1
|
Brooks S. Lectins as versatile tools to explore cellular glycosylation. Eur J Histochem 2024; 68:3959. [PMID: 38285057 PMCID: PMC11059468 DOI: 10.4081/ejh.2024.3959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
Lectins are naturally occurring carbohydrate-binding proteins that are ubiquitous in nature and highly selective for their, often incompletely characterised, binding partners. From their discovery in the late 1880s to the present day, they have provided a broad palette of versatile tools for exploring the glycosylation of cells and tissues and for uncovering the myriad functions of glycosylation in biological systems. The technique of lectin histochemistry, used to map the glycosylation of tissues, has been instrumental in revealing the changing profile of cellular glycosylation in development, health and disease. It has been especially enlightening in revealing fundamental alterations in cellular glycosylation that accompany cancer development and metastasis, and has facilitated the identification of glycosylated biomarkers that can predict prognosis and may have utility in development of early detection and screening, Moreover, it has led to insights into the functional role of glycosylation in healthy tissues and in the processes underlying disease. Recent advances in biotechnology mean that our understanding of the precise binding partners of lectins is improving and an ever-wider range of lectins are available, including recombinant human lectins and lectins with enhanced, engineered properties. Moreover, use of traditional histochemistry to support a broad range of cutting-edge technologies and the development of high throughout microarray platforms opens the way for ever more sophisticated mapping - and understanding - of the glycome.
Collapse
|
2
|
Pinto D, Parameswaran R. Role of Truncated O-GalNAc Glycans in Cancer Progression and Metastasis in Endocrine Cancers. Cancers (Basel) 2023; 15:3266. [PMID: 37444377 DOI: 10.3390/cancers15133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Glycans are an essential part of cells, playing a fundamental role in many pathophysiological processes such as cell differentiation, adhesion, motility, signal transduction, host-pathogen interactions, tumour cell invasion, and metastasis development. These glycans are also able to exert control over the changes in tumour immunogenicity, interfering with tumour-editing events and leading to immune-resistant cancer cells. The incomplete synthesis of O-glycans or the formation of truncated glycans such as the Tn-antigen (Thomsen nouveau; GalNAcα- Ser/Thr), its sialylated version the STn-antigen (sialyl-Tn; Neu5Acα2-6GalNAcα-Ser/Thr) and the elongated T-antigen (Thomsen-Friedenreich; Galβ1-3GalNAcα-Ser/Thr) has been shown to be associated with tumour progression and metastatic state in many human cancers. Prognosis in various human cancers is significantly poor when they dedifferentiate or metastasise. Recent studies in glycobiology have shown truncated O-glycans to be a hallmark of cancer cells, and when expressed, increase the oncogenicity by promoting dedifferentiation, risk of metastasis by impaired adhesion (mediated by selectins and integrins), and resistance to immunological killing by NK cells. Insight into these truncated glycans provides a complimentary and attractive route for cancer antigen discovery. The recent emergence of immunotherapies against cancers is predicted to harness the potential of using such agents against cancer-associated truncated glycans. In this review, we explore the role of truncated O-glycans in cancer progression and metastasis along with some recent studies on the role of O-glycans in endocrine cancers affecting the thyroid and adrenal gland.
Collapse
Affiliation(s)
- Diluka Pinto
- Division of Endocrine Surgery, National University Hospital, Singapore 119074, Singapore
| | - Rajeev Parameswaran
- Division of Endocrine Surgery, National University Hospital, Singapore 119074, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
3
|
Brooks SA. Lectin Histochemistry: Historical Perspectives, State of the Art, and Future Directions. Methods Mol Biol 2023; 2566:65-84. [PMID: 36152243 DOI: 10.1007/978-1-0716-2675-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lectins, discovered more than 100 years ago and defined by their ability to selectively recognize specific carbohydrate structures, are ubiquitous in living organisms. Their precise functions are as yet under-explored and incompletely understood but they are clearly involved, through recognition of their binding partners, in a myriad of biological mechanisms involved in cell identity, adhesion, signaling, and growth regulation in health and disease. Understanding the complex "sugar code" represented by the "glycome" is a major challenge and at the forefront of current biological research. Lectins have been widely employed in histochemical studies to map glycosylation in cells and tissues. Here, a brief history of the discovery of lectins and early developments in their use is presented along with a selection of some of the most interesting and significant discoveries to emerge from the use of lectin histochemistry. Further, an evaluation of the next generation of lectin-based technologies is presented, including the potential for designing recombinant lectins with more precisely defined binding characteristics, linking lectin-based studies with other technologies to answer fundamental questions in glycobiology and approaches to exploring the interactions of lectins with their binding partners in more detail.
