1
|
Abdelaal N, Ragheb MA, Hassaneen HM, Elzayat EM, Abdelhamid IA. Design, in silico studies and biological evaluation of novel chalcones tethered triazolo[3,4-a]isoquinoline as EGFR inhibitors targeting resistance in non-small cell lung cancer. Sci Rep 2024; 14:26647. [PMID: 39496648 PMCID: PMC11535068 DOI: 10.1038/s41598-024-76459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
A novel series of six [1,2,4]triazolo[3,4-a]isoquinolin-3-yl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)prop-2-en-1-ones (3a-3f) was designed and synthesized. They were characterized based on spectral and elemental analyses. In silico studies were also committed to provide insights and a better understanding of their structural features. The six compounds were screened for their antiproliferative activity using the MTT assay against five human cancer cell lines, namely, A549, HCT116, PC3, HT29, and MCF-7 in parallel with the non-cancerous human lung cell line WI-38. The results showed that 3e and 3f have potential cytotoxic activities, especially on A549 cells with IC50 = 2.3 µM and 1.15 µM, respectively. Meanwhile, they recorded a minimal cytotoxic effect on WI-38 cells. Concerning the molecular mechanism of action, the present study showed the inhibitory effect of the six compounds against total EGFR. The most potent EGFR inhibitors were 3e and 3f with IC50 = 0.031 µM and 0.023 µM, respectively. The selectivity index of 3f for EGFRT790M was 1.81 times more selective than that of lapatinib. In addition, 3e and 3f initiated cell cycle arrest at the G2/M and pre-G1 phases along with the downregulation of anti-apoptotic protein Bcl2 and the upregulation of pro-apoptotic proteins: p53, Bax, and caspases 3, 8, and 9. Further studies are recommended to evaluate animal models' promising anticancer activity and molecular mechanism of triazolo[3,4-a]isoquinoline derivatives 3e and 3f.
Collapse
Affiliation(s)
- Nesma Abdelaal
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hamdi M Hassaneen
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Emad M Elzayat
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt.
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | | |
Collapse
|
2
|
Xu M, Wei S, Duan L, Ji Y, Han X, Sun Q, Weng L. The recent advancements in protein nanoparticles for immunotherapy. NANOSCALE 2024; 16:11825-11848. [PMID: 38814163 DOI: 10.1039/d4nr00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In recent years, the advancement of nanoparticle-based immunotherapy has introduced an innovative strategy for combatting diseases. Compared with other types of nanoparticles, protein nanoparticles have obtained substantial attention owing to their remarkable biocompatibility, biodegradability, ease of modification, and finely designed spatial structures. Nature provides several protein nanoparticle platforms, including viral capsids, ferritin, and albumin, which hold significant potential for disease treatment. These naturally occurring protein nanoparticles not only serve as effective drug delivery platforms but also augment antigen delivery and targeting capabilities through techniques like genetic modification and covalent conjugation. Motivated by nature's originality and driven by progress in computational methodologies, scientists have crafted numerous protein nanoparticles with intricate assembly structures, showing significant potential in the development of multivalent vaccines. Consequently, both naturally occurring and de novo designed protein nanoparticles are anticipated to enhance the effectiveness of immunotherapy. This review consolidates the advancements in protein nanoparticles for immunotherapy across diseases including cancer and other diseases like influenza, pneumonia, and hepatitis.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Siyuan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lifan Duan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yifan Ji
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaofan Han
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Sun
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
3
|
Khairkhah N, Namvar A, Bolhassani A. Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Mol Biotechnol 2023; 65:1387-1402. [PMID: 36719639 PMCID: PMC9888354 DOI: 10.1007/s12033-023-00679-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Novel effective drugs or therapeutic vaccines have been already developed to eradicate viral infections. Some non-viral carriers have been used for effective drug delivery to a target cell or tissue. Among them, cell penetrating peptides (CPPs) attracted a special interest to enhance drug delivery into the cells with low toxicity. They were also applied to transfer peptide/protein-based and nucleic acids-based therapeutic vaccines against viral infections. CPPs-conjugated drugs or vaccines were investigated in several viral infections including poliovirus, Ebola, coronavirus, herpes simplex virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, Japanese encephalitis virus, and influenza A virus. Some studies showed that the uptake of CPPs or CPPs-conjugated drugs can be performed through both non-endocytic and endocytic pathways. Despite high potential of CPPs for cargo delivery, there are some serious drawbacks such as non-tissue-specificity, instability, and suboptimal pharmacokinetics features that limit their clinical applications. At present, some solutions are utilized to improve the CPPs properties such as conjugation of CPPs with targeting moieties, the use of fusogenic lipids, generation of the proton sponge effect, etc. Up to now, no CPP or composition containing CPPs has been approved by the Food and Drug Administration (FDA) due to the lack of sufficient in vivo studies on stability, immunological assays, toxicity, and endosomal escape of CPPs. In this review, we briefly describe the properties, uptake mechanisms, advantages and disadvantages, and improvement of intracellular delivery, and bioavailability of cell penetrating peptides. Moreover, we focus on their application as an effective drug carrier to combat viral infections.
Collapse
Affiliation(s)
- Niloofar Khairkhah
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Alzahrani B, Elderdery AY, Alzerwi NAN, Alsrhani A, Alsultan A, Rayzah M, Idrees B, Rayzah F, Baksh Y, Alzahrani AM, Subbiah SK, Mok PL. Pluronic-F-127-Passivated SnO 2 Nanoparticles Derived by Using Polygonum cuspidatum Root Extract: Synthesis, Characterization, and Anticancer Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091760. [PMID: 37176818 PMCID: PMC10181209 DOI: 10.3390/plants12091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has emerged as the most popular research topic with revolutionary applications across all scientific disciplines. Tin oxide (SnO2) has been gaining considerable attention lately owing to its intriguing features, which can be enhanced by its synthesis in the nanoscale range. The establishment of a cost-efficient and ecologically friendly procedure for its production is the result of growing concerns about human well-being. The novelty and significance of this study lie in the fact that the synthesized SnO2 nanoparticles have been tailored to have specific properties, such as size and morphology. These properties are crucial for their applications. Moreover, this study provides insights into the synthesis process of SnO2 nanoparticles, which can be useful for developing efficient and cost-effective methods for large-scale production. In the current study, green Pluronic-coated SnO2 nanoparticles (NPs) utilizing the root extracts of Polygonum cuspidatum have been formulated and characterized by several methods such as UV-visible, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDAX), transmission electron microscope (TEM), field emission-scanning electron microscope (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS) studies. The crystallite size of SnO2 NPs was estimated to be 45 nm, and a tetragonal rutile-type crystalline structure was observed. FESEM analysis validated the NPs' spherical structure. The cytotoxic potential of the NPs against HepG2 cells was assessed using the in vitro MTT assay. The apoptotic efficiency of the NPs was evaluated using a dual-staining approach. The NPs revealed substantial cytotoxic effects against HepG2 cells but failed to exhibit cytotoxicity in different liver cell lines. Furthermore, dual staining and flow cytometry studies revealed higher apoptosis in NP-treated HepG2 cells. Nanoparticle treatment also inhibited the cell cycle at G0/G1 stage. It increased oxidative stress and promoted apoptosis by encouraging pro-apoptotic protein expression in HepG2 cells. NP treatment effectively blocked the PI3K/Akt/mTOR axis in HepG2 cells. Thus, green Pluronic-F-127-coated SnO2 NPs exhibits enormous efficiency to be utilized as an talented anticancer agent.
