1
|
Xiang L, Lou J, Zhao J, Geng Y, Zhang J, Wu Y, Zhao Y, Tao Z, Li Y, Qi J, Chen J, Yang L, Zhou K. Underlying Mechanism of Lysosomal Membrane Permeabilization in CNS Injury: A Literature Review. Mol Neurobiol 2025; 62:626-642. [PMID: 38888836 DOI: 10.1007/s12035-024-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.
Collapse
Affiliation(s)
- Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhichao Tao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, WenzhouZhejiang, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Bao Y, Ni Y, Zhang A, Chen J. PPP1R14B as a potential biomarker for the identification of diagnosis and prognosis affecting tumor immunity, proliferation and migration in prostate cancer. J Cancer 2024; 15:6545-6564. [PMID: 39668827 PMCID: PMC11632978 DOI: 10.7150/jca.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/11/2024] [Indexed: 12/14/2024] Open
Abstract
Prostate cancer (PCa) is a malignancy that affects men and is characterized by metastasis and high rates of morbidity. The objective of this study was to explore novel PCa biomarker with potential diagnostic and therapeutic value and relationships between it and tumor immunity and development. A total of 32 key genes were screened out via LASSO based upon 188 intersection genes obtained from WGCNA and DEGs analysis in GSE32571, and PPP1R14B was further identified by COX regression based on the TCGA database and validated by qRT-PCR. Although it has been reported that PPP1R14B may have a certain correlation with the prognosis of uterine corpus endometrial carcinoma, breast cancer and gastrointestinal cancer, there are none of studies about correlation between PPP1R14B and PCa. Predictive ability analysis showed that PPP1R14B had greatly predictive values in occurrence and prognosis of PCa. Immune analysis revealed that overexpression of PPP1R14B was related to the increase of ALKBH2, UCK2, RAC3 and RAB17 and the decrease of CD40, DKK3, COL17A1 and PGRMC1, which would result in downregulation of plasma cells, upregulation of T regulatory cells and disorder of macrophage proportion to suppress adaptive immune directed against PCa. GSEA analysis showed that PPP1R14B, as an inhibitor of PP1, its overexpression was mainly involved in regulating pathways associated with MYC, E2F, PFN1 and so on, which was participated in the regulation of immune factors such as CD40, RAC3, COL17A, DKK3, as well as biological processes such as proliferation and migration. Patients with higher PPP1R14B expression responded more sensitively to drugs selumetinib and vorinostat, zebularine, azacitidine and VER155008. In summary, PPP1R14B was a potential diagnostic and prognostic biomarker of PCa and its high expression had closely association with tumor immune inhibition, proliferation and migration, providing a new target for drug therapy and immunotherapy in PCa.
Collapse
Affiliation(s)
- Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Yixiu Ni
- School of Medicine, Zhejiang University, Hangzhou, 310013, Zhejiang Province, China
| | - Aokang Zhang
- School of Medicine, Zhejiang University, Hangzhou, 310013, Zhejiang Province, China
| | - Jun Chen
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| |
Collapse
|
3
|
Xu B, Anderson BM, Mintern JD, Edgington-Mitchell LE. TLR9-dependent dendritic cell maturation promotes IL-6-mediated upregulation of cathepsin X. Immunol Cell Biol 2024; 102:787-800. [PMID: 38979698 DOI: 10.1111/imcb.12806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Cysteine cathepsins are lysosomal proteases subject to dynamic regulation within antigen-presenting cells during the immune response and associated diseases. To investigate the regulation of cathepsin X, a carboxy-mono-exopeptidase, during maturation of dendritic cells (DCs), we exposed immortalized mouse DCs to various Toll-like receptor agonists. Using a cathepsin X-selective activity-based probe, sCy5-Nle-SY, we observed a significant increase in cathepsin X activation upon TLR-9 agonism with CpG, and to a lesser extent with Pam3 (TLR1/2), FSL-1 (TLR2/6) and LPS (TLR4). Despite clear maturation of DCs in response to Poly I:C (TLR3), cathepsin X activity was only slightly increased by this agonist, suggesting differential regulation of cathepsin X downstream of TLR activation. We demonstrated that cathepsin X was upregulated at the transcriptional level in response to CpG. This occurred at late time points and was not dampened by NF-κB inhibition. Factors secreted from CpG-treated cells were able to provoke cathepsin X upregulation when applied to naïve cells. Among these factors was IL-6, which on its own was sufficient to induce transcriptional upregulation and activation of cathepsin X. IL-6 is highly secreted by DCs in response to CpG but much less so in response to poly I:C, and inhibition of the IL-6 receptor subunit glycoprotein 130 prevented CpG-mediated cathepsin X upregulation. Collectively, these results demonstrate that cathepsin X is differentially transcribed during DC maturation in response to diverse stimuli, and that secreted IL-6 is critical for its dynamic regulation.
