1
|
Sarna NS, Desai SH, Kaufman BG, Curry NM, Hanna AM, King MR. Enhanced and sustained T cell activation in response to fluid shear stress. iScience 2024; 27:109999. [PMID: 38883838 PMCID: PMC11177201 DOI: 10.1016/j.isci.2024.109999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The efficacy of T cell therapies in treating solid tumors is limited by poor in vivo persistence, proliferation, and cytotoxicity, which can be attributed to limited and variable ex vivo activation. Herein, we present a 10-day kinetic profile of T cells subjected to fluid shear stress (FSS) ex vivo, with and without stimulation utilizing bead-conjugated anti-CD3/CD28 antibodies. We demonstrate that mechanical stimulation via FSS combined with bead-bound anti-CD3/CD28 antibodies yields a synergistic effect, resulting in amplified and sustained downstream signaling (NF-κB, c-Fos, and NFAT), expression of activation markers (CD69 and CD25), proliferation and production of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2). This study represents the first characterization of the dynamic response of primary T cells to FSS. Collectively, our findings underscore the critical role of mechanosensitive ion channel-mediated mechanobiological signaling in T cell activation and fitness, enabling the development of strategies to address the current challenges associated with poor immunotherapy outcomes.
Collapse
Affiliation(s)
- Nicole S Sarna
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Shanay H Desai
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
- Department of Neuroscience, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Benjamin G Kaufman
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Natalie M Curry
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Anne M Hanna
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| |
Collapse
|
2
|
Du R, Li D, Zhu M, Zheng L, Ren K, Han D, Li L, Ji J, Fan Y. Cell senescence alters responses of porcine trabecular meshwork cells to shear stress. Front Cell Dev Biol 2022; 10:1083130. [PMID: 36478743 PMCID: PMC9721263 DOI: 10.3389/fcell.2022.1083130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 10/05/2024] Open
Abstract
Mechanical microenvironment and cellular senescence of trabecular meshwork cells (TMCs) are suspected to play a vital role in primary open-angle glaucoma pathogenesis. However, central questions remain about the effect of shear stress on TMCs and how aging affects this process. We have investigated the effect of shear stress on the biomechanical properties and extracellular matrix regulation of normal and senescent TMCs. We found a more significant promotion of Fctin formation, a more obvious realignment of F-actin fibers, and a more remarkable increase in the stiffness of normal cells in response to the shear stress, in comparison with that of senescent cells. Further, as compared to normal cells, senescent cells show a reduced extracellular matrix turnover after shear stress stimulation, which might be attributed to the different phosphorylation levels of the extracellular signal-regulated kinase. Our results suggest that TMCs are able to sense and respond to the shear stress and cellular senescence undermines the mechanobiological response, which may lead to progressive failure of cellular TM function with age.
Collapse
Affiliation(s)
- Ruotian Du
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Dongyan Li
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Meng Zhu
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Keli Ren
- Lab for Biological Imaging and Nanomedicine, National Center for Nanoscience and Technology, Beijing, China
| | - Dong Han
- Lab for Biological Imaging and Nanomedicine, National Center for Nanoscience and Technology, Beijing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
3
|
Jiang H, Liu J, Guo S, Zeng L, Cai Z, Zhang J, Wang L, Li Z, Liu R. miR-23b-3p rescues cognition in Alzheimer's disease by reducing tau phosphorylation and apoptosis via GSK-3β signaling pathways. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:539-557. [PMID: 35592504 PMCID: PMC9092887 DOI: 10.1016/j.omtn.2022.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/15/2022] [Indexed: 12/24/2022]
Abstract
Dysregulated microRNA (miRNA) expression in the brain can contribute to cognitive dysfunction and aberrant tau hyperphosphorylation in Alzheimer’s disease (AD). Several studies have reported a role for microRNA-23b-3p (miR-23b-3p) in various neurologic disorders; however, its involvement in cognition-related functions remains unclear. In the present study, we investigated the potential therapeutic effects and mechanisms of miR-23b-3p in AD. miRNA profiles in the cortex of amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice (APP/PS1 mice) demonstrated that miR-23b-3p was reduced. This decrease was verified in APPswe cells, SAMP8 mouse brains, and plasma from AD patients. Furthermore, glycogen synthase kinase-3β (GSK-3β), a major tau kinase implicated in tau pathology, was identified as a target of miR-23b-3p. Functional in vivo studies demonstrated that intracerebroventricular delivery of miR-23b-3p in APP/PS1 mice ameliorated cognitive deficits, histopathological changes, and tau phosphorylation immunoreactivity at