitroquinoxaline Derivatives. J Med Chem 2019; 62:7840-7856. [PMID: 31390524 DOI: 10.1021/acs.jmedchem.9b00599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structural integrity of the bacterial genome plays an important role in bacterial survival. Cellular consequences of an intolerable amount of change in the DNA structure are not well understood in bacteria. Here we have stated that binding of synthetic 6-nitroquinoxaline derivatives with DNA led to change in its global structure, subsequently culminating with over-supercoiled form through in-path intermediates. This structural change results in induction of programmed cell death like physiological hallmarks, which is dependent on substitution driven structural modulation properties of the scaffold. A sublethal dose of a representative derivative, 3a, significantly inhibits DNA synthesis, produces fragmented nucleoids, and alters membrane architecture. We have also shown that exposure to the compound changes the native morphology of Staphylococcus aureus cells and significantly disrupts preformed biofilms. Thus, our study gives new insight into bacterial responses to local or global DNA structural changes induced by 6-nitroquinoxaline small molecules.
Collapse
Affiliation(s)
- Khondakar Sayef Ahammed
- Organic and Medicinal Chemistry Division , CSIR- Indian Institute of Chemical Biology 4 , Raja S.C.Mullick Road , Kolkata , 700032 West Bengal , India
| | - Ritesh Pal
- Organic and Medicinal Chemistry Division , CSIR- Indian Institute of Chemical Biology 4 , Raja S.C.Mullick Road , Kolkata , 700032 West Bengal , India.,Academy of Scientific and Innovative Research (AcSIR) , Kolkata , 700032 West Bengal , India
| | - Jeet Chakraborty
- Organic and Medicinal Chemistry Division , CSIR- Indian Institute of Chemical Biology 4 , Raja S.C.Mullick Road , Kolkata , 700032 West Bengal , India
| | - Ajay Kanungo
- Organic and Medicinal Chemistry Division , CSIR- Indian Institute of Chemical Biology 4 , Raja S.C.Mullick Road , Kolkata , 700032 West Bengal , India.,Academy of Scientific and Innovative Research (AcSIR) , Kolkata , 700032 West Bengal , India
| | - Polnati Sravani Purnima
- Organic and Medicinal Chemistry Division , CSIR- Indian Institute of Chemical Biology 4 , Raja S.C.Mullick Road , Kolkata , 700032 West Bengal , India
| | - Sanjay Dutta
- Organic and Medicinal Chemistry Division , CSIR- Indian Institute of Chemical Biology 4 , Raja S.C.Mullick Road , Kolkata , 700032 West Bengal , India.,Academy of Scientific and Innovative Research (AcSIR) , Kolkata , 700032 West Bengal , India
| |
Collapse
|
22
|
Novel Electrochemical Sensor Fabricated for Individual and Simultaneous Ultrasensitive Determination of Olaquindox and Carbadox Based on MWCNT-OH/CMK-8 Hybrid Nanocomposite Film. Molecules 2019; 24:molecules24173041. [PMID: 31443345 PMCID: PMC6749216 DOI: 10.3390/molecules24173041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
A hybrid nanocomposite consisting of hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) and cube mesoporous carbon (CMK-8) was applied in this study to construct an MWCNT-OH/CMK-8/gold electrode (GE) electrochemical sensor and simultaneously perform the electro-reduction of olaquindox (OLA) and carbadox (CBX). The respective peak currents of CBX and OLA on the modified electrode increased by 720- and 595-fold relative to the peak current of GE. The performances of the modified electrode were investigated with electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Then, the modified electrodes were used for the individual and simultaneous determination of OLA and CBX. The fabricated sensor demonstrated a linear response at 0.2-500 nmol/L in optimum experimental conditions, and the detection limits were 104.1 and 62.9 pmol/L for the simultaneous determination of OLA and CBX, respectively. As for individual determination, wide linear relationships were obtained for the detected OLA with levels of 0.05-500 nmol/L with LOD of 20.7 pmol/L and the detected CBX with levels of 0.10-500 nmol/L with LOD of 50.2 pmol/L. The fabricated sensor was successfully used in the independent and simultaneous determination of OLA and CBX in spiked pork samples.