Collapse
Affiliation(s)
- Bangyan Xu
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Bethany M Anderson
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Justine D Mintern
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Fu F, Yu Y, Zou B, Long Y, Wu L, Yin J, Zhou Q. Role of actin-binding proteins in prostate cancer. Front Cell Dev Biol 2024; 12:1430386. [PMID: 39055653 PMCID: PMC11269120 DOI: 10.3389/fcell.2024.1430386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The molecular mechanisms driving the onset and metastasis of prostate cancer remain poorly understood. Actin, under the control of actin-binding proteins (ABPs), plays a crucial role in shaping the cellular cytoskeleton, which in turn supports the morphological alterations in normal cells, as well as the invasive spread of tumor cells. Previous research indicates that ABPs of various types serve distinct functions, and any disruptions in their activities could predispose individuals to prostate cancer. These ABPs are intricately implicated in the initiation and advancement of prostate cancer through a complex array of intracellular processes, such as severing, linking, nucleating, inducing branching, assembling, facilitating actin filament elongation, terminating elongation, and promoting actin molecule aggregation. As such, this review synthesizes existing literature on several ABPs linked to prostate cancer, including cofilin, filamin A, and fascin, with the aim of shedding light on the molecular mechanisms through which ABPs influence prostate cancer development and identifying potential therapeutic targets. Ultimately, this comprehensive examination seeks to contribute to the understanding and management of prostate diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Stahl-Meyer J, Stahl-Meyer K, Jäättelä M. Control of mitosis, inflammation, and cell motility by limited leakage of lysosomes. Curr Opin Cell Biol 2021; 71:29-37. [PMID: 33684809 DOI: 10.1016/j.ceb.2021.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Lysosomal membrane permeabilization and subsequent leakage of lysosomal hydrolases into the cytosol are considered as the major hallmarks of evolutionarily conserved lysosome-dependent cell death. Contradicting this postulate, new sensitive methods that can detect a minimal lysosomal membrane damage have demonstrated that lysosomal leakage does not necessarily equal cell death. Notably, cells are not only able to survive minor lysosomal membrane permeabilization, but some of their normal functions actually depend on leaked lysosomal hydrolases. Here we discuss emerging data suggesting that spatially and temporally controlled lysosomal leakage delivers lysosomal hydrolases to specific subcellular sites of action and controls at least three essential cellular processes, namely mitotic chromosome segregation, inflammatory signaling, and cellular motility.
Collapse
Affiliation(s)
- Jonathan Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kamilla Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark; Orphazyme A/S, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Abstract
Profilin is a ubiquitously expressed protein well known as a key regulator of actin polymerisation. The actin cytoskeleton is involved in almost all cellular processes including motility, endocytosis, metabolism, signal transduction and gene transcription. Hence, profilin's role in the cell goes beyond its direct and essential function in regulating actin dynamics. This review will focus on the interactions of Profilin 1 and its ligands at the plasma membrane, in the cytoplasm and the nucleus of the cells and the regulation of profilin activity within those cell compartments. We will discuss the interactions of profilin in cell signalling pathways and highlight the importance of the cell context in the multiple functions that this small essential protein has in conjunction with its role in cytoskeletal organisation and dynamics. We will review some of the mechanisms that control profilin expression and the implications of changed expression of profilin in the light of cancer biology and other pathologies.