Collapse
Affiliation(s)
- Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser A N Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Afnan Alsultan
- Department of Surgery, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City, P.O. Box 7897, Riyadh 11159, Saudi Arabia
| | - Fares Rayzah
- Aseer Central Hospital, Abha 62523, Saudi Arabia
| | - Yaser Baksh
- Iman General Hospital, Riyadh 12684, Saudi Arabia
| | - Ahmed M Alzahrani
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Suresh K Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Antiviral Peptide-Based Conjugates: State of the Art and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020357. [PMID: 36839679 PMCID: PMC9958607 DOI: 10.3390/pharmaceutics15020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Infectious diseases caused by microbial pathogens (bacteria, virus, fungi, parasites) claim millions of deaths per year worldwide and have become a serious challenge to global human health in our century. Viral infections are particularly notable in this regard, not only because humankind is facing some of the deadliest viral pandemics in recent history, but also because the arsenal of drugs to combat the high levels of mutation, and hence the antigenic variability of (mostly RNA) viruses, is disturbingly scarce. Therefore, the search for new antivirals able to successfully fight infection with minimal or no adverse effects on the host is a pressing task. Traditionally, antiviral therapies have relied on relatively small-sized drugs acting as proteases, polymerases, integrase inhibitors, etc. In recent decades, novel approaches involving targeted delivery such as that achieved by peptide-drug conjugates (PDCs) have gained attention as alternative (pro)drugs for tackling viral diseases. Antiviral PDC therapeutics typically involve one or more small drug molecules conjugated to a cell-penetrating peptide (CPP) carrier either directly or through a linker. Such integration of two bioactive elements into a single molecular entity is primarily aimed at achieving improved bioavailability in conditions where conventional drugs are challenged, but may also turn up novel unexpected functionalities and applications. Advances in peptide medicinal chemistry have eased the way to antiviral PDCs, but challenges remain on the way to therapeutic success. In this paper, we review current antiviral CPP-drug conjugates (antiviral PDCs), with emphasis on the types of CPP and antiviral cargo. We integrate the conjugate and the chemical approaches most often applied to combine both entities. Additionally, we comment on various obstacles faced in the design of antiviral PDCs and on the future outlooks for this class of antiviral therapeutics.
Collapse
|
6
|
Advances of Electroporation-Related Therapies and the Synergy with Immunotherapy in Cancer Treatment. Vaccines (Basel) 2022; 10:vaccines10111942. [PMID: 36423037 PMCID: PMC9692484 DOI: 10.3390/vaccines10111942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Electroporation is the process of instantaneously increasing the permeability of a cell membrane under a pulsed electric field. Depending on the parameters of the electric pulses and the target cell electrophysiological characteristics, electroporation can be either reversible or irreversible. Reversible electroporation facilitates the delivery of functional genetic materials or drugs to target cells, inducing cell death by apoptosis, mitotic catastrophe, or pseudoapoptosis; irreversible electroporation is an ablative technology which directly ablates a large amount of tissue without causing harmful thermal effects; electrotherapy using an electric field can induce cell apoptosis without any aggressive invasion. Reversible and irreversible electroporation can also activate systemic antitumor immune response and enhance the efficacy of immunotherapy. In this review, we discuss recent progress related to electroporation, and summarize its latest applications. Further, we discuss the synergistic effects of electroporation-related therapies and immunotherapy. We also propose perspectives for further investigating electroporation and immunotherapy in cancer treatment.
Collapse
|
7
|
Hasannejad-Asl B, Pooresmaeil F, Takamoli S, Dabiri M, Bolhassani A. Cell penetrating peptide: A potent delivery system in vaccine development. Front Pharmacol 2022; 13:1072685. [PMID: 36425579 PMCID: PMC9679422 DOI: 10.3389/fphar.2022.1072685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/28/2023] Open
Abstract
One of the main obstacles to most medication administrations (such as the vaccine constructs) is the cellular membrane's inadequate permeability, which reduces their efficiency. Cell-penetrating peptides (CPPs) or protein transduction domains (PTDs) are well-known as potent biological nanocarriers to overcome this natural barrier, and to deliver membrane-impermeable substances into cells. The physicochemical properties of CPPs, the attached cargo, concentration, and cell type substantially influence the internalization mechanism. Although the exact mechanism of cellular uptake and the following processing of CPPs are still uncertain; but however, they can facilitate intracellular transfer through both endocytic and non-endocytic pathways. Improved endosomal escape efficiency, selective cell targeting, and improved uptake, processing, and presentation of antigen by antigen-presenting cells (APCs) have been reported by CPPs. Different in vitro and in vivo investigations using CPP conjugates show their potential as therapeutic agents in various medical areas such as infectious and non-infectious disorders. Effective treatments for a variety of diseases may be provided by vaccines that can cooperatively stimulate T cell-mediated immunity (T helper cell activity or cytotoxic T cell function), and immunologic memory. Delivery of antigen epitopes to APCs, and generation of a potent immune response is essential for an efficacious vaccine that can be facilitated by CPPs. The current review describes the delivery of numerous vaccine components by various CPPs and their immunostimulatory properties.
Collapse
Affiliation(s)
- Behnam Hasannejad-Asl
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pooresmaeil
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehran Dabiri
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Ke G, Zhang J, Gao W, Chen J, Liu L, Wang S, Zhang H, Yan G. Application of advanced technology in traditional Chinese medicine for cancer therapy. Front Pharmacol 2022; 13:1038063. [PMID: 36313284 PMCID: PMC9606699 DOI: 10.3389/fphar.2022.1038063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Although cancer has seriously threatened people’s health, it is also identified by the World Health Organization as a controllable, treatable and even curable chronic disease. Traditional Chinese medicine (TCM) has been extensively used to treat cancer due to its multiple targets, minimum side effects and potent therapeutic effects, and thus plays an important role in all stages of tumor therapy. With the continuous progress in cancer treatment, the overall efficacy of cancer therapy has been significantly improved, and the survival time of patients has been dramatically prolonged. In recent years, a series of advanced technologies, including nanotechnology, gene editing technology, real-time cell-based assay (RTCA) technology, and flow cytometry analysis technology, have been developed and applied to study TCM for cancer therapy, which efficiently improve the medicinal value of TCM and accelerate the research progress of TCM in cancer therapy. Therefore, the applications of these advanced technologies in TCM for cancer therapy are summarized in this review. We hope this review will provide a good guidance for TCM in cancer therapy.