Collapse
|
23
|
Bonilla-Ramírez L, Galiano S, Quiliano M, Aldana I, Pabón A. Primaquine-quinoxaline 1,4-di-N-oxide hybrids with action on the exo-erythrocytic forms of Plasmodium induce their effect by the production of reactive oxygen species. Malar J 2019; 18:201. [PMID: 31217011 PMCID: PMC6582477 DOI: 10.1186/s12936-019-2825-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background The challenge in anti-malarial chemotherapy is based on the emergence of resistance to drugs and the search for medicines against all stages of the life cycle of Plasmodium spp. as a therapeutic target. Nowadays, many molecules with anti-malarial activity are reported. However, few studies about the cellular and molecular mechanisms to understand their mode of action have been explored. Recently, new primaquine-based hybrids as new molecules with potential multi-acting anti-malarial activity were reported and two hybrids of primaquine linked to quinoxaline 1,4-di-N-oxide (PQ–QdNO) were identified as the most active against erythrocytic, exoerythrocytic and sporogonic stages. Methods To further understand the anti-malarial mode of action (MA) of these hybrids, hepg2-CD81 were infected with Plasmodium yoelii 17XNL and treated with PQ–QdNO hybrids during 48 h. After were evaluated the production of ROS, the mitochondrial depolarization, the total glutathione content, the DNA damage and proteins related to oxidative stress and death cell. Results In a preliminary analysis as tissue schizonticidals, these hybrids showed a mode of action dependent on peroxides production, but independent of the activation of transcription factor p53, mitochondrial depolarization and arrest cell cycle. Conclusions Primaquine–quinoxaline 1,4-di-N-oxide hybrids exert their antiplasmodial activity in the exoerythrocytic phase by generating high levels of oxidative stress which promotes the increase of total glutathione levels, through oxidation stress sensor protein DJ-1. In addition, the role of HIF1a in the mode of action of quinoxaline 1,4-di-N-oxide is independent of biological activity.
Collapse
Affiliation(s)
- Leonardo Bonilla-Ramírez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia (UdeA), Sede de Investigación Universitaria (SIU), Medellín, Colombia.,GIEPRONAL, Escuela de Ciencias Básicas Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, Medellín, 050012, Colombia
| | - Silvia Galiano
- Institute of Tropical Health (ISTUN), Universidad de Navarra, Campus Universitario, 31008, Pamplona, Spain.,Department of Organic and Pharmaceutical Chemistry, Universidad de Navarra, Facultad de Farmacia y Nutrición, Campus Universitario, 31008, Pamplona, Spain
| | - Miguel Quiliano
- Centre for Research and Innovation, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), 15023, Lima, Peru
| | - Ignacio Aldana
- Institute of Tropical Health (ISTUN), Universidad de Navarra, Campus Universitario, 31008, Pamplona, Spain.,Department of Organic and Pharmaceutical Chemistry, Universidad de Navarra, Facultad de Farmacia y Nutrición, Campus Universitario, 31008, Pamplona, Spain
| | - Adriana Pabón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia (UdeA), Sede de Investigación Universitaria (SIU), Medellín, Colombia.
| |
Collapse
|
24
|
Liu Q, Lei Z, Gu C, Guo J, Yu H, Fatima Z, Zhou K, Shabbir MAB, Maan MK, Wu Q, Xie S, Wang X, Yuan Z. Mequindox induces apoptosis, DNA damage, and carcinogenicity in Wistar rats. Food Chem Toxicol 2019; 127:270-279. [PMID: 30922968 DOI: 10.1016/j.fct.2019.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
Mequindox (MEQ) is a synthetic antibacterial agent. Recent studies showed that MEQ and its primary metabolites exhibit strong genotoxicity to mammalian cells, and MEQ induced carcinogenicity in mice. These findings suggest that chronic exposure to MEQ could lead to an increased risk of cancer later in life. In the present study, four groups of Wistar rats (55 rats/sex/group) were fed with diets containing MEQ (0, 25, 55, and 110 mg/kg) for 2 years. The results showed that the hematological system, liver, kidneys, and adrenal glands, as well as the developmental and reproductive systems, were the main targets for MEQ. Liver toxicity mediated by MEQ was associated with apoptosis and the nuclear factor κB (NF-κB) signaling pathway. In addition, MEQ increased the incidence of tumors in rats. Phosphorylated histone H2AX (γ-H2AX) is identified as a biomarker of cellular response to DNA double-strand breaks (DSB). Our data demonstrated that γ-H2AX expression was significantly increased in tumors. Thus, high levels of DSB might be responsible for carcinogenesis in rats, and further investigation is absolutely required to clarify the exact molecular mechanisms for carcinogenicity caused by MEQ in vivo.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Zhixin Lei