several sites by inhibiting GSK-3β expression and activation. Similarly, the upregulation of miR-23b-3p in APPswe cells inhibited GSK-3β-mediated tau hyperphosphorylation, Aβ1-42 generation, and neuronal apoptosis, resulting in the suppression of the GSK-3β/p-tau and Bax/caspase-3 pathways. Collectively, our findings strongly support the hypothesis that miR-23b-3p plays a neuroprotective role in AD, thereby identifying miR-23b-3p as a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Hailun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jianghong Liu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China.,National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Li Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Zhongdi Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Junxia Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Linlin Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
4
|
Peng Z, Mai Z, Xiao F, Liu G, Wang Y, Xie S, Ai H. MiR-20a: a mechanosensitive microRNA that regulates fluid shear stress-mediated osteogenic differentiation via the BMP2 signaling pathway by targeting BAMBI and SMAD6. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:683. [PMID: 35845505 PMCID: PMC9279817 DOI: 10.21037/atm-22-2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Background MicroRNAs (miRNAs) are crucial regulators of diverse biological and pathological processes. This study aimed to investigate the role of microRNA 20a (miR-20a) in fluid shear stress (FSS)-mediated osteogenic differentiation. Methods In the present study, we subjected osteoblast MC3T3-E1 cells or mouse bone marrow stromal cells (BMSCs) to single bout short duration FSS (12 dyn/cm2 for 1 hour) using a parallel plate flow system. The expression of miR-20a was quantified by miRNA array profiling and real-time quantitative polymerase chain reaction (qRT-PCR) during FSS-mediated osteogenic differentiation. The expression of osteogenic differentiation markers such as Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and SP7 transcription factor (SP7) was detected. Bioinformatics analysis and a luciferase assay were performed to confirm the potential targets of miR-20a. Results Osteoblast-expressed miR-20a is sensitive to the mechanical environments of FSS, which are differentially up-regulated during steady FSS-mediated osteogenic differentiation. MiR-20a enhances FSS-induced osteoblast differentiation by activating the bone morphogenetic protein 2 (BMP2) signaling pathway. Both BMP and activin membrane-bound inhibitor (BAMBI) and mothers against decapentaplegic family member 6 (SMAD6) are targets of miR-20a that negatively regulate the BMP2 signaling pathway. Conclusions MiR-20a is a novel mechanosensitive miRNA that can enhance osteoblast differentiation in FSS mechanical environments, implying that this miRNA might be a target for bone tissue engineering and orthodontic bone remodeling for regenerative medicine applications.
Collapse
Affiliation(s)
- Zhuli Peng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihui Mai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng Xiao
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guanqi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yixuan Wang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shanshan Xie
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Uray K, Major E, Lontay B. MicroRNA Regulatory Pathways in the Control of the Actin-Myosin Cytoskeleton. Cells 2020; 9:E1649. [PMID: 32660059 PMCID: PMC7408560 DOI: 10.3390/cells9071649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin-myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin-myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin-myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis.
Collapse
Affiliation(s)
- Karen Uray
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| | | | - Beata Lontay
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| |
Collapse
|
6
|
Gray KT, Kostyukova AS, Fath T. Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function. Mol Cell Neurosci 2017; 84:48-57. [PMID: 28433463 DOI: 10.1016/j.mcn.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Actin is a profoundly influential protein; it impacts, among other processes, membrane morphology, cellular motility, and vesicle transport. Actin can polymerize into long filaments that push on membranes and provide support for intracellular transport. Actin filaments have polar ends: the fast-growing (barbed) end and the slow-growing (pointed) end. Depolymerization from the pointed end supplies monomers for further polymerization at the barbed end. Tropomodulins (Tmods) cap pointed ends by binding onto actin and tropomyosins (Tpms). Tmods and Tpms have been shown to regulate many cellular processes; however, very few studies have investigated their joint role in the nervous system. Recent data directly indicate that they can modulate neuronal morphology. Additional studies suggest that Tmod and Tpm impact molecular processes influential in synaptic signaling. To facilitate future research regarding their joint role in actin regulation in the nervous system, we will comprehensively discuss Tpm and Tmod and their known functions within molecular systems that influence neuronal development.