Collapse
|
7
|
De Pasquale V, Moles A, Pavone LM. Cathepsins in the Pathophysiology of Mucopolysaccharidoses: New Perspectives for Therapy. Cells 2020; 9:cells9040979. [PMID: 32326609 PMCID: PMC7227001 DOI: 10.3390/cells9040979] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cathepsins (CTSs) are ubiquitously expressed proteases normally found in the endolysosomal compartment where they mediate protein degradation and turnover. However, CTSs are also found in the cytoplasm, nucleus, and extracellular matrix where they actively participate in cell signaling, protein processing, and trafficking through the plasma and nuclear membranes and between intracellular organelles. Dysregulation in CTS expression and/or activity disrupts cellular homeostasis, thus contributing to many human diseases, including inflammatory and cardiovascular diseases, neurodegenerative disorders, diabetes, obesity, cancer, kidney dysfunction, and others. This review aimed to highlight the involvement of CTSs in inherited lysosomal storage disorders, with a primary focus to the emerging evidence on the role of CTSs in the pathophysiology of Mucopolysaccharidoses (MPSs). These latter diseases are characterized by severe neurological, skeletal and cardiovascular phenotypes, and no effective cure exists to date. The advance in the knowledge of the molecular mechanisms underlying the activity of CTSs in MPSs may open a new challenge for the development of novel therapeutic approaches for the cure of such intractable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish Research Council, 08036 Barcelona, Spain;
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-7463043
| |
Collapse
|
8
|
Lu E, Wang Q, Li S, Chen C, Wu W, Xu YXZ, Zhou P, Tu W, Lou X, Rao G, Yang G, Jiang S, Zhou K. Profilin 1 knockdown prevents ischemic brain damage by promoting M2 microglial polarization associated with the RhoA/ROCK pathway. J Neurosci Res 2020; 98:1198-1212. [PMID: 32291804 DOI: 10.1002/jnr.24607] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ermei Lu
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Qian Wang
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Shengcun Li
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Caiming Chen
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Weibo Wu
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Yang Xin Zi Xu
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
| | - Peng Zhou
- Department of Anatomy Wenzhou Medical University Wenzhou China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Xinfa Lou
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Gaofeng Rao
- Department of Rehabilitation Medicine The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| |
Collapse
|
9
|
Mountford SJ, Anderson BM, Xu B, Tay ESV, Szabo M, Hoang ML, Diao J, Aurelio L, Campden RI, Lindström E, Sloan EK, Yates RM, Bunnett NW, Thompson PE, Edgington-Mitchell LE. Application of a Sulfoxonium Ylide Electrophile to Generate Cathepsin X-Selective Activity-Based Probes. ACS Chem Biol 2020; 15:718-727. [PMID: 32022538 DOI: 10.1021/acschembio.9b00961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cathepsin X/Z/P is cysteine cathepsin with unique carboxypeptidase activity. Its expression is associated with cancer and neurodegenerative diseases, although its roles during normal physiology are still poorly understood. Advances in our understanding of its function have been hindered by a lack of available tools that can specifically measure the proteolytic activity of cathepsin X. We present a series of activity-based probes that incorporate a sulfoxonium ylide warhead, which exhibit improved specificity for cathepsin X compared to previously reported probes. We apply these probes to detect cathepsin X activity in cell and tissue lysates, in live cells and in vivo, and to localize active cathepsin X in mouse tissues by microscopy. Finally, we utilize an improved method to generate chloromethylketones, necessary intermediates for synthesis of acyloxymethylketones probes, by way of sulfoxonium ylide intermediates. In conclusion, the probes presented in this study will be valuable for investigating cathepsin X pathophysiology.