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Changqin Gu
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jingchao Guo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huiru Yu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zainab Fatima
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kaixiang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Muhammad A B Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Muhammad Kashif Maan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
25
|
Signaling pathways involved in the expression of SZNF and the target genes binding with SZNF related to cyadox. Biomed Pharmacother 2018; 108:1879-1893. [DOI: 10.1016/j.biopha.2018.09.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022] Open
|
26
|
Liu Q, Lei Z, Zhou K, Yu H, Liu S, Sun Q, Wang X, Dai M, Yuan Z. N-O Reduction and ROS-Mediated AKT/FOXO1 and AKT/P53 Pathways Are Involved in Growth Promotion and Cytotoxicity of Cyadox. Chem Res Toxicol 2018; 31:1219-1229. [PMID: 30265530 DOI: 10.1021/acs.chemrestox.8b00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyadox is a novel derivative of quinoxaline-1,4-dioxides (QdNOs) with the potential to be developed as a feed additive. However, the pharmacological and toxicological bioactive molecules of cyadox and the molecular mechanism of its pharmacological and toxic actions remain unclear. In the present study, cyadox and its main metabolites of cy1, cy4, cy6, and cy12 were selected; the growth promotion characteristic was indicated by the mRNA level of EGF; and the cytotoxicity of cyadox was determined by methylthiazol tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release, and Annexin V-FITC/PI apoptosis detection kit with flow cytometry. The intracellular ROS, cyclin D1, and Akt/P53/FOXO1 signaling pathway were also investigated. Our data suggested that cyadox showed relatively higher activity than its metabolites, and the ROS was generated from N-O reduction of cyadox. Moreover, cyadox (2 μM) activated the Akt and increased the EGF, cyclin D1, and FOXO1 expression levels. Cyadox (100 μM) induced cytotoxicity in L02 cells in a concentration- and time-dependent manner. Additionally, the activated P53 pathway, hyperactivated Akt, and apoptosis were found in L02 cells after incubation with 100 μM cyadox. Our data demonstrated that Akt promoted cell survival when it was mildly activated by cyadox at 2 μM, and Akt leads to apoptosis when it was severely activated by cyadox at 100 μM. Thus, the present study revealed that N-O reduction of cyadox and ROS-mediated AKT/FOXO1 and AKT/P53 pathways were involved in growth promotion and cytotoxicity of cyadox.
Collapse
Affiliation(s)
| | | | - Kaixiang Zhou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Huiru Yu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Shenhe Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Qiliang Sun
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Xu Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Menghong Dai
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Zonghui Yuan
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| |
Collapse
|
27
|
Synthesis of pyrazolo-1,2,4-triazolo[4,3-a]quinoxalines as antimicrobial agents with potential inhibition of DHPS enzyme. Future Med Chem 2018; 10:2155-2175. [PMID: 30088415 DOI: 10.4155/fmc-2018-0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM The development of a new class of antimicrobial agents is the optimal lifeline to scrap the escalating jeopardy of drug resistance. EXPERIMENTAL This study aims to design and synthesize a series of pyrazolo-1,2,4-triazolo[4,3-a]quinoxalines, to develop agents having antimicrobial activity through potential inhibition of dihyropteroate synthase enzyme. The target compounds have been evaluated for their in-vitro antimicrobial activity. RESULTS & DISCUSSION Compounds 5b, 5c were equipotent (minimal inhibitory concentration = 12.5 μg/ml) to ampicillin. The docking patterns of 5b and 5c demonstrated that both fit into Bacillus Anthracis dihydropteroate synthase pterin and p-amino benzoic acid-binding pockets. Moreover, their physicochemical properties and pharmacokinetic profiles recommend that they can be considered drug-like candidates. The results highlight some significant information for the future design of lead compounds as antimicrobial agents.