Collapse
Affiliation(s)
- Susan Ann Brooks
- Department of Biological & Medical Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
4
|
Zhu G, Jin L, Sun W, Wang S, Liu N. Proteomics of post-translational modifications in colorectal cancer: Discovery of new biomarkers. Biochim Biophys Acta Rev Cancer 2022; 1877:188735. [PMID: 35577141 DOI: 10.1016/j.bbcan.2022.188735] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the costliest health problems and ranks second in cancer-related mortality in developed countries. With the aid of proteomics, many protein biomarkers for the diagnosis, prognosis, and precise management of CRC have been identified. Furthermore, some protein biomarkers exhibit structural diversity after modifications. Post-translational modifications (PTMs), most of which are catalyzed by a variety of enzymes, extensively increase protein diversity and are involved in many complex and dynamic cellular processes through the regulation of protein function. Accumulating evidence suggests that abnormal PTM events are associated with a variety of human diseases, such as CRC, thus highlighting the need for studying PTMs to discover both the molecular mechanisms and therapeutic targets of CRC. In this review, we begin with a brief overview of the importance of protein PTMs, discuss the general strategies for proteomic profiling of several key PTMs (including phosphorylation, acetylation, glycosylation, ubiquitination, methylation, and citrullination), shift the emphasis to describing the specific methods used for delineating the global landscapes of each of these PTMs, and summarize the recent applications of these methods to explore the potential roles of the PTMs in CRC. Finally, we discuss the current status of PTM research on CRC and provide future perspectives on how PTM regulation can play an essential role in translational medicine for early diagnosis, prognosis stratification, and therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Gengjun Zhu
- Department Oncology and Hematology, The Second Hospital of Jilin University, Changchun, China
| | - Lifang Jin
- Department Oncology and Hematology, The Second Hospital of Jilin University, Changchun, China
| | - Wanchun Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Shuang Wang
- Dermatological department, The Second Hospital of Jilin University, Changchun, China.
| | - Ning Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China; Central Laboratory, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Goumenou A, Delaunay N, Pichon V. Recent Advances in Lectin-Based Affinity Sorbents for Protein Glycosylation Studies. Front Mol Biosci 2021; 8:746822. [PMID: 34778373 PMCID: PMC8585745 DOI: 10.3389/fmolb.2021.746822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023] Open
Abstract
Glycosylation is one of the most significant post-translational modifications occurring to proteins, since it affects some of their basic properties, such as their half-life or biological activity. The developments in analytical methodologies has greatly contributed to a more comprehensive understanding of the quantitative and qualitative characteristics of the glycosylation state of proteins. Despite those advances, the difficulty of a full characterization of glycosylation still remains, mainly due to the complexity of the glycoprotein and/or glycopeptide mixture especially when they are present in complex biological samples. For this reason, various techniques that allow a prior selective enrichment of exclusively glycosylated proteins or glycopeptides have been developed in the past and are coupled either on- or off- line with separation and detection methods. One of the most commonly implemented enrichment methods includes the use of lectin proteins immobilized on various solid supports. Lectins are a group of different, naturally occurring proteins that share a common characteristic, which concerns their affinity for specific sugar moieties of glycoproteins. This review presents the different formats and conditions for the use of lectins in affinity chromatography and in solid phase extraction, including their use in dispersive mode, along with the recent progress made on either commercial or home-made lectin-based affinity sorbents, which can lead to a fast and automated glycosylation analysis.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France.,Sorbonne University, Paris, France
| |
Collapse
|
6
|