Collapse
Affiliation(s)
- Simon J. Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bethany M. Anderson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bangyan Xu
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Elean S. V. Tay
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Monika Szabo
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - My-Linh Hoang
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jiayin Diao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Luigi Aurelio
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Rhiannon I. Campden
- Snyder Institute for Chronic Disease and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | - Erica K. Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robin M. Yates
- Snyder Institute for Chronic Disease and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nigel W. Bunnett
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department of Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, United States
- Department of Pharmacology and Experimental Therapeutics, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Philip E. Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Laura E. Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York 10010, United States
| |
Collapse
|
10
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
11
|
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front Immunol 2019; 10:2037. [PMID: 31555270 PMCID: PMC6724555 DOI: 10.3389/fimmu.2019.02037] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Cysteine cathepsins are key regulators of the innate and adaptive arms of the immune system. Their expression, activity, and subcellular localization are associated with the distinct development and differentiation stages of immune cells. They promote the activation of innate myeloid immune cells since they contribute to toll-like receptor signaling and to cytokine secretion. Furthermore, they control lysosomal biogenesis and autophagic flux, thus affecting innate immune cell survival and polarization. They also regulate bidirectional communication between the cell exterior and the cytoskeleton, thus influencing cell interactions, morphology, and motility. Importantly, cysteine cathepsins contribute to the priming of adaptive immune cells by controlling antigen presentation and are involved in cytotoxic granule mediated killing in cytotoxic T lymphocytes and natural killer cells. Cathepins'aberrant activity can be prevented by their endogenous inhibitors, cystatins. However, dysregulated proteolysis contributes significantly to tumor progression also by modulation of the antitumor immune response. Especially tumor-associated myeloid cells, such as tumor-associated macrophages and myeloid-derived suppressor cells, which are known for their tumor promoting and immunosuppressive functions, constitute the major source of excessive cysteine cathepsin activity in cancer. Since they are enriched in the tumor microenvironment, cysteine cathepsins represent exciting targets for development of new diagnostic and therapeutic moieties.
Collapse
Affiliation(s)
- Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- UCLA School of Dentistry and Medicine, Los Angeles, CA, United States
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
12
|
Soond SM, Kozhevnikova MV, Zamyatnin AA. 'Patchiness' and basic cancer research: unravelling the proteases. Cell Cycle 2019; 18:1687-1701. [PMID: 31213124 DOI: 10.1080/15384101.2019.1632639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recent developments in Cathepsin protease research have unveiled a number of key observations which are fundamental to further our understanding of normal cellular homeostasis and disease. By far, the most interesting and promising area of Cathepsin biology stems from how these proteins are linked to the fate of living cells through the phenomenon of Lysosomal Leakage and Lysosomal Membrane Permeabilisation. While extracellular Cathepsins are generally believed to be of central importance in tumour progression, through their ability to modulate the architecture of the Extracellular Matrix, intracellular Cathepsins have been established as being of extreme significance in mediating cell death through Apoptosis. With these two juxtaposed key research areas in mind, the focus of this review highlights recent advancements in how this fast-paced area of Cathepsin research has recently evolved in the context of their mechanistic regulation in cancer research. Abbreviations : ECM, Extracellular Matrix; MMP, Matrix Metalloproteases; LL, Lysosomal Leakage; LMP, Lysosomal Membrane Permeabilisation; LMA, Lysosomorphic Agents; BC, Breast Cancer; ASM, Acid Sphingomyelinase; TNF-α, Tumor Necrosis Factor-alpha; LAMP, Lysosomal Associated membrane Protein; PCD, Programmed Cell Death; PDAC, Pancreatic Ductal Adenocarcinoma; ROS, Reactive Oxygen Species; aa, amino acids.
Collapse
Affiliation(s)
- Surinder M Soond
- a Institute of Molecular Medicine , Sechenov First Moscow State Medical University , Moscow , Russian Federation
| | - Maria V Kozhevnikova
- a Institute of Molecular Medicine , Sechenov First Moscow State Medical University , Moscow , Russian Federation
| | - Andrey A Zamyatnin
- a Institute of Molecular Medicine , Sechenov First Moscow State Medical University , Moscow , Russian Federation.,b Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russian Federation
| |
Collapse
|
13
|
Coumans JVF, Davey RJ, Moens PDJ. Cofilin and profilin: partners in cancer aggressiveness. Biophys Rev 2018; 10:1323-1335. [PMID: 30027463 DOI: 10.1007/s12551-018-0445-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/08/2018] [Indexed: 02/07/2023] Open
Abstract
This review covers aspects of cofilin and profilin regulations and their influence on actin polymerisation responsible for cell motility and metastasis. The regulation of their activity by phosphorylation and nitration, miRs, PI(4,5)P2 binding, pH, oxidative stress and post-translational modification is described. In this review, we have highlighted selected similarities, complementarities and differences between the two proteins and how their interplay affects actin filament dynamics.