Collapse
|
28
|
Liu Q, Lei Z, Wu Q, Awais I, Shabbir MAB, Ahmed S, Fatima Z, Wang X, Pan Y, Xie S, Yuan Z. The Reproductive Toxicity of Mequindox in a Two-Generation Study in Wistar Rats. Front Pharmacol 2018; 9:870. [PMID: 30186160 PMCID: PMC6113877 DOI: 10.3389/fphar.2018.00870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/18/2018] [Indexed: 01/16/2023] Open
Abstract
Mequindox (MEQ), belonging to quinoxaline-di-N-oxides (QdNOs), has been extensively used as a synthetic antibacterial agent. To evaluate the reproductive toxicity of MEQ, different concentrations of MEQ were administered to Wistar rats by feeding diets containing 0, 25, 55, 110, and 275 mg/kg, respectively. Each group consisting of 25 males and 25 females (F0) was treated with different concentrations of MEQ for 12-week period time, prior to mating and during mating, gestation, parturition and lactation. At weaning, 25 males and 25 females of F1 generation weanlings per group were randomly selected as parents for the F2 generation. Selected F1 weanlings were exposed to the same diet and treatment as their parents. The number of live litter and indexes of mating and fertility were significantly decreased in the F1 and F2 generation at 110 and 275 mg/kg groups. Significant decrease in pup vitality during lactation was observed in F1 litter at 275 mg/kg group, in F2 litter at 55, 110, and 275 mg/kg groups. A downward trend in the body weights was observed in F1 pups at 55, 110, and 275 mg/kg MEQ groups, and in F2 pups at 110 and 275 mg/kg MEQ groups. The changed levels of ALT, AST, CREA, BUN, UA, Na, and K were noted in the serum of rats. The histopathologic examination showed that MEQ induced toxicity in the liver, kidney, adrenal, uterus and testis. The no-observed-adverse-effect level (NOAEL) for reproduction toxicity of MEQ was 25 mg/kg diet. The malformations and severe maternal toxicity of MEQ caused adverse effects on the conceptus and embryo, which result in fetal malformations and fetal deaths. In summary, the present study showed that MEQ induced maternal, embryo and reproductive toxicities as well as teratogenicity in rats.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Zhixin Lei
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qin Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Ihsan Awais
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Muhammad A B Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Saeed Ahmed
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zainab Fatima
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
29
|
Liu Q, Lei Z, Guo J, Liu A, Lu Q, Fatima Z, Khaliq H, Shabbir MAB, Maan MK, Wu Q, Dai M, Wang X, Pan Y, Yuan Z. Mequindox-Induced Kidney Toxicity Is Associated With Oxidative Stress and Apoptosis in the Mouse. Front Pharmacol 2018; 9:436. [PMID: 29765325 PMCID: PMC5938394 DOI: 10.3389/fphar.2018.00436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/12/2018] [Indexed: 12/29/2022] Open
Abstract
Mequindox (MEQ), belonging to quinoxaline-di-N-oxides (QdNOs), is a synthetic antimicrobial agent widely used in China. Previous studies found that the kidney was one of the main toxic target organs of the QdNOs. However, the mechanisms underlying the kidney toxicity caused by QdNOs in vivo still remains unclear. The present study aimed to explore the molecular mechanism of kidney toxicity in mice after chronic exposure to MEQ. MEQ led to the oxidative stress, apoptosis, and mitochondrial damage in the kidney of mice. Meanwhile, MEQ upregulated Bax/Bcl-2 ratio, disrupted mitochondrial permeability transition pores, caused cytochrome c release, and a cascade activation of caspase, eventually induced apoptosis. The oxidative stress mediated by MEQ might led to mitochondria damage and apoptosis in a mitochondrial-dependent apoptotic pathway. Furthermore, upregulation of the Nrf2-Keap1 signaling pathway was also observed. Our findings revealed that the oxidative stress, mitochondrial dysfunction, and the Nrf2-Keap1 signaling pathway were associated with the kidney apoptosis induced by MEQ in vivo.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Zhixin Lei
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Jingchao Guo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Aimei Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qirong Lu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zainab Fatima
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Muhammad A B Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Kashif Maan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
30
|
Liu Q, Lei Z, Wu Q, Huang D, Xie S, Wang X, Pan Y, Yuan Z. Mequindox Induced Genotoxicity and Carcinogenicity in Mice. Front Pharmacol 2018; 9:361. [PMID: 29692735 PMCID: PMC5902691 DOI: 10.3389/fphar.2018.00361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
Mequindox (MEQ), acting as an inhibitor of deoxyribonucleic acid (DNA) synthesis, is a synthetic heterocyclic N-oxides. To investigate the potential carcinogenicity of MEQ, four groups of Kun-Ming (KM) mice (50 mice/sex/group) were fed with diets containing MEQ (0, 25, 55, and 110 mg/kg) for one and a half years. The result showed adverse effects on body weights, feed consumption, hematology, serum chemistry, organ weights, relative organ weights, and incidence of tumors during most of the study period. Treatment-related changes in hematology, serum chemistry, relative weights and histopathological examinations revealed that the hematological system, liver, kidneys, and adrenal glands, as well as the developmental and reproductive system, were the main targets after MEQ administration. Additionally, MEQ significantly increased the frequency of micronucleated normochromatic erythrocytes in bone marrow cells of mice. Furthermore, MEQ increased the incidence of tumors, including mammary fibroadenoma, breast cancer, corticosuprarenaloma, haemangiomas, hepatocarcinoma, and pulmonary adenoma. Interestingly, the higher incidence of tumors was noted in M25 mg/kg group, the lowest dietary concentration tested, which was equivalent to approximately 2.25 and 1.72 mg/kg b.w./day in females and males, respectively. It was assumed that the lower toxicity might be a reason for its higher tumor incidence in M25 mg/kg group. This finding suggests a potential relationships among the dose, general toxicity and carcinogenicity in vivo, and further study is required to reveal this relationship. In conclusion, the present study demonstrates that MEQ is a genotoxic carcinogen in KM mice.