The T/Tn-Specific Helix pomatia Lectin Induces Cell Death in Lymphoma Cells Negative for T/Tn Antigens. Cancers (Basel) 2021; 13:cancers13174356. [PMID: 34503166 PMCID: PMC8431231 DOI: 10.3390/cancers13174356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Changes in glycosylation, such as incomplete synthesis and higher density of O-glycans on the cell surface, are frequently observed in cancer cells. Several types of truncated O-glycan structures, e.g., T/Tn antigens, are suspected to disrupt molecular interactions between tumor microenvironment and immune cells, for instance, facilitating cancer immune-escape. Therefore, numerous exogenous lectins targeting aberrant O-glycans are interesting tools for cancer diagnosis, prognosis, and therapy. However, the ability of exolectins to detect subtle alterations in the glycome of tumor cells and to interfere in tumor/healthy cell interactions remains largely unknown. The present article reports for the first time that the Helix pomatia (HPA) lectin, a well-known T/Tn-specific lectin, currently used as a tool in cancer diagnostics, kills Tn-positive leukemia cells and Tn-negative lymphoma cells but does not affect healthy lymphocytes. Thus, HPA could be used to discriminate between tumor and healthy cells, and detect subtle alterations in the glycosylation profile. Abstract Morniga G is a T/Tn-specific lectin, inducing cell death in Tn-positive leukemias but not in healthy lymphocytes. Helix pomatia lectin (HPA) is another T/Tn-specific lectin, currently used as tool for cancer diagnostics. The HPA-mediated tumor cell death was evaluated on human leukemia and mouse lymphoma cells, and compared to the effect of Morniga G. Both lectins induced an equivalent percentage of cell death in Tn-positive Jurkat human leukemia. In contrast, EL4 mouse lymphoma resisted Morniga G-mediated cytotoxicity but were killed by HPA at concentrations of 2.5 μg/mL (0.032 nM) and higher. In both malignant cells, HPA-mediated cell death showed features compatible with apoptosis (annexin-externalization, caspase-activation, mitochondrial membrane depolarization, and ROS production). Cytometry analysis indicated that EL4 cells are T/Tn-negative. Because previous results showed a high amount of N-acetylgalactosamine (GalNAc, sugar present in Tn antigen) on EL4 cell surface, this GalNAc could be involved in the formation of truncated O-glycans other than the T/Tn residues. When compared to Morniga G, bioinformatic analysis suggested that HPA benefits from an extended carbohydrate-binding site, better adapted than Morniga G to the accommodation of more complex branched and truncated O-glycans (such as core 2). Finally, HPA killed EL4 cells but not healthy lymphocytes in a mixture of lymphoma cells + lymphocytes, suggesting that HPA selectively triggers tumor cell death.
Collapse
|
7
|
Abyadeh M, Meyfour A, Gupta V, Zabet Moghaddam M, Fitzhenry MJ, Shahbazian S, Hosseini Salekdeh G, Mirzaei M. Recent Advances of Functional Proteomics in Gastrointestinal Cancers- a Path towards the Identification of Candidate Diagnostic, Prognostic, and Therapeutic Molecular Biomarkers. Int J Mol Sci 2020; 21:ijms21228532. [PMID: 33198323 PMCID: PMC7697099 DOI: 10.3390/ijms21228532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the common causes of morbidity and mortality. A high number of cases are diagnosed at an advanced stage, leading to a poor survival rate. This is primarily attributed to the lack of reliable diagnostic biomarkers and limited treatment options. Therefore, more sensitive, specific biomarkers and curative treatments are desirable. Functional proteomics as a research area in the proteomic field aims to elucidate the biological function of unknown proteins and unravel the cellular mechanisms at the molecular level. Phosphoproteomic and glycoproteomic studies have emerged as two efficient functional proteomics approaches used to identify diagnostic biomarkers, therapeutic targets, the molecular basis of disease and mechanisms underlying drug resistance in GI cancers. In this review, we present an overview on how functional proteomics may contribute to the understanding of GI cancers, namely colorectal, gastric, hepatocellular carcinoma and pancreatic cancers. Moreover, we have summarized recent methodological developments in phosphoproteomics and glycoproteomics for GI cancer studies.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
- Cell Science Research Center, Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
- Correspondence: (A.M.); (M.M.)