Collapse
Affiliation(s)
- Gaofeng Ke
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wufeng Gao
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Luotong Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| | - Guojun Yan
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| |
Collapse
|
9
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Rusiecka I, Gągało I, Kocić I. Cell-penetrating peptides improve pharmacokinetics and pharmacodynamics of anticancer drugs. Tissue Barriers 2022; 10:1965418. [PMID: 34402743 PMCID: PMC8794253 DOI: 10.1080/21688370.2021.1965418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022] Open
Abstract
This review concentrates on the research concerning conjugates of anticancer drugs with versatile cell-penetrating peptides (CPPs). For a better insight into the relationship between the components of the constructs, it starts with the characteristic of the peptides and considers its following aspects: mechanisms of cellular internalization, interaction with cancer-modified membranes, selectivity against tumor tissue. Also, CPPs with anticancer activity have been distinguished and summarized with their mechanisms of action. With respect to the conjugates, the preclinical studies (in vitro, in vivo) indicated that they possess several merits in comparison to the parent drugs. They concerned not only better cellular internalization but also other improvements in pharmacokinetics (e.g. access to the brain tissue) and pharmacodynamics (e.g. overcoming drug resistance). The anticancer activity of the conjugates was usually superior to that of the unconjugated drug. Certain anticancer CPPs and conjugates entered clinical trials.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Iwona Gągało
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
11
|
Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines. Eur J Pharm Sci 2021; 169:106094. [PMID: 34896590 DOI: 10.1016/j.ejps.2021.106094] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Viral infections are a great threat to human health. Currently, there are no effective vaccines and antiviral drugs against the majority of viral diseases, suggesting the need to develop novel and effective antiviral agents. Since the intracellular delivery of antiviral agents, particularly the impermeable molecules, such as peptides, proteins, and nucleic acids, are essential to exert their therapeutic effects, using a delivery system is highly required. Among various delivery systems, cell-penetrating peptides (CPPs), a group of short peptides with the unique ability of crossing cell membrane, offer great potential for the intracellular delivery of various biologically active cargoes. The results of numerous in vitro and in vivo studies with CPP conjugates demonstrate their promise as therapeutic agents in various medical fields including antiviral therapy. The CPP-mediated delivery of various antiviral agents including peptides, proteins, nucleic acids, and nanocarriers have been associated with therapeutic efficacy both in vitro and in vivo. This review describes various aspects of viruses including their biology, pathogenesis, and therapy and briefly discusses the concept of CPP and its potential in drug delivery. Particularly, it will highlight a variety of CPP applications in the management of viral infections.
Collapse
|
12
|
Abbasi H, Rahbar N, Kouchak M, Khalil Dezfuli P, Handali S. Functionalized liposomes as drug nanocarriers for active targeted cancer therapy: a systematic review. J Liposome Res 2021; 32:195-210. [PMID: 33729077 DOI: 10.1080/08982104.2021.1903035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a broad term used to describe a group of diseases that have more than 270 types. Today, due to the suffering of patients from the side effects of existing methods in the treatment of cancer such as chemotherapy and radiotherapy, the employment of targeted methods in the treatment of this disease has been received much consideration. In recent years, nanoparticles have revolutionized in the treatment of many diseases such as cancer. Among these nanoparticles, liposomes are more considerable. Active targeted liposomes show an important role in the selective action of the drug on cancer cells. Until now, a variety of anti-cancer agents have been reported for targeted delivery to cancer cells using liposomes. The results of in vitro and studies in vivo have been shown that selective action of the targeted liposomes is increased with reduced side effects and toxicity compared with free drugs or non-targeted liposomes. This systematic review expresses the reports of this type of drug delivery system. Search terms were searched through several online databases including PubMed, Scopus, and Science Direct from 1990 to 2019 and the quality evaluation was performed. Out of 11,676 published articles, 196 articles met the inclusion criteria. The current report reviews developments in the liposomes targeted with aptamer, transferrin, folate, and monoclonal antibodies.
Collapse
Affiliation(s)
- Hanieh Abbasi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parna Khalil Dezfuli
- School of Pharmacy Library, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Aires Fernandes M, O. Eloy J, Tavares Luiz M, Ramos Junior SL, Borges JC, Rodríguez de la Fuente L, Ortega-de San Luis C, Maldonado Marchetti J, Santos-Martinez MJ, Chorilli M. Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125806] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Yan L, Shen J, Wang J, Yang X, Dong S, Lu S. Nanoparticle-Based Drug Delivery System: A Patient-Friendly Chemotherapy for Oncology. Dose Response 2020; 18:1559325820936161. [PMID: 32699536 PMCID: PMC7357073 DOI: 10.1177/1559325820936161] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is widely used to treat cancer. The toxic effect of conventional chemotherapeutic drugs on healthy cells leads to serious toxic and side effects of conventional chemotherapy. The application of nanotechnology in tumor chemotherapy can increase the specificity of anticancer agents, increase the killing effect of tumors, and reduce toxic and side effects. Currently, a variety of formulations based on nanoparticles (NPs) for delivering chemotherapeutic drugs have been put into clinical use, and several others are in the stage of development or clinical trials. In this review, after briefly introducing current cancer chemotherapeutic methods and their limitations, we describe the clinical applications and advantages and disadvantages of several different types of NPs-based chemotherapeutic agents. We have summarized a lot of information in tables and figures related to the delivery of chemotherapeutic drugs based on NPs and the design of NPs with active targeting capabilities.
Collapse
Affiliation(s)
- Lina Yan
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Jingjing Shen
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, Zhejiang, China
| | - Jinqiao Wang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Xiaoyan Yang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Saijun Lu
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| |
Collapse
|
15
|
Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front Pharmacol 2020; 11:697. [PMID: 32508641 PMCID: PMC7251059 DOI: 10.3389/fphar.2020.00697] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides (fewer than 30 amino acids) that have been predominantly used in basic and preclinical research during the last 30 years. Since they are not only capable of translocating themselves into cells but also facilitate drug or CPP/cargo complexes to translocate across the plasma membrane, they have potential applications in the disease diagnosis and therapy, including cancer, inflammation, central nervous system disorders, otologic and ocular disorders, and diabetes. However, no CPPs or CPP/cargo complexes have been approved by the US Food and Drug Administration (FDA). Many issues should be addressed before translating CPPs into clinics. In this review, we summarize recent developments and innovations in preclinical studies and clinical trials based on using CPP for improved delivery, which have revealed that CPPs or CPP-based delivery systems present outstanding diagnostic therapeutic delivery potential.
Collapse
Affiliation(s)
- Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
16
|
Sarkar S, Gulati K, Mishra A, Poluri KM. Protein nanocomposites: Special inferences to lysozyme based nanomaterials. Int J Biol Macromol 2020; 151:467-482. [DOI: 10.1016/j.ijbiomac.2020.02.179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/19/2022]
|
17
|
Tantawy MA, Sroor FM, Mohamed MF, El-Naggar ME, Saleh FM, Hassaneen HM, Abdelhamid IA. Molecular Docking Study, Cytotoxicity, Cell Cycle Arrest and Apoptotic Induction of Novel Chalcones Incorporating Thiadiazolyl Isoquinoline in Cervical Cancer. Anticancer Agents Med Chem 2020; 20:70-83. [DOI: 10.2174/1871520619666191024121116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/23/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022]
Abstract
Background:
Chalcones are naturally occurring compounds found in various plant species which are
widely used for the traditional popular treatments. Chalcones are distinguished secondary metabolites that are
reported to display diverse biological activities such as antiviral, antiplatelet, anti-inflammatory, anticancer,
antibacterial and antioxidant agents. The presence of a,ß-unsaturated carbonyl group in chalcones is assumed to
be responsible for their bioactivity. In addition, heterocyclic compounds having nitrogen such as isoquinolines
are of considerable interest as they constitute the core structural element of many alkaloids that have enormous
pharmacological activities.
Objective:
The objective of this study is the synthesis and biological activity of novel chalcones incorporating
thiadiazolyl isoquinoline as potential anticancer candidates. Different genetic tools were used in an attempt to
know the mechanism of action of this compound against breast cancer.