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhixin Lei
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Deyu Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
31
|
Liu Q, Lei Z, Huang A, Lu Q, Wang X, Ahmed S, Awais I, Yuan Z. Mechanisms of the Testis Toxicity Induced by Chronic Exposure to Mequindox. Front Pharmacol 2017; 8:679. [PMID: 29018347 PMCID: PMC5622959 DOI: 10.3389/fphar.2017.00679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Mequindox (MEQ) is a synthetic antimicrobial agent widely used in China since the 1980s. Although the toxicity of MEQ is well recognized, its testis toxicity has not been adequately investigated. In the present study, we provide evidence that MEQ triggers oxidative stress, mitochondrion dysfunction and spermatogenesis deficiency in mice after exposure to MEQ (0, 25, 55, and 110 mg/kg in the diet) for up to 18 months. The genotoxicity and adrenal toxicity may contribute to sperm abnormalities caused by MEQ. Moreover, using LC/MS-IT-TOF analysis, two metabolites, 3-methyl-2-(1-hydroxyethyl) quinoxaline-N4-monoxide (M4) and 3-methyl-2-(1-hydroxyethyl) quinoxaline-N1-monoxide (M8), were detected in the serum of mice, which directly confirms the relationship between the N→O group reduction metabolism of MEQ and oxidative stress. Interestingly, only M4 was detected in the testes, suggesting that the higher reproductive toxicity of M4 than M8 might be due to the increased stability of M4-radical (M4-R) compared to M8-radical (M8-R). Furthermore, the expression of the blood-testis barrier (BTB)-associated junctions such as tight junctions, gap junctions and basal ectoplasmic specializations were also examined. The present study demonstrated for the first time the role of the M4 in testis toxicity, and illustrated that the oxidative stress, mitochondrion dysfunction and interference in spermatogenesis, as well as the altered expression of BTB related junctions, were involved in the reproductive toxicity mediated by MEQ in vivo.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Zhixin Lei
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Anxiong Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qirong Lu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Xu Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Saeed Ahmed
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Ihsan Awais
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
32
|
Peng T, Pei X, Zheng Y, Wang J, Wang Q, Li J, Xia X, Jiang H. Performance of fluorescence microspheres-based immunochromatography in simultaneous monitoring of five quinoxalines. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1354357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Tao Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xingyao Pei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yongjun Zheng
- Department of Mechanical and Electrical Engineering, College of Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Jianyi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Qi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jiancheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xi Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
33
|
Yan L, Xie S, Chen D, Pan Y, Tao Y, Qu W, Liu Z, Yuan Z, Huang L. Pharmacokinetic and pharmacodynamic modeling of cyadox against Clostridium perfringens in swine. Sci Rep 2017. [PMID: 28642571 PMCID: PMC5481453 DOI: 10.1038/s41598-017-03970-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was to evaluate the activity of cyadox against Clostridium perfringens in swine and optimize the dosage regimen using ex vivo pharmacokinetic-pharmacodynamic (PK-PD) modeling. After oral administration, the ileum fluid of pigs containing the free cyadox was collected by implanted ultrafiltration probes. The Tmax, AUC24h, and CL/F of free cyadox in the ileum fluid were 1.96 h, 106.40 μg/h/mL, and 0.27 L/kg/h, respectively. Cyadox displayed a concentration-dependent killing action against C. perfrignens. The minimum inhibitory concentration (MIC) of cyadox against 60 clinical isolates ranged from 0.5 to 8 μg/mL, with MIC50 and MIC90 values of 2 and 4 μg/mL, respectively. The MIC was 2 μg/mL against the pathogenic C. perfrignens isolate CPFK122995 in both broth and ileum fluid. According to the inhibitory sigmoid Emax modeling, the AUC24h/MIC ratios of ileum fluid required to achieve the bacteriostatic, bactericidal, and virtual bacterial elimination effects were 26.72, 39.54, and 50.69 h, respectively. Monte Carlo simulations for the 90% target attainment rate (TAR) predicted daily doses of 29.30, 42.56, and 54.50 mg/kg over 24 h to achieve bacteriostatic, bactericidal, and elimination actions, respectively. The results of this study suggest that cyadox is a promising antibacterial agent for the treatment of C. perfringens infections, and can be used to inform its clinical use.