Collapse
Affiliation(s)
- Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States.
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Chen M, Shi J, Zhang W, Huang L, Lin X, Lv Z, Zhang W, Liang R, Jiang S. MiR-23b controls TGF-β1 induced airway smooth muscle cell proliferation via direct targeting of Smad3. Pulm Pharmacol Ther 2017; 42:33-42. [PMID: 28062322 DOI: 10.1016/j.pupt.2017.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 08/02/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNAs are small yet versatile gene tuners that regulate a variety of cellular processes, including cell growth and proliferation. Here we report that miR-23b inhibited airway smooth muscle cells (ASMCs) proliferation through directly targeting of Smad3. METHODS We obtained ASMCs by laser capture microdissection of normal and asthmatic mice lung tissues. Mice ASMCs were cultured and induced by TGF-β1. The implication between TGF-β1 and miR-23b in ASMCs were detected by RT-PCR. The effects of miR-23b on ASMCs proliferation and apoptosis were assessed by transient transfection of miR-23b mimics and inhibitor. The expression of Smad3 in ASMCs were detected by RT-PCR and Western blotting analysis. Dual-Luciferase Reporter Assay System will be applied to identify whether Smad3 is a target gene of miR-23b. RESULTS TGF-β1 and miR-23b mRNA expression of in-situ bronchial ASMCs collected by laser capture microdissection were increased in asthmatic mice compared to non-asthma controls. This is accompanied by an increase in miR-23b mRNA expression in TGF-β1 induced ASMCs. miR-23b up-regulation significantly inhibited TGF-β1-induced ASMCs proliferation and promoted apoptosis. MiR-23b negatively regulates the expression of Smad3 in ASMCs. Dual-Luciferase Reporter Assay System demonstrated that Smad3 was a direct target of miR-23b. CONCLUSIONS MiR-23b may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via direct targeting of Smad3.
Collapse
Affiliation(s)
- Ming Chen
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Jianting Shi
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Wei Zhang
- Department of Geratology, The Second People's Hospital of Shenzhen, Shenzhen 518000, China
| | - Linjie Huang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Xiaoling Lin
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Zhiqiang Lv
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Wei Zhang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Ruiyun Liang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Shanping Jiang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
8
|
Liu L, Liu M, Li R, Liu H, Du L, Chen H, Zhang Y, Zhang S, Liu D. MicroRNA-503-5p inhibits stretch-induced osteogenic differentiation and bone formation. Cell Biol Int 2016; 41:112-123. [PMID: 27862699 DOI: 10.1002/cbin.10704] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Cyclical stretch-induced bone formation during orthodontic treatment is a complex biological process modulated by various factors including miRNAs and their targeted-gene network. However, the miRNA expression profile and their roles in osteogenic differentiation of bone mesenchymal stem cells (BMSCs) exposed to mechanical stretch remains unclear. Here, we use the miRNA microarray assay to screen for mechano-sensitive miRNAs during stretch-induced osteogenic differentiation of BMSCs and identified that nine miRNAs were differentially expressed between stretched and control BMSCs. Furthermore, miR-503-5p, which was markedly downregulated in both microarray assay and qRT-PCR assay were selected for further functional verification. We found that overexpression of miR-503-5p in BMSCs attenuated stretch-induced osteogenic differentiation while the effect was reversed by miR-503-5p inhibition treatment. In vivo studies, overexpression of miR-503-5p with specific agomir decreased Runx2, ALP mRNA, and protein expression, decreased osteoblast numbers and osteoblastic bone formation in the OTM tension sides. In conclusion, our study revealed that miR-503-5p functions as the mechano-sensitive miRNA and inhibits BMSCs osteogenic differentiation subjected to mechanical stretch and bone formation in OTM tension sides.