Methods:
An efficient one pot synthesis of novel chalcones incorporating thiadiazolyl isoquinoline has been
developed. The cytotoxic activity of the novel synthesized compounds was performed against four different
kinds of cancer cell lines.
Results:
Among all the tested derivatives, chalcone 3 has the best cytotoxic profile against A549, MCF7, and
HeLa cell lines, with IC50s (66.1, 51.3, and 85.1μM, respectively). Molecular docking studies for chalcone 3
revealed that CDK2, and EGFRTK domains have strong binding affinities toward the novel chalcone 3, while
tubulin-colchicine-ustiloxin, and VEGFRTK domains illustrated moderate mode of binding.
Conclusion:
We have developed an efficient method for the synthesis of novel chalcones incorporating thiadiazolyl
isoquinoline. All compounds showed better cytotoxicity results against four kinds of cancer cell lines
(A549, MCF7, HCT116, and HELA cells). The results depicted that chalcone 3 has a high and promising cytotoxic
effect against HELA cell line and the mechanism of cytotoxicity was widely studied through different
theoretical and experimental tools. Thus, the newly synthesized derivative 3 can be utilized as a novel chemotherapeutic
compound for cervical carcinoma.
Collapse
Affiliation(s)
- Mohamed A. Tantawy
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Farid M. Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 12622 Cairo, Egypt
| | - Magda F. Mohamed
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mostafa E. El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Fatma M. Saleh
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hamdi M. Hassaneen
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | |
Collapse
|
18
|
Fernandes MA, Hanck-Silva G, Baveloni FG, Oshiro Junior JA, de Lima FT, Eloy JO, Chorilli M. A Review of Properties, Delivery Systems and Analytical Methods for the Characterization of Monomeric Glycoprotein Transferrin. Crit Rev Anal Chem 2020; 51:399-410. [DOI: 10.1080/10408347.2020.1743639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mariza Aires Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Franciele Garcia Baveloni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Felipe Tita de Lima
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Josimar O. Eloy
- College of Pharmacy, Dentistry and Nursing, Federal University of Ceara (UFC), Fortaleza, Ceará, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
19
|
Antimalarial Properties of Isoquinoline Derivative from Streptomyces hygroscopicus subsp. Hygroscopicus: An In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6135696. [PMID: 31993450 PMCID: PMC6973190 DOI: 10.1155/2020/6135696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022]
Abstract
Malaria is one of the life-threatening diseases in the world. The spread of resistance to antimalarial drugs is a major challenge, and resistance to artemisinin has been reported in the Southeast Asian region. In the previous study, the active compound of Streptomyces hygroscopicus subsp. Hygroscopicus (S. hygroscopicus), eponemycin, has been shown to have antimalarial effects. To further analyze the effects of other active compounds on the Plasmodium parasite, identifying and analyzing the effectiveness of compounds contained in S. hygroscopicus through instrumentation of liquid chromatography/mass spectrometry (LC/MS) and in silico studies were very useful. This study aimed at identifying other derivative compounds from S. hygroscopicus and screening the antimalarial activity of the compound by assessing the binding affinity, pharmacokinetic profile, and bond interaction. The derivative compounds were identified using LC/MS. Protein targets for derivative compounds were found through literature studies, and the results of identification of compounds and protein targets were reconstructed into three-dimensional models. Prediction of pharmacokinetic profiles was carried out using Swiss ADME. Screening of protein targets for the derivative compound was carried out using the reverse molecular docking method. Analyzing bond interaction was done by LigPlot. One compound from S. hygroscopicus, i.e., 6,7-dinitro-2-[1, 2, 4]triazole-4-yl-benzo[de]isoquinoline-1,3-dione, was successfully identified using LC/MS. This compound was an isoquinoline derivative compound. Through literature studies with inclusion criteria, thirteen protein targets were obtained for reverse molecular docking. This isoquinoline derivative had the potential to bind to each protein target. The pharmacokinetic profile showed that this compound had the drug-likeness criteria. Conclusion. 6,7-Dinitro-2-[1, 2, 4]triazole-4-yl-benzo[de]isoquinoline-1,3-dione has antimalarial activity as shown by reverse molecular docking studies and pharmacokinetic profiles. The best inhibitory ability of compounds based on bond affinity is with adenylosuccinate synthetase.
Collapse
|
20
|
Huang X, Lin H, Huang F, Xie Y, Wong KH, Chen X, Wu D, Lu A, Yang Z. Targeting Approaches of Nanomedicines in Acute Myeloid Leukemia. Dose Response 2019; 17:1559325819887048. [PMID: 31853234 PMCID: PMC6906351 DOI: 10.1177/1559325819887048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy, which is commonly
associated with high incidence and mortality among adult patients. The standard
induction regimen for AML has been substantially unchanged over the past 40
years, for which novel nanomedicines have represented a promising strategy in
AML therapies. Despite developments of multiple nanoparticles formulated with
drugs or genes, less there is not much information available about approaches in
AML is available. This review presents an overview of nanomedicines currently
being evaluated in AML. First, it briefly summarized conventional chemotherapies
in use. Second, nanomedicines presently ongoing in clinical trials or
preclinical researches were classified and described, with illustrative examples
from recent literatures. Finally, limitations and potential safety issues
concerns in clinical translation of AML treatment were discussed as well.
Collapse
Affiliation(s)
- Xiao Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hai Lin
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Feng Huang
- Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuning Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Dongyue Wu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
21
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Cell-Penetrating Peptide and Transferrin Co-Modified Liposomes for Targeted Therapy of Glioma. Molecules 2019; 24:molecules24193540. [PMID: 31574945 PMCID: PMC6804123 DOI: 10.3390/molecules24193540] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/02/2022] Open
Abstract
Glioma is one of the most aggressive and common malignant brain tumors. Due to the presence of the blood-brain barrier (BBB), the effectiveness of therapeutics is greatly affected. In this work, to develop an efficient anti-glioma drug with targeting and which was able to cross the BBB, cell-penetrating peptides (R8) and transferrin co-modified doxorubicin (DOX)-loaded liposomes (Tf-LPs) were prepared. Tf-LPs possessed a spherical shape and uniform size with 128.64 nm and their ξ-potential was 6.81 mV. Tf-LPs were found to be stable in serum within 48 h. Uptake of Tf-LPs in both U87 and GL261 cells was analyzed by confocal laser scanning microscopy and by flow cytometry. Tf-LPs were efficiently taken up by both U87 and GL261 cells. Moreover, Tf-LPs exhibited sustained-release. The cumulative release of DOX from Tf-LPs reached ~50.0% and showed excellent anti-glioma efficacy. Histology of major organs, including brain, heart, liver, spleen, lungs and kidney, and the bodyweight of mice, all indicated low toxicity of Tf-LPs. In conclusion, Tf-LPs showed great promise as an anti-glioma therapeutic agent.