Collapse
Affiliation(s)
- Joelle V F Coumans
- School of Rural Medicine, University of New England, Armidale, Australia
| | - Rhonda J Davey
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
| | - Pierre D J Moens
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia.
| |
Collapse
|
14
|
Frantzi M, Klimou Z, Makridakis M, Zoidakis J, Latosinska A, Borràs DM, Janssen B, Giannopoulou I, Lygirou V, Lazaris AC, Anagnou NP, Mischak H, Roubelakis MG, Vlahou A. Silencing of Profilin-1 suppresses cell adhesion and tumor growth via predicted alterations in integrin and Ca2+ signaling in T24M-based bladder cancer models. Oncotarget 2018; 7:70750-70768. [PMID: 27683119 PMCID: PMC5342587 DOI: 10.18632/oncotarget.12218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is the second most common malignancy of the genitourinary system, characterized by the highest recurrence rate of all cancers. Treatment options are limited; thus a thorough understanding of the underlying molecular mechanisms is needed to guide the discovery of novel therapeutic targets. Profilins are actin binding proteins with attributed pleiotropic functions to cytoskeletal remodeling, cell adhesion, motility, even transcriptional regulation, not fully characterized yet. Earlier studies from our laboratory revealed that decreased tissue levels of Profilin-1 (PFN1) are correlated with BC progression to muscle invasive disease. Herein, we describe a comprehensive analysis of PFN1 silencing via shRNA, in vitro (by employing T24M cells) and in vivo [(with T24M xenografts in non-obese diabetic severe combined immunodeficient mice (NOD/SCID) mice]. A combination of phenotypic and molecular assays, including migration, proliferation, adhesion assays, flow cytometry and total mRNA sequencing, as well as immunohistochemistry for investigation of selected findings in human specimens were applied. A decrease in BC cell adhesion and tumor growth in vivo following PFN downregulation are observed, likely associated with the concomitant downregulation of Fibronectin receptor, Endothelin-1, and Actin polymerization. A decrease in the levels of multiple key members of the non-canonical Wnt/Ca2+ signaling pathway is also detected following PFN1 suppression, providing the groundwork for future studies, addressing the specific role of PFN1 in Ca2+ signaling, particularly in the muscle invasive disease.
Collapse
Affiliation(s)
- Maria Frantzi
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Research and Development Department, Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Zoi Klimou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Cell and Gene Therapy Laboratory, Biomedical Research Foundation of The Academy of Athens, Athens, Greece
| | - Manousos Makridakis
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Agnieszka Latosinska
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Daniel M Borràs
- Research and Development Department, GenomeScan B.V., Leiden, The Netherlands
| | - Bart Janssen
- Research and Development Department, GenomeScan B.V., Leiden, The Netherlands
| | - Ioanna Giannopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Lygirou
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicholas P Anagnou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Cell and Gene Therapy Laboratory, Biomedical Research Foundation of The Academy of Athens, Athens, Greece
| | - Harald Mischak
- Research and Development Department, Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Maria G Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Cell and Gene Therapy Laboratory, Biomedical Research Foundation of The Academy of Athens, Athens, Greece
| | - Antonia Vlahou
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
15
|
Tuo H, Shu F, She S, Yang M, Zou XQ, Huang J, Hu HD, Hu P, Ren H, Peng SF, Yang YX. Sorcin induces gastric cancer cell migration and invasion contributing to STAT3 activation. Oncotarget 2017; 8:104258-104271. [PMID: 29262638 PMCID: PMC5732804 DOI: 10.18632/oncotarget.22208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a globally occurring malignancy that is characterized by a high mortality rate due to a high tendency to metastasize and poor prognoses. Sorcin, as known as SRI, a soluble resistance-related calcium-binding protein, plays a significant role in multidrug resistance. Sorcin is related to the migration and invasion of cancer cells. However, the mechanism remains unclear. Here, we used immunohistochemistry to confirm that the expression of sorcin in cancer tissues is higher than that in the adjacent normal tissues. The wound healing and transwell results indicate that sorcin can induce migration and invasion of GC cells. To explore the role of sorcin in GC metastasis, isobaric tags for relative and absolutely quantitation (iTRAQ) were used to examine cells with and without sorcin knockdown to identify the differentially expressed proteins (DEPs). The results were evaluated via RT-PCR and western blot to confirm the ITRAQ data. Inhibition of sorcin expression can down- regulate the expression of CTSZ, MMP2, MMP9 and p-STAT3 followed by suppression of tumor growth and metastasis. Together, we concluded that sorcin has a oncogenic activity via inducing tumor growth and metastasis, leading to development of therapeutic treatments for GC.