Collapse
Affiliation(s)
- Lei Yan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yanfei Tao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - ZhenLi Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
34
|
Domínguez Á, Muñoz E, López MC, Cordero M, Martínez JP, Viñas M. Transcriptomics as a tool to discover new antibacterial targets. Biotechnol Lett 2017; 39:819-828. [PMID: 28289911 DOI: 10.1007/s10529-017-2319-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
The emergence of antibiotic-resistant pathogens, multiple drug-resistance, and extremely drug-resistant strains demonstrates the need for improved strategies to discover new drug-based compounds. The development of transcriptomics, proteomics, and metabolomics has provided new tools for global studies of living organisms. However, the compendium of expression profiles produced by these methods has introduced new scientific challenges into antimicrobial research. In this review, we discuss the practical value of transcriptomic techniques as well as their difficulties and pitfalls. We advocate the construction of new databases of transcriptomic data, using standardized formats in addition to standardized models of bacterial and yeast similar to those used in systems biology. The inclusion of proteomic and metabolomic data is also essential, as the resulting networks can provide a landscape to rationally predict and exploit new drug targets and to understand drug synergies.
Collapse
Affiliation(s)
- Ángel Domínguez
- Department of Microbiology and Genetics, Universidad de Salamanca, Plaza de los Drs. de la Reina s/n, 37007, Salamanca, Spain.
| | - Elisa Muñoz
- Department of Cell Biology & Pathology, Universidad de Salamanca, Salamanca, Spain
| | - M Carmen López
- Department of Microbiology and Genetics, Universidad de Salamanca, Plaza de los Drs. de la Reina s/n, 37007, Salamanca, Spain
| | - Miguel Cordero
- Department of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - José Pedro Martínez
- Department of Microbiology & Ecology, Universitat de Valencia/Estudi General (UVEG), Valencia, Spain
| | - Miguel Viñas
- Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine Oxidoreductase in Drug Metabolism: Beyond a Role as a Detoxifying Enzyme. Curr Med Chem 2017; 23:4027-4036. [PMID: 27458036 PMCID: PMC5345321 DOI: 10.2174/0929867323666160725091915] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/28/2016] [Accepted: 07/14/2016] [Indexed: 12/22/2022]
Abstract
The enzyme xanthine oxidoreductase (XOR) catalyzes the last two steps of purine
catabolism in the highest uricotelic primates. XOR is an enzyme with
dehydrogenase activity that, in mammals, may be converted into oxidase activity
under a variety of pathophysiologic conditions. XOR activity is highly regulated
at the transcriptional and post-translational levels and may generate reactive
oxygen and nitrogen species, which trigger different consequences, ranging from
cytotoxicity to inflammation. The low specificity for substrates allows XOR to
metabolize a number of endogenous metabolites and a variety of exogenous
compounds, including drugs. The present review focuses on the role of XOR as a drug-metabolizing enzyme,
specifically for drugs with anticancer, antimicrobial, antiviral,
immunosuppressive or vasodilator activities, as well as drugs acting on
metabolism or inducing XOR expression. XOR has an activating role that is essential to the pharmacological action of
quinone drugs, cyadox, antiviral nucleoside analogues, allopurinol, nitrate and
nitrite. XOR activity has a degradation function toward thiopurine nucleotides,
pyrazinoic acid, methylxanthines and tolbutamide, whose half-life may be
prolonged by the use of XOR inhibitors. In conclusion, to avoid potential drug interaction risks, such as a toxic excess
of drug bioavailability or a loss of drug efficacy, caution is suggested in the
use of XOR inhibitors, as in the case of hyperuricemic patients affected by gout
or tumor lysis syndrome, when it is necessary to simultaneously administer
therapeutic substances that are activated or degraded by the drug-metabolizing
activity of XOR.