Collapse
|
23
|
Liang Y, Xie M, Li J, Liu L, Cao Y. Influence of 3-Hydroxyflavone on Colloidal Stability and Internationalization of Ag Nanomaterials Into THP-1 Macrophages. Dose Response 2019; 17:1559325819865713. [PMID: 31384242 PMCID: PMC6657132 DOI: 10.1177/1559325819865713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 11/19/2022] Open
Abstract
Polyphenols as typical food components can influence the colloidal properties and internalization of nanomaterials (NMs) into mammalian cells. Recently, we found that 3-hydroxyflavone (H3) promoted intracellular Zn ions in ZnO nanoparticle (NP) exposed Caco-2 and HepG2 cells. However, it is unclear if H3 could affect the internalization of metal-based NMs with different morphologies. This study investigated the influence of H3 on colloidal aspects of Ag NPs and Ag nanoflakes (NFs) as well as the internalization of Ag NMs into THP-1 macrophages. 3-Hydroxyflavone at 50 μM promoted the solubility and altered hydrodynamic size, polydispersity index, and ζ potential of Ag NPs and Ag NFs, which indicated that H3 could affect the colloidal stability of Ag NMs. Only H3 but not Ag NMs significantly decreased mitochondrial activities of THP-1 macrophages. The internalization of Ag NMs was markedly increased due to the presence of H3. 3-Hydroxyflavone also exhibited antioxidative properties as it reduced intracellular reactive oxygen species and promoted the activities of ABC transporters as it reduced retention of Calcein in Ag NM-exposed THP-1 macrophages. We concluded that H3 promoted the internalization of Ag NMs into macrophages probably by altering the colloidal stability of Ag NMs and consequently NM-macrophage interactions.
Collapse
Affiliation(s)
- Yongqi Liang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People’s Republic of China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| | - Min Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People’s Republic of China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People’s Republic of China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| |
Collapse
|
24
|
Saleh FM, Hassaneen HM, Abdelmoniem AM, Elwahy AHM, Abdelhamid IA. Synthesis of Novel Bis(pyrido[2,1‐
a
]isoquinolines) Linked to Aliphatic or Aromatic Core
via
Ether Linkage. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fatma M. Saleh
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
| | - Hamdi M. Hassaneen
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
| | - Amr M. Abdelmoniem
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
| | - Ahmed H. M. Elwahy
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
| | | |
Collapse
|
25
|
Using a Microfluidics System to Reproducibly Synthesize Protein Nanoparticles: Factors Contributing to Size, Homogeneity, and Stability. Processes (Basel) 2019. [DOI: 10.3390/pr7050290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The synthesis of Zein nanoparticles (NPs) using conventional methods, such as emulsion solvent diffusion and emulsion solvent evaporation, is often unreliable in replicating particle size and polydispersity between batch-to-batch syntheses. We have systematically examined the parameters for reproducibly synthesizing Zein NPs using a Y-junction microfluidics chip with staggered herringbone micromixers. Our results indicate that the total flow rate of the fluidics system, relative flow rate of the aqueous and organic phase, concentration of the base material and solvent, and properties of the solvent influence the polydispersity and size of the NPs. Trends such as increasing the total flow rate and relative flow rate lead to a decrease in Zein NP size, while increasing the ethanol and Zein concentration lead to an increase in Zein NP size. The solvent property that was found to impact the size of the Zein NPs formed the most was their hydropathy. Solvents that had a hydropathy index most similar to that of Zein formed the smallest Zein NPs. Synthesis consistency was confirmed within and between sample batches. Stabilizing agents, such as sodium caseinate, Tween 80, and Pluronic F-68, were incorporated using the microfluidics system, necessary for in vitro and in vivo use, into Zein-based NPs.
Collapse
|
26
|
Cai G, Wang S, Zhao L, Sun Y, Yang D, Lee RJ, Zhao M, Zhang H, Zhou Y. Thiophene Derivatives as Anticancer Agents and Their Delivery to Tumor Cells Using Albumin Nanoparticles. Molecules 2019; 24:E192. [PMID: 30621360 PMCID: PMC6337126 DOI: 10.3390/molecules24010192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 01/25/2023] Open
Abstract
A series of thiophene derivatives (TPs) were synthesized and evaluated for cytotoxicity in HepG2 and SMMC-7721 cell lines by MTT assay. TP 5 was identified as a potential anticancer agent based on its ability to inhibit tumor cell growth. Drawbacks of TPs, including poor solubility and high toxicity, were overcome through delivery using self-assembling HSA nanoparticles (NPs). The optimum conditions for TP 5-NPs synthesis obtained by adjusting the temperature and concentration of TP 5. The NPs had an encapsulation efficiency of 99.59% and drug-loading capacity of 3.70%. TP 5 was slowly released from TP 5-NPs in vitro over 120 h. HepG2 and SMMC-7721 cell lines were employed to study cytotoxicity of TP 5-NPs, which exhibited high potency. ROS levels were elevated and mitochondrial membrane potentials reversed when the two cell lines were treated with TP 5-NPs for 12 h. Cellular uptake of fluorescence-labeled TP 5-NPs in vitro was analyzed by flow cytometry and laser confocal scanning microscopy. Fluorescence intensity increased over time, suggesting that TP 5-NPs were efficiently taken up by tumor cells. In conclusion, TP 5-NPs showed great promise as an anticancer therapeutic agent.
Collapse
Affiliation(s)
- Guangsheng Cai
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Simiao Wang
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lang Zhao
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yating Sun
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Dongsheng Yang
- School of Pharmaceutical and Food Sciences, Zhuhai College of Jilin University, Zhuhai 519041, China.
| | - Robert J Lee
- College of Life Sciences, Jilin University, Changchun 130012, China.
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Menghui Zhao
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Huan Zhang
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yulin Zhou
- College of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
27
|
Yan G, Du Q, Wei X, Miozzi J, Kang C, Wang J, Han X, Pan J, Xie H, Chen J, Zhang W. Application of Real-Time Cell Electronic Analysis System in Modern Pharmaceutical Evaluation and Analysis. Molecules 2018; 23:E3280. [PMID: 30544947 PMCID: PMC6321149 DOI: 10.3390/molecules23123280] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: We summarized the progress of the xCELLigence real-time cell analysis (RTCA) technology application in recent years for the sake of enriching and developing the application of RTCA in the field of Chinese medicine. Background: The RTCA system is an established electronic cellular biosensor. This system uses micro-electronic biosensor technology that is confirmed for real-time, label-free, dynamic and non-offensive monitoring of cell viability, migration, growth, spreading, and proliferation. Methods: We summarized the relevant experiments and literature of RTCA technology from the principles, characteristics, applications, especially from the latest application progress. Results and conclusion: RTCA is attracting more and more attention. Now it plays an important role in drug screening, toxicology, Chinese herbal medicine and so on. It has wide application prospects in the area of modern pharmaceutical evaluation and analysis.