Collapse
Affiliation(s)
- Lu Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Mengjun Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Rongrong Li
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Hong Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Liling Du
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Hong Chen
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Yan Zhang
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Shijie Zhang
- Department of Stomatology, School of Dentistry, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Dongxu Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| |
Collapse
|
9
|
Fornari TA, Lanaro C, Albuquerque DM, Ferreira R, Costa FF. Featured Article: Modulation of fetal hemoglobin in hereditary persistence of fetal hemoglobin deletion type-2, compared to Sicilian δβ-thalassemia, by BCL11A and SOX6-targeting microRNAs. Exp Biol Med (Maywood) 2016; 242:267-274. [PMID: 27591578 DOI: 10.1177/1535370216668052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hereditary persistence of fetal hemoglobin deletion type-2 (HPFH-2) and Sicilian-δβ-thalassemia are conditions described as large deletions of the human β-like globin cluster, with absent β-globin chains and a compensatory variable increase in γ-globin. HPFH, in general, may be distinguished from DB-Thalassemia by higher fetal hemoglobin (HbF) levels, absence of anemia and hypochromic and microcytic erythrocytes. MicroRNAs (miRNAs) regulate a range of cellular processes including erythropoiesis and regulation of transcription factors such as the BCL11A and SOX6 genes, which are related to the regulation of γ-globin expression. In this report, a possible association among the overexpression of miRNAs and the expression of the γ-globin gene was analyzed in these two conditions. Forty-nine differentially expressed miRNAs were identified by microarrays in CD34+-derived erythroid cells of two subjects heterozygous for Sicilian-δβ-thalassemia, 2 for HPFH-2 and 3 for controls after 13 days of culture. Some of these miRNAs may participate in γ-globin gene regulation and red blood cell function. The BCL11A gene was found to be potentially targeted by 12 miRNAs that were up-regulated in HPFH-2 or in DB-Thal. A down-regulation of BCL11A gene expression in HPFH-2 was verified by quantitative polymerase chain reaction. These data suggest an important action for miRNA that may partially explain the phenotypic differences between HPFH-2 and Sicilian δβ-thalassemia and the increased expression of γ-globin in these conditions.
Collapse
Affiliation(s)
- Thais A Fornari
- Hemocentro-UNICAMP - SP, Brazil, São Paulo 13083-878, Brazil
| | - Carolina Lanaro
- Hemocentro-UNICAMP - SP, Brazil, São Paulo 13083-878, Brazil
| | | | | | | |
Collapse
|
10
|
Chen M, Huang L, Zhang W, Shi J, Lin X, Lv Z, Zhang W, Liang R, Jiang S. MiR-23b controls TGF-β1 induced airway smooth muscle cell proliferation via TGFβR2/p-Smad3 signals. Mol Immunol 2015; 70:84-93. [PMID: 26748386 DOI: 10.1016/j.molimm.2015.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Abnormal proliferation of ASM (airway smooth muscle) directly contributes to the airway remodeling during development of lung diseases such as asthma. Here we report that a specific microRNA (miR-23b) controls ASMCs proliferation through directly inhibiting TGFβR2/p-Smad3 pathway. METHODS The expression of miR-23b in ASMCs was detected by quantitative real-time polymerase chain reaction (RT-PCR). The effects of miR-23b on cell proliferation and apoptosis of ASMCs were assessed by transient transfection of miR-23b mimics and inhibitor. The target gene of miR-23b and the downstream pathway were further investigated. RESULTS Overexpression of miR-23b significantly inhibited TGF-β1-induced ASMCs proliferation and promoted apoptosis. RT-PCR and Western blotting analysis showed miR-23b negatively regulates the expression of TGFβR2 and p-Smad3 in ASMCs. Subsequent analyses demonstrated that TGFβR2 was a direct and functional target of miR-23b, which was validated by the dual luciferase reporter assay. CONCLUSIONS MiR-23b may function as an inhibitor of airway smooth muscle cells proliferation through inactivation of TGFβR2/p-Smad3 pathway.
Collapse
Affiliation(s)
- Ming Chen
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Linjie Huang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Wei Zhang
- Department of Geratology, The Second People's Hospital of Shenzhen, Shenzhen 518000, China
| | - Jianting Shi
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Xiaoling Lin
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Zhiqiang Lv
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Wei Zhang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Ruiyun Liang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Shanping Jiang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|