Collapse
Affiliation(s)
- Huan Tuo
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Feng Shu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Sha She
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Min Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiao Qin Zou
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Juan Huang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Huai Dong Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing 400016, China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing 400016, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing 400016, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Shi Fang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Hunan 410008, China.,Department of Health Management Center, Xiangya Hospital, Central South University, Hunan 410008, China
| | - Yi Xuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing 400016, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Fonović UP, Mitrović A, Knez D, Jakoš T, Pišlar A, Brus B, Doljak B, Stojan J, Žakelj S, Trontelj J, Gobec S, Kos J. Identification and characterization of the novel reversible and selective cathepsin X inhibitors. Sci Rep 2017; 7:11459. [PMID: 28904354 PMCID: PMC5597618 DOI: 10.1038/s41598-017-11935-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/31/2017] [Indexed: 01/21/2023] Open
Abstract
Cathepsin X is a cysteine peptidase involved in the progression of cancer and neurodegenerative diseases. Targeting this enzyme with selective inhibitors opens a new possibility for intervention in several therapeutic areas. In this study triazole-based reversible and selective inhibitors of cathepsin X have been identified. Their selectivity and binding is enhanced when the 2,3-dihydrobenzo[b][1,4]dioxine moiety is present as the R1 substituent. Of a series of selected triazole-benzodioxine derivatives, compound 22 is the most potent inhibitor of cathepsin X carboxypeptidase activity (Ki = 2.45 ± 0.05 μM) with at least 100-fold greater selectivity in comparison to cathepsin B or other related cysteine peptidases. Compound 22 is not cytotoxic to prostate cancer cells PC-3 or pheochromocytoma PC-12 cells at concentrations up to 10 μM. It significantly inhibits the migration of tumor cells and increases the outgrowth of neurites, both processes being under the control of cathepsin X carboxypeptidase activity. Compound 22 and other characterized triazole-based inhibitors thus possess a great potential for further development resulting in several in vivo applications.
Collapse
Affiliation(s)
- Urša Pečar Fonović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, Slovenia.
| | - Ana Mitrović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, Slovenia
| | - Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, Slovenia
| | - Boris Brus
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, Slovenia
| | - Bojan Doljak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, Slovenia
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Simon Žakelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, Slovenia
| | - Jurij Trontelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, Slovenia
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| |
Collapse
|
17
|
Detection of Potential Metastatic Prostate Cancer Circulating Biomarkers by Comparison of miRNA Profiles in DU145 Cells and Culture Medium. Bull Exp Biol Med 2017; 162:792-796. [PMID: 28429232 DOI: 10.1007/s10517-017-3715-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 02/06/2023]
Abstract
We studied the profile of miRNA secreted into culture medium by DU145 prostate cancer cells and identified a subset of miRNAs characterized by the absence of correlation of their content in the cell and medium, which is likely a result of specific secretion. Three of these miRNA, hsa-miR-4417, hsa-miR-3175, and hsa-miR-6782-5p, exhibit the highest expression and are candidate circulating biomarkers for metastatic activity of prostate cancer. Two of these miRNA are coded by introns of genes linked with genome stability maintenance and chromatin remodeling regulation.
Collapse
|