Collapse
Affiliation(s)
- Guojun Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qian Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xuchao Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jackelyn Miozzi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Chen Kang
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Jinnv Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xinxin Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinhuo Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jun Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Weihua Zhang
- Beijing Body Revival Medical Technology Co., Ltd., Beijing 100088, China.
| |
Collapse
|
28
|
Shi J, Ma Y, Zhu J, Chen Y, Sun Y, Yao Y, Yang Z, Xie J. A Review on Electroporation-Based Intracellular Delivery. Molecules 2018; 23:E3044. [PMID: 30469344 PMCID: PMC6278265 DOI: 10.3390/molecules23113044] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/17/2022] Open
Abstract
Intracellular delivery is a critical step in biological discoveries and has been widely utilized in biomedical research. A variety of molecular tools have been developed for cell-based gene therapies, including FDA approved CAR-T immunotherapy, iPSC, cell reprogramming and gene editing. Despite the inspiring results of these applications, intracellular delivery of foreign molecules including nucleic acids and proteins remains challenging. Efficient yet non-invasive delivery of biomolecules in a high-throughput manner has thus long fascinates the scientific community. As one of the most popular non-viral technologies for cell transfection, electroporation has gone through enormous development with the assist of nanotechnology and microfabrication. Emergence of miniatured electroporation system brought up many merits over the weakness of traditional electroporation system, including precise dose control and high cell viability. These new generation of electroporation systems are of considerable importance to expand the biological applications of intracellular delivery, bypassing the potential safety issue of viral vectors. In this review, we will go over the recent progresses in the electroporation-based intracellular delivery and several potential applications of cutting-edge research on the miniatured electroporation, including gene therapy, cellular reprogramming and intracellular probe.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Yuanxin Chen
- Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, FL 33573, USA.
| | - Yating Sun
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yicheng Yao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
29
|
Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018; 4:3939-3961. [DOI: 10.1021/acsbiomaterials.8b01098] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annish Jain
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Sumit K. Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Shailendra K. Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs − Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Sonia Kapoor
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201 313, Uttar Pradesh, India
| |
Collapse
|
30
|
Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Wu H, Zhu J, Huang Y, Wu D, Sun J. Microfluidic-Based Single-Cell Study: Current Status and Future Perspective. Molecules 2018; 23:E2347. [PMID: 30217082 PMCID: PMC6225124 DOI: 10.3390/molecules23092347] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 01/29/2023] Open
Abstract
Investigation of cell behavior under different environments and manual operations can give information in specific cellular processes. Among all cell-based analysis, single-cell study occupies a peculiar position, while it can avoid the interaction effect within cell groups and provide more precise information. Microfluidic devices have played an increasingly important role in the field of single-cell study owing to their advantages: high efficiency, easy operation, and low cost. In this review, the applications of polymer-based microfluidics on cell manipulation, cell treatment, and cell analysis at single-cell level are detailed summarized. Moreover, three mainly types of manufacturing methods, i.e., replication, photodefining, and soft lithography methods for polymer-based microfluidics are also discussed.
Collapse
Affiliation(s)
- Haiwa Wu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Zhu
- Department of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Yao Huang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
32
|
Xin J, Wang S, Wang B, Wang J, Wang J, Zhang L, Xin B, Shen L, Zhang Z, Yao C. AlPcS 4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic ® F127 nanomicellar drug carriers. Int J Nanomedicine 2018; 13:2017-2036. [PMID: 29670347 PMCID: PMC5894760 DOI: 10.2147/ijn.s154054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose As a promising photodynamic therapy (PDT) agent, Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) provides deep penetration into tissue, high quantum yields, good photostability, and low photobleaching. However, its low delivery efficiency and high binding affinity to serum albumin cause its low penetration into cancer cells, further limiting its PDT effect on gastric cancer. In order to improve AlPcS4/PDT effect, the AlPcS4 delivery sys tems with different drug carriers were synthesized and investigated. Materials and methods Gold nanorods, cationic liposomes, and Pluronic® F127 nanomicellars were used to formulate the AlPcS4 delivery systems. The anticancer effect was evaluated by CCK-8 assay and colony formation assay. The delivery efficiency of AlPcS4 and the binding affinity to serum proteins were determined by fluorescence intensity assay. The apoptosis and necrosis ability, reactive oxygen species and singlet oxygen generation, mitochondrial transmembrane potential and ([Ca2+]i) concentration were further measured to evaluate the mechanism of cell death. Results The series of synthesized AlPcS4 delivery systems with different drug carriers improve the limited PDT effect in varying degrees. In contrast, AlPcS4 complex with gold nanorods has significant anticancer effects because gold nanorods are not only suitable for AlPcS4 delivery, but also exhibit enhanced singlet oxygen generation effect and photothermal effect to induce cell death directly. Moreover, AlPcS4 complex with cationic liposomes shows the potent inhibition effect because of its optimal AlPcS4 delivery efficiency and ability to block serum albumin. In addition, AlPcS4 complex with Pluronic F127 exhibits inferior PDT effect but presents lower cytotoxicity, slower dissociation rate, and longer retention time of incorporated drugs; thus, F127–AlPcS4 is used for prolonged gastric cancer therapy. Conclusion The described AlPcS4 drug delivery systems provide promising agents for gastric cancer therapy.
Collapse
Affiliation(s)
- Jing Xin
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bing Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiazhuang Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Luwei Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Xin
- School of Innovation and Entrepreneurship, Xi'an Fan Yi University, Xi'an, Shaanxi, China
| | - Lijian Shen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
33
|
Fang WJ, Wang CJ, He Y, Zhou YL, Peng XD, Liu SK. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin 2018; 39:59-73. [PMID: 28770830 DOI: 10.1038/aps.2017.50] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Recent evidence shows that resveratrol (RSV) may ameliorate high-glucose-induced cardiac oxidative stress, mitochondrial dysfunction and myocardial fibrosis in diabetes. However, the mechanisms by which RSV regulates mitochondrial function in diabetic cardiomyopathy have not been fully elucidated. Mitochondrial dysfunction contributes to cardiac dysfunction in diabetic patients, which is associated with dysregulation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). In this study we examined whether resveratrol alleviated cardiac dysfunction in diabetes by improving mitochondrial function via SIRT1-mediated PGC-1α deacetylation. T2DM was induced in rats by a high-fat diet combined with STZ injection. Diabetic rats were orally administered RSV (50 mg·kg-1·d-1) for 16 weeks. RSV administration significantly attenuated diabetes-induced cardiac dysfunction and hypertrophy evidenced by increasing ejection fraction (EF%), fraction shortening (FS%), ratio of early diastolic peak velocity (E velocity) and late diastolic peak velocity (A velocity) of the LV inflow (E/A ratio) and reducing expression levels of pro-hypertrophic markers ANP, BNP and β-MHC. Furthermore, manganese superoxide dismutase (SOD) activity, ATP content, mitochondrial DNA copy number, mitochondrial membrane potential and the expression of nuclear respiration factor (NRF) were all significantly increased in diabetic hearts by RSV administration, whereas the levels of malondialdehvde (MDA) and uncoupling protein 2 (UCP2) were significantly decreased. Moreover, RSV administration significantly activated SIRT1 expression and increased PGC-1α deacetylation. H9c2 cells cultured in a high glucose (HG, 30 mmol/L) condition were used for further analyzing the role of SIRT1/PGC-1α pathway in RSV regulation of mitochondrial function. RSV (20 μmol/L) caused similar beneficial effects in HG-treated H9c2 cells in vitro as in diabetic rats, but these protective effects were abolished by addition of a SIRT1 inhibitor sirtinol (25 μmol/L) or by SIRT1 siRNA transfection. In H9c2 cells, RSV-induced PGC-1α deacetylation was dependent on SIRT1, which was also abolished by a SIRT1 inhibitor and SIRT1 siRNA transfection. Our results demonstrate that resveratrol attenuates cardiac injury in diabetic rats through regulation of mitochondrial function, which is mediated partly through SIRT1 activation and increased PGC-1α deacetylation.