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | | | - Matthew J. Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Shila Shahbazian
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Ghasem Hosseini Salekdeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
- Correspondence: (A.M.); (M.M.)
| |
Collapse
|
8
|
Pietrzyk-Brzezinska AJ, Bujacz A. H-type lectins - Structural characteristics and their applications in diagnostics, analytics and drug delivery. Int J Biol Macromol 2020; 152:735-747. [PMID: 32119947 DOI: 10.1016/j.ijbiomac.2020.02.320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Lectins are ubiquitous carbohydrate-binding proteins that interact with sugar moieties in a highly specific manner. H-type lectins represent a new group of lectins that were identified in invertebrates. These lectins share structural homology and bind mainly to N-acetylgalactosamine (GalNAc). Recent structural studies on the H-type lectins provided a detailed description of the GalNAc-lectin interaction that is already exploited in a number of biomedical applications. Two members of the H-type lectin family, Helix pomatia agglutinin (HPA) and Helix aspersa agglutinin (HAA), have already been extensively used in many diagnostic tests due their ability to specifically recognize GalNAc. This ability is especially important because aberrant glycosylation patterns of proteins expressed by cancer cells contain GalNAc. In addition, H-type lectins were utilized in diagnostics of other non-cancer diseases and represent great potential as components of drug delivery systems. Here, we present an overview of the H-type lectins and their applications in diagnostics, analytics and drug delivery.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland.
| | - Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland
| |
Collapse
|
9
|
Oliveira I, Nunes A, Lima A, Borralho P, Rodrigues C, Ferreira RB, Ribeiro AC. New Lectins from Mediterranean Flora. Activity against HT29 Colon Cancer Cells. Int J Mol Sci 2019; 20:ijms20123059. [PMID: 31234551 PMCID: PMC6627736 DOI: 10.3390/ijms20123059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023] Open
Abstract
Experiments conducted in vitro and in vivo, as well as some preclinical trials for cancer therapeutics, support the antineoplastic properties of lectins. A screening of antitumoral activity on HT29 colon cancer cells, based on polypeptide characterization and specific lectin binding to HT29 cells membrane receptors, was performed in order to assess the bioactivities present in four Mediterranean plant species: Juniperus oxycedrus subsp. oxycedrus, Juniperus oxycedrus subsp. badia, Arbutus unedo and Corema album. Total leaf proteins from each species were evaluated with respect to cell viability and inhibitory activities on HT29 cells (cell migration, matrix metalloproteinase –MMP proteolytic activities). A discussion is presented on a possible mechanism justifying the specific binding of lectins to HT29 cell receptors. All species revealed the presence of proteins with affinity to HT29 cell glycosylated receptors, possibly explaining the differential antitumor activity exhibited by the two most promising species, Juniperus oxycedrus subsp. badia and Arbutus unedo.
Collapse
Affiliation(s)
- Isabel Oliveira
- Department of Toxicological and Bromatological Sciences (DCTB), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
- Linking Landscape, Environment, Agriculture and Food (LEAF), Higher Institute of Agronomy, Universidade de Lisboa, 1349-017y Lisboa, Portugal.
| | - António Nunes
- Department of Toxicological and Bromatological Sciences (DCTB), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
- Linking Landscape, Environment, Agriculture and Food (LEAF), Higher Institute of Agronomy, Universidade de Lisboa, 1349-017y Lisboa, Portugal.
| | - Ana Lima
- Linking Landscape, Environment, Agriculture and Food (LEAF), Higher Institute of Agronomy, Universidade de Lisboa, 1349-017y Lisboa, Portugal.
| | - Pedro Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Cecília Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Ricardo Boavida Ferreira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Higher Institute of Agronomy, Universidade de Lisboa, 1349-017y Lisboa, Portugal.