Collapse
Affiliation(s)
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Unit, School of Medicine, Alma Mater Studiorum - University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy.
| | | | | |
Collapse
|
36
|
Toxic metabolites, MAPK and Nrf2/Keap1 signaling pathways involved in oxidative toxicity in mice liver after chronic exposure to Mequindox. Sci Rep 2017; 7:41854. [PMID: 28157180 PMCID: PMC5291092 DOI: 10.1038/srep41854] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/30/2016] [Indexed: 12/21/2022] Open
Abstract
Mequindox (MEQ) is a synthetic antimicrobial agent of quinoxaline-1,4-dioxide group (QdNOs). The liver is regarded as the toxicity target of QdNOs, and the role of N → O group-associated various toxicities mediated by QdNOs is well recognized. However, the mechanism underlying the in vivo effects of MEQ on the liver, and whether the metabolic pathway of MEQ is altered in response to the pathophysiological conditions still remain unclear. We now provide evidence that MEQ triggers oxidative damage in the liver. Moreover, using LC/MS-ITTOF analysis, two metabolites of MEQ were detected in the liver, which directly confirms the potential connection between N → O group reduction metabolism of MEQ and liver toxicity. The gender difference in MEQ-induced oxidative stress might be due to adrenal toxicity and the generation of M4 (2-isoethanol 1-desoxymequindox). Furthermore, up-regulation of the MAPK and Nrf2-Keap1 family and phase II detoxifying enzymes (HO-1, GCLC and NQO1) were also observed. The present study demonstrated for the first time the protein peroxidation and a proposal metabolic pathway after chronic exposure of MEQ, and illustrated that the MAPK, Nrf2-Keap1 and NF-кB signaling pathways, as well as the altered metabolism of MEQ, were involved in oxidative toxicity mediated by MEQ in vivo.
Collapse
|
37
|
Xu F, Cheng G, Hao H, Wang Y, Wang X, Chen D, Peng D, Liu Z, Yuan Z, Dai M. Mechanisms of Antibacterial Action of Quinoxaline 1,4-di- N-oxides against Clostridium perfringens and Brachyspira hyodysenteriae. Front Microbiol 2016; 7:1948. [PMID: 28018297 PMCID: PMC5147047 DOI: 10.3389/fmicb.2016.01948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022] Open
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) are a class of bioreductive compounds, however, their antibacterial mechanisms are still unclarified. The aim of this study was to assess the ability of two representative QdNO drugs, cyadox (CYA) and olaquindox (OLA), to produce reactive oxide species (ROS) in Gram-positive anaerobe Clostridium perfringens CVCC1125 and Gram-negative anaerobe Brachyspira hyodysenteriae B204. In addition, the effects of QdNOs on the integrity of bacterial cell walls and membranes as well as the morphological alterations and DNA oxidative damage in C. perfringens and B. hyodysenteriae were analyzed. It was demonstrated that under anaerobic conditions, QdNOs were metabolized into the reduced products which did not show any antibacterial activity. A significant dose-related increase of intracellular ROS level and intracellular hydroxyl radicals were evident in bacteria exposed to QdNOs. The result of biochemical assay showed that the cell walls and membranes of the bacteria treated with QdNOs were damaged. After exposure to 1/2MIC to 4MIC of CYA and OLA, C. perfringens and B. hyodysenteriae became elongated and filamentous. Morphological observation with scanning and transmission electron microscopes revealed rupture, loss of cytoplasmic material and cell lysis in QdNO-treated bacteria, indicating serious damage of cells. There was an increase of 8-OHdG in the two strains treated by QdNOs, but it was lower in C. perfringens CVCC1125 than in B. hyodysenteriae B204. Agarose gel electrophoresis showed the degradation of chromosomal DNA in both of the two anaerobes treated by QdNOs. The results suggest that QdNOs may kill C. perfringens and B. hyodysenteriae via the generation of ROS and hydroxyl radicals from the bacterial metabolism of QdNOs, which cause oxidative damage in bacteria under anaerobic conditions.