Collapse
|
34
|
Wang M, Lee RJ, Bi Y, Li L, Yan G, Lu J, Meng Q, Teng L, Xie J. Transferrin-conjugated liposomes loaded with novel dihydroquinoline derivatives as potential anticancer agents. PLoS One 2017; 12:e0186821. [PMID: 29088257 PMCID: PMC5663382 DOI: 10.1371/journal.pone.0186821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/09/2017] [Indexed: 02/04/2023] Open
Abstract
A series of 1,2-dihydroquinoline derivatives were synthesized and evaluated for cytotoxicity in HeLa, Hep G2 and 6HEK-293T cell lines. EEDQ2 was identified as a promising anti-cancer agent with low IC50 in HeLa (18.55μg/ml) and Hep G2 (14.53μg/ml) cells. For improving the antitumor activity and tumor selectivity of EEDQ2, we prepared transferrin (Tf)-modified liposomes (LPs) to deliver EEDQ2. When HeLa and Hep G2 cells were treated with LP-delivered EEDQ2, the ROS level was significantly enhanced, and mitochondrial membrane potential was reversed. Tf-LPs improved cell uptake of EEDQ2 by about 3.7 times compared with non-targeted LPs. These data suggest that Tf-LPs delivering EEDQ2 is a promising strategy to treat cancer.
Collapse
Affiliation(s)
- Mengqiao Wang
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Robert J. Lee
- Jilin University, College of Life Science, Changchun, Jilin, China
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Ye Bi
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Lianlian Li
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Guodong Yan
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Jiahui Lu
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Qingfan Meng
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Lesheng Teng
- Jilin University, College of Life Science, Changchun, Jilin, China
- * E-mail: (LT); (JX)
| | - Jing Xie
- Jilin University, College of Life Science, Changchun, Jilin, China
- * E-mail: (LT); (JX)
| |
Collapse
|
35
|
System Biology Approach to Identify Potential Receptor for Targeting Cancer and Biomolecular Interaction Studies of Indole[2,1-a]Isoquinoline Derivative as Anticancerous Drug Candidate Against it. Interdiscip Sci 2017; 11:125-134. [PMID: 28748401 DOI: 10.1007/s12539-017-0249-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 04/28/2017] [Accepted: 07/01/2017] [Indexed: 02/06/2023]
Abstract
Cancer is a public health concern which is spreading throughout the world. Different approaches have been employed to combat this disease. System biology approach has been used to understand the molecular mechanisms of drugs targeting cancer cell's receptor which have opened-up a window to develop effective drugs for it. We have demonstrated biomolecular interaction studies using the rational drug design of indole[2,1-a]isoquinoline derivative as a potent inhibitor against identified cancerous protein PIK3CA -a catalytic sub-unit of PI3K family protein-and compared its affinity with FDA approved drugs for receptors such as dactolisib, idelalisib, and several others such afatinib, avastin, ceritinib and crizotinib, etc.; by docking against potential receptor to set a cutoff value for our screening. Isoquinolines are small alkaloids with a vast variety of substitution depending upon their biogenetic pattern. Isoquinoline derivatives have been reported for their antimalarial, antibacterial, antifungal and anticancerous activities. The results obtained from the present studies conclude that membrane protein is an efficient drug that can be used to target cancer. Moreover, comparative study with ADMET prediction concludes that isoquinoline can be a potent drug for cancer treatment.
Collapse
|
36
|
Yan G, Sun W, Pei Y, Yang Z, Wang X, Sun Y, Yang S, Pan J. A novel release kinetics evaluation of Chinese compound medicine: Application of the xCELLigence RTCA system to determine the release characteristics of Sedum sarmentosum compound sustained-release pellets. Saudi Pharm J 2017; 26:445-451. [PMID: 29556137 PMCID: PMC5856952 DOI: 10.1016/j.jsps.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/16/2017] [Indexed: 11/29/2022] Open
Abstract
Purpose: To establish a novel release kinetics evaluation method of Chinese compound medicine (Sedum Sarmentosum compound) with xCELLigence Real-Time Cell-based Assay (RTCA) system. Methods: Cell lines sensitive to Sedum Sarmentosum compound are screened, and cell index-time (CI-T) graphs and cell index release kinetics models are established based on the cell index (CI) monitored. The methodological studies of precision and repeatability were processed by the cell monitors system. The release profiles of the sustained-release Sedum Sarmentosum compound were determined. Consequently, the sustained-release property was characterized by the kinetic parameters based on the cell-index. Results: The accumulative release rate based on cell index of Sedum sarmentosum compound sustained-release preparation was determined and it had a good correlation with time, fitting better with First-order model, Higuchi model and Ritger-Peppas model, and fitting best with Weibull model. It indicated that the release rate is proportional with the diffusion coefficient. Conclusion: The new method of cell-index release kinetics may provide a quantitative description for the release of the multi active agents from Traditional Chinese Medicines. The application of xCELLigence RTCA system for evaluating the release kinetics of Chinese compound medicine is feasible.
Collapse
Affiliation(s)
- Guojun Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Sun
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Jilin University, Changchun 130021, China
| | - Yanfang Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhaogang Yang
- Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaobing Wang
- Tumor Biomarker Research Center, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Sun
- Department of Biochemistry & Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - Shangtian Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinhuo Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
37
|
Bu X, Wu D, Lu X, Yang L, Xu X, Wang J, Tang J. Role of SIRT1/PGC-1α in mitochondrial oxidative stress in autistic spectrum disorder. Neuropsychiatr Dis Treat 2017; 13:1633-1645. [PMID: 28694700 PMCID: PMC5491272 DOI: 10.2147/ndt.s129081] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autistic spectrum disorder (ASD) is a neurodevelopmental disorder and has a high prevalence in children. Recently, mitochondrial oxidative stress has been proposed to be associated with ASD. Besides, SIRT1/PGC-1α signaling plays an important role in combating oxidative stress. In this study, we sought to determine the role of SIRT1/PGC-1α signaling in the ASD lymphoblastoid cell lines (LCLs). In this study, the mRNA and protein expressions of SIRT1/PGC-1α axis genes were assessed in 35 children with ASD and 35 healthy controls (matched for age, gender, and IQ). An immortalized LCL was established by transforming lymphocytes with Epstein-Barr virus. Next, we used ASD LCLs and control LCLs to detect SIRT1/PGC-1α axis genes expression and oxidative damage. Finally, the effect of overexpression of PGC-1α on oxidative injury in the ASD LCLs was determined. SIRT1/PGC-1α axis genes expression was downregulated at RNA and protein levels in ASD patients and LCLs. Besides, the translocation of cytochrome c and DIABLO from mitochondria to the cytosol was found in the ASD LCLs. Moreover, the intracellular reactive oxygen species (ROS) and mitochondrial ROS and cell apoptosis were increased in the ASD LCLs. However, overexpression of PGC-1α upregulated the SIRT1/PGC-1α axis genes expression and reduced cytochrome c and DIABLO release in the ASD LCLs. Also, overexpression of PGC-1α reduced the ROS generation and cell apoptosis in the ASD LCLs. Overexpression of PGC-1α could reduce the oxidative injury in the ASD LCLs, and PGC-1α may act as a target for treatment.