| | - Ana Cristina Ribeiro
- Department of Toxicological and Bromatological Sciences (DCTB), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
- Linking Landscape, Environment, Agriculture and Food (LEAF), Higher Institute of Agronomy, Universidade de Lisboa, 1349-017y Lisboa, Portugal.
| |
Collapse
|
10
|
Lomax-Browne HJ, Robertson C, Antonopoulos A, Leathem AJC, Haslam SM, Dell A, Dwek MV. Serum IgA1 shows increased levels of α2,6-linked sialic acid in breast cancer. Interface Focus 2019; 9:20180079. [PMID: 30842877 DOI: 10.1098/rsfs.2018.0079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
The lectin Helix pomatia agglutinin (HPA) recognizes altered glycosylation in solid cancers and the identification of HPA binding partners in tumour tissue and serum is an important aim. Among the many HPA binding proteins, IgA1 has been reported to be the most abundant in liver metastases. In this study, the glycosylation of IgA1 was evaluated using serum samples from patients with breast cancer (BCa) and the utility of IgA1 glycosylation as a biomarker was assessed. Detailed mass spectrometric structural analysis showed an increase in disialo-biantennary N-linked glycans on IgA1 from BCa patients (p < 0.0001: non-core fucosylated; p = 0.0345: core fucosylated) and increased asialo-Thomsen-Friedenreich antigen (TF) and disialo-TF antigens in the O-linked glycan preparations from IgA1 of cancer patients compared with healthy control individuals. An increase in Sambucus nigra binding was observed, suggestive of increased α2,6-linked sialic acid on IgA1 in BCa. Logistic regression analysis showed HPA binding to IgA1 and tumour size to be significant independent predictors of distant metastases (χ 2 13.359; n = 114; p = 0.020) with positive and negative predictive values of 65.7% and 64.6%, respectively. Immunohistochemical analysis of tumour tissue samples showed IgA1 to be detectable in BCa tissue. This report provides a detailed analysis of serum IgA1 glycosylation in BCa and illustrates the potential utility of IgA1 glycosylation as a biomarker for BCa prognostication.
Collapse
Affiliation(s)
- Hannah J Lomax-Browne
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Claire Robertson
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Aristotelis Antonopoulos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Anthony J C Leathem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Miriam V Dwek
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| |
Collapse
|
11
|
Parameswaran R, Tan WB, Nga ME, Soon GST, Ngiam KY, Brooks SA, Sadler GP, Mihai R. Binding of aberrant glycoproteins recognizable by Helix pomatia agglutinin in adrenal cancers. BJS Open 2018; 2:353-359. [PMID: 30263987 PMCID: PMC6156166 DOI: 10.1002/bjs5.70] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/16/2018] [Indexed: 01/28/2023] Open
Abstract
Background Aberrant glycosylation is a hallmark of cancer cells and plays an important role in oncogenesis and cancer progression including metastasis. This study aimed to assess alteration in cellular glycosylation, detected by lectin Helix pomatia agglutinin (HPA) binding, in adrenal cancers and to determine whether such altered glycosylation has prognostic significance. Methods HPA binding lectin histochemistry was performed on archival paraffin wax‐embedded specimens of adrenocortical cancers excised from patients attending two tertiary referral centres. Benign tumours were used as controls. Demographic, histological and survival data were collected and compared between patients with HPA‐positive and HPA‐negative tumours. Results Thirty‐two patients were treated for adrenal cancer between 2000 and 2016; their median age was 49 (range 23–79) years. Fifteen patients had functioning tumours (14 adrenal Cushing's tumours and 1 Conn's tumour). Mean(s.d.) tumour size was 127·71(49·70) mm. None of 10 control tumours expressed HPA‐binding glycoproteins. Invasion was associated with HPA‐binding glycoproteins (P = 0·018). Local recurrence or metastatic disease did not significantly differ between HPA‐positive and HPA‐negative adrenocortical cancers. Overall survival was significantly longer in patients with HPA‐negative tumours (median survival not reached versus 22 months in patients with HPA‐positive tumours; P = 0·002). Conclusion Altered cellular glycosylation detected by lectin HPA is associated with poor survival in patients with adrenocortical cancer.
Collapse
Affiliation(s)
- R Parameswaran
- Department of Endocrine Surgery National University Hospital Singapore
| | - W B Tan
- Department of Endocrine Surgery National University Hospital Singapore
| | - M E Nga
- Department of Pathology National University Hospital Singapore
| | - G S T Soon
- Department of Pathology National University Hospital Singapore
| | - K Y Ngiam
- Department of Endocrine Surgery National University Hospital Singapore
| | - S A Brooks
- School of Biological and Medical Sciences, Oxford Brookes University Oxford UK
| | - G P Sadler
- Department of Endocrine Surgery Oxford University Hospitals NHS Foundation Trust Oxford UK
| | - R Mihai
- Department of Endocrine Surgery Oxford University Hospitals NHS Foundation Trust Oxford UK
| |
Collapse
|
12
|
Arend P. Early ovariectomy reveals the germline encoding of natural anti-A- and Tn-cross-reactive immunoglobulin M (IgM) arising from developmental O-GalNAc glycosylations. (Germline-encoded natural anti-A/Tn cross-reactive IgM). Cancer Med 2017; 6:1601-1613. [PMID: 28580709 PMCID: PMC5504323 DOI: 10.1002/cam4.1079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/26/2017] [Accepted: 03/24/2017] [Indexed: 01/02/2023] Open
Abstract
While native blood group A-like glycans have not been demonstrated in prokaryotic microorganisms as a source of human "natural" anti-A isoagglutinin production, and metazoan eukaryotic N-acetylgalactosamine O-glycosylation of serine or threonine residues (O-GalNAc-Ser/Thr-R) does not occur in bacteria, the O-GalNAc glycan-bearing ovarian glycolipids, discovered in C57BL/10 mice, are complementary to the syngeneic anti-A-reactive immunoglobulin M (IgM), which is not present in animals that have undergone ovariectomy prior to the onset of puberty. These mammalian ovarian glycolipids are complementary also to the anti-A/Tn cross-reactive Helix pomatia agglutinin (HPA), a molluscan defense protein, emerging from the coat proteins of fertilized eggs and reflecting the snail-intrinsic, reversible O-GalNAc glycosylations. The hexameric structure of this primitive invertebrate defense protein gives rise to speculation regarding an evolutionary relationship to the mammalian nonimmune, anti-A-reactive immunoglobulin M (IgM) molecule. Hypothetically, this molecule obtains its complementarity from the first step of protein glycosylations, initiated by GalNAc via reversible O-linkages to peptides displaying Ser/Thr motifs, whereas the subsequent transferase depletion completes germ cell maturation and cell renewal, associated with loss of glycosidic bonds and release of O-glycan-depleted proteins, such as complementary IgM revealing the structure of the volatilely expressed "lost" glycan carrier through germline Ser residues. Consequently, the evolutionary/developmental first glycosylations of proteins appear metabolically related or identical to that of the mucin-type, potentially "aberrant" monosaccharide GalNAcα1-O-Ser/Thr-R, also referred to as the Tn (T "nouvelle") antigen, and explain the anti-Tn cross-reactivity of human innate or "natural" anti-A-specific isoagglutinin and the pronounced occurrence of cross-reactive anti-Tn antibody in plasma from humans with histo-blood group O. In fact, A-allelic, phenotype-specific GalNAc glycosylation of plasma proteins does not occur in human blood group O, affecting anti-Tn antibody levels, which may function as a growth regulator that contributes to a potential survival advantage of this group in the overall risk of developing cancer when compared with non-O blood groups.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University MarburgDepartment of MedicineD‐355 Marburg/Lahn, Germany
- Gastroenterology Research LaboratoryUniversity of Iowa, College of MedicineIowa CityIowa
- Research LaboratoriesChemie Grünenthal GmbHD‐52062AachenGermany
| |
Collapse
|
13
|
Anupama S, Laha P, Sharma M, Pathak K, Bane S, Ingle AD, Gota V, Kalraiya RD, Yu LG, Rhodes JM, Swamy BM, Inamdar SR. Pharmacokinetics, biodistribution and antitumour effects of Sclerotium rolfsii lectin in mice. Oncol Rep 2017; 37:2803-2810. [PMID: 28394001 DOI: 10.3892/or.2017.5545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/16/2017] [Indexed: 11/06/2022] Open