Collapse
Affiliation(s)
- Fanfan Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Guyue Cheng
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Xu Wang
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Menghong Dai
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
38
|
Mouawad J, Saadeh F, Tabosh HA, Haddadin MJ, Gali-Muhtasib H. The photoprotective effects of 2-benzoyl-3-phenylquinoxaline 1,4-dioxide against UVB-induced damage in HaCaT cells. Med Oncol 2016; 33:86. [PMID: 27377483 DOI: 10.1007/s12032-016-0802-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/28/2016] [Indexed: 01/03/2023]
Abstract
With the increasing levels of atmospheric ozone depletion, there has been much concern about the causal effects of high levels of ultraviolet radiation reaching the Earth's surface on skin cancer. This has led to growing interest in identifying new active ingredients for use in commercial sunscreens. In our study, the chemical compound 2-benzoyl-3-phenylquinoxaline 1,4-dioxide (BPQ) prepared by the Beirut reaction was tested for its ability to protect a human keratinocyte cell line (HaCaT) against ultraviolet B radiation (280-315 nm). We show that BPQ exhibited strong absorbance in the UVB range, with an overall absorption spectrum very similar to that of Padimate-O, a well-known active ingredient used in commercial sunscreens. HaCaT cells, which were irradiated with UVB in the presence of multiple doses of BPQ, exhibited, in a dose-dependent fashion, a significantly higher viability and lower oxidative stress levels than cells irradiated in the absence of drug. Our results show that BPQ is a potential photoprotective drug that holds great promise for use as an active ingredient in commercial sunscreens.
Collapse
Affiliation(s)
- Joe Mouawad
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Fadi Saadeh
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Hayat Al Tabosh
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | | | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut, Lebanon.
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
39
|
Liu Q, Zhang J, Luo X, Ihsan A, Liu X, Dai M, Cheng G, Hao H, Wang X, Yuan Z. Further investigations into the genotoxicity of quinoxaline-di-N-oxides and their primary metabolites. Food Chem Toxicol 2016; 93:145-57. [PMID: 27170491 DOI: 10.1016/j.fct.2016.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022]
Abstract
Quinoxaline-di-N-oxides (QdNOs) are potential antibacterial agents with a wide range of biological properties. Quinocetone (QCT), carbadox (CBX), olaquindox (OLA), mequindox (MEQ) and cyadox (CYA) are classical QdNOs. Though the genotoxicity of parent drugs has been evaluated, the genotoxicity of their primary N → O reduced metabolites remains unclear. In the present study, a battery of four different short-term tests, mouse lymphoma assay (MLA), Ames test, chromosomal aberration assay in vitro and bone marrow erythrocyte micronucleus assay in vivo was carried out to investigate the genotoxicity of the six primary N → O reduced metabolites. Additionally, the genotoxicity of five parent drugs was evaluated by the MLA. Strong genotoxicity of N1-MEQ, B-MEQ and B-CBX was found in three of the assays but not in the Ames assay, and the rank order was N1-MEQ>B-MEQ>B-CBX that is consistent with prototype QdNOs. Negative results for the five QdNOs were noted in the MLA. We present for the first time a comparison of the genotoxicity of primary N → O reduced metabolites, and evaluate the ability of five QdNOs to cause mutations in the MLA. The present study demonstrates that metabolites are involved in genetic toxicity mediated by QdNOs, and improve the prudent use of QdNOs for public health.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianwu Zhang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xun Luo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Xianglian Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Menghong Dai
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Guyue Cheng
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Haihong Hao
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Xu Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Cheng G, Sa W, Cao C, Guo L, Hao H, Liu Z, Wang X, Yuan Z. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions. Front Pharmacol 2016; 7:64. [PMID: 27047380 PMCID: PMC4800186 DOI: 10.3389/fphar.2016.00064] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/07/2016] [Indexed: 11/29/2022] Open
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and bacterial resistance have been found in QdNO antibacterial growth promoters, conferring urgent need for discovery of new QdNO drugs. However, the modes of actions of QdNOs are not fully understood, hindering the development and innovation of these promising compounds. Here, QdNOs are categorized based on the activities and usages, among which the antimicrobial activities are consist of antibacterial, antimycobacterial and anticandida activities, and the antiprotozoal activities include antitrypanosomal, antimalarial, antitrichomonas, and antiamoebic activities. The structure-activity relationship and the mode of actions of each type of activity of QdNOs are summarized, and the toxicity and the underlying mechanisms are also discussed, providing insight for the future research and development of these fascinating compounds.
Collapse
Affiliation(s)
- Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Wei Sa
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Chen Cao
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Liangliang Guo
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zhenli Liu
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|