Collapse
Affiliation(s)
- Xiaosong Bu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - De Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaomei Lu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Li Yang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaoyan Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Juan Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jiulai Tang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
38
|
Li X, Ma D, Zha X, Quan D, Pan D, Sun M, Hu B, Zhao B. Ilomastat, a synthetic inhibitor of MMPs, prevents lung injury induced by γ-ray irradiation in mice. Oncotarget 2017; 8:60789-60808. [PMID: 28977826 PMCID: PMC5617386 DOI: 10.18632/oncotarget.18487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/05/2017] [Indexed: 01/27/2023] Open
Abstract
Lung injury is one of the pathological features in human or animal after radiation and the main side effect for patient after lung cancer radiotherapy. The efficient protective strategy still needs to exploit and the underlying mechanisms remain to be investigated. We found that the expression and activity of matrix metalloproteinases (MMPs) significantly increased at the early stage of radiation-induced lung injury (RILI). Pretreatment with Ilomastat, a synthetic inhibitor of MMPs, decreased the expression and activity of MMPs and significantly alleviated the lung inflammation and fibrosis in the irradiated mice, as well as enhanced the survival of irradiated mice. In addition, the levels of TGF-β, IL-6, TNF-α and IL-1β in the tissues dramatically reduced in the irradiated mice pretreated with Ilomastat. Furthermore, our experiments in vitro also showed that radiation significantly increased the MMPs activity, and Ilomastat pretreatment inhibited the activity of MMPs activated by irradiation and increased the cell survival. It is the first report, to our knowledge, to demonstrate that Ilomastat is a potential effective reliever for RILI and MMPs may play important roles in the process of RILI.
Collapse
Affiliation(s)
- Xiaoman Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Space Radiobiology of Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dehui Ma
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tong Liao, China
| | - Xiaodan Zha
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tong Liao, China
| | - Dongqin Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Dong Pan
- CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Space Radiobiology of Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Manji Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Burong Hu
- CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Space Radiobiology of Gansu Province, Lanzhou, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Huang X, Lee RJ, Qi Y, Li Y, Lu J, Meng Q, Teng L, Xie J. Microfluidic hydrodynamic focusing synthesis of polymer-lipid nanoparticles for siRNA delivery. Oncotarget 2017; 8:96826-96836. [PMID: 29228574 PMCID: PMC5722526 DOI: 10.18632/oncotarget.18281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/01/2017] [Indexed: 12/12/2022] Open
Abstract
Small interfering RNAs (siRNAs) are promising as therapeutics for intractable diseases such as cancer. However, efficient and safe delivery of siRNAs in vivo remains a challenge. Polymer-lipid hybrid nanoparticles (P/LNPs) have been evaluated for therapeutic delivery of siRNA. In this study, a microfluidic hydrodynamic focusing (MF) system was used to prepare P/LNPs loaded with VEGF siRNA. P/LNPs made by MF were smaller in particle size and had narrower size distribution compared to P/LNPs formed by bulk mixing (BM). MF-synthesized P/LNPs demonstrated low vehicle cytotoxicity and potent tumor cell inhibition in vitro. In addition, P/LNPs produced by the microfluidic chip exhibited prolonged blood circulation and increased AUC after i.v. injection compared to free siRNA. Furthermore, P/LNPs synthesized by MF induced greater down-regulation of VEGF mRNA and protein levels as well as greater tumor inhibition in a xenograft tumor model. Taken together, P/LNPs prepared by MF have been shown to be an effective and safe therapeutic siRNA delivery system for cancer treatment both in vitro and in vivo.
Collapse
Affiliation(s)
- Xueqin Huang
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China.,Department of Chemistry and Pharmacy, Zhuhai College of Jilin University, Zhuhai, Guangdong, 519041, China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China.,Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yuhang Qi
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| | - Yujing Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| | - Jiahui Lu
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| | - Qingfan Meng
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| |
Collapse
|
40
|
Eliwa EM, Abdel-Razek AS, Frese M, Wibberg D, Halawa AH, El-Agrody AM, Bedair AH, Kalinowski J, Sewald N, Shaaban M. New bioactive compounds from the marine-derived actinomycete Nocardiopsis lucentensis sp. ASMR2. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/znb-2016-0250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the search for new bioactive compounds from extremophilic actinomycetes, a new marine actinomycete strain, Nocardiopsis lucentensis sp. ASMR2 has been isolated and taxonomically identified from marine plants collected in the Red Sea at Hurghada coasts. A large-scale fermentation of the strain on modified rice solid medium was performed, followed by work-up and purification of the obtained extract using a series of chromatographic purifications, delivering the novel butenolide system 3′-hydroxy-N-(2-oxo-2,5-dihydrofuran-4-yl)propionamide (1a) along with the naturally new 4-methoxy-2H-isoquinolin-1-one (2). Furthermore, eight known bioactive compounds are also reported, namely, indole-3-carboxylic acid, indole-3-acetic acid, indole-3-acetic acid methyl ester, furan-2,5-dimethanol, tyrosol, glycerol linoleate, cyclo-(Tyr, Pro), and adenosine. The chemical structures of the new compounds (1a, 2) were confirmed by extensive one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) spectroscopy, electron ionization high resolution (EI-HR) mass spectrometry, and by comparison with literature data. The antimicrobial activity of the strain extract, as well as of compounds 1a and 2, were studied using a panel of pathogenic microorganisms. The in vitro cytotoxicity of the bacterial extract and compounds 1a and 2 were studied against the human cervix carcinoma cell line (KB-3-1) and its multidrug-resistant subclone (KB-V1).
Collapse
Affiliation(s)
- Essam M. Eliwa
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Ahmed S. Abdel-Razek
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
- Microbial Chemistry Department, Division of Genetic Engineering and Biotechnology Research, National Research Centre, El-Behoos St. 33, Dokki-Cairo 12622, Egypt
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
| | - Daniel Wibberg
- Centrum für Biotechnologie (CeBiTec), Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Ahmed H. Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Ahmed M. El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Ahmed H. Bedair
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Jörn Kalinowski
- Centrum für Biotechnologie (CeBiTec), Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
| | - Mohamed Shaaban
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
- Chemistry of Natural Compounds Department, Division of Pharmaceutical Industries, National Research Centre, El-Behoos St. 33, Dokki, Cairo 12622, Egypt , Tel.: +202-270-1728/int-2609. Fax: +202-333-70931
| |
Collapse
|
41
|
Loganathan C, Ananad SAA, Alphonsa AT, Kabilan S, Selvanayagam S. 4-Chloro- N-(isoquinolin-3-yl)butanamide. IUCRDATA 2016. [DOI: 10.1107/s2414314616012906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
All C, N and O atoms of the title compound, C13H13ClN2O, lie in a common plane (r.m.s. deviation = 0.096 Å). The Cl atom deviates by 0.940 (3) Å from this plane. In the crystal, molecules are linkedviaN—H...N and C—H...O hydrogen bonds which formR22(8) andR22(16) graph-set dimers. In addition, molecules are linkedviaC—H...O intermolecular interactions which formC(4) chains propagating along the [100] direction of the unit cell.
Collapse
|
42
|
Chen Z, Chen Z, Zhang A, Hu J, Wang X, Yang Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci 2016; 4:922-32. [PMID: 27048889 DOI: 10.1039/c6bm00070c] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The advent of nanotechnology has provided unprecedented opportunities for nanomedicine. Electrospun nanofibers have some astounding features such as high loading capacity, extremely large surface area and porosity, high encapsulation efficiency, ease of modification, combination of diverse therapies, low cost and great benefits. These remarkable structure-dependent properties have far reaching application potential in cancer diagnosis and therapy such as ultra-sensitive sensing systems for point-of-care cancer detection, targeted cancer cell capture, and functional and smart anticancer drug delivery systems. This review summarizes the principal mechanism of electrospun nanofibers and a variety of modified electrospun nanofibers, illustrates their application in biosensors for cancer detection, and enumerates their application in implantable drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- College of Material Science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China.
| | | | | | | | | | | |
Collapse
|