Abstract
Sclerotium rolfsii lectin (SRL) is a lectin isolated from the fungus Sclerotium rolfsii and has exquisite binding specificity towards the oncofetal Thomsen-Friedenreich antigen (TF-Ag; Galβ1-3GalNAcα-O-Ser/Thr) and its derivatives. Previous studies have shown that SRL inhibits the proliferation of human colon, breast and ovarian cancer cells in vitro and suppresses tumour growth in mice when introduced intratumourally. The present study assessed the effect of SRL on tumour growth when introduced intraperitoneally in BALB/c nude mice and investigated the pharmacokinetics and biodistribution of SRL in Swiss albino mice. When 9 doses of SRL (30 mg/kg body weight/mice) was administered to BALB/c nude mice bearing human colon cancer HT-29 xenografts, a substantial reduction in tumour size was observed. A 35.8% reduction in tumour size was noted in the treated animals after 17 days. SRL treatment also inhibited angiogenesis, and the tumours from the treated animals were observed to carry fewer blood vessels and express less angiogenesis marker protein CD31, than that from the control animals. Pharmacokinetics and biodistribution analysis revealed that SRL was detected in the serum after 1 h and its level peaked after 24 h. SRL was not detected in any of the organs apart from the kidney where a trace amount was detected after 24 h of SRL injection. No significant changes were observed in any of the biochemical parameters tested including SGOT, SGPT, LDH, CREAT and BUN in the SRL-treated mice compared to these levels in the controls. This suggests that SRL has good potential to be developed as a therapeutic agent for cancer treatment and warrant further investigations in vivo and subsequent clinical trials.
Collapse
Affiliation(s)
- S Anupama
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Preeti Laha
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Mamta Sharma
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Kamal Pathak
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Sanjay Bane
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Arvind D Ingle
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Vikram Gota
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Rajiv D Kalraiya
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Lu-Gang Yu
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Jonathan M Rhodes
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| |
Collapse
|
14
|
Peiris D, Spector AF, Lomax-Browne H, Azimi T, Ramesh B, Loizidou M, Welch H, Dwek MV. Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Sci Rep 2017; 7:43006. [PMID: 28223691 PMCID: PMC5320443 DOI: 10.1038/srep43006] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/12/2017] [Indexed: 01/07/2023] Open
Abstract
Alterations in protein glycosylation are a key feature of oncogenesis and have been shown to affect cancer cell behaviour perturbing cell adhesion, favouring cell migration and metastasis. This study investigated the effect of N-linked glycosylation on the binding of Herceptin to HER2 protein in breast cancer and on the sensitivity of cancer cells to the chemotherapeutic agent doxorubicin (DXR) and growth factors (EGF and IGF-1). The interaction between Herceptin and recombinant HER2 protein and cancer cell surfaces (on-rate/off-rate) was assessed using a quartz crystal microbalance biosensor revealing an increase in the accessibility of HER2 to Herceptin following deglycosylation of cell membrane proteins (deglycosylated cells Bmax: 6.83 Hz; glycosylated cells Bmax: 7.35 Hz). The sensitivity of cells to DXR and to growth factors was evaluated using an MTT assay. Maintenance of SKBR-3 cells in tunicamycin (an inhibitor of N-linked glycosylation) resulted in an increase in sensitivity to DXR (0.1 μM DXR P < 0.001) and a decrease in sensitivity to IGF-1 alone and to IGF-1 supplemented with EGF (P < 0.001). This report illustrates the importance of N-linked glycosylation in modulating the response of cancer cells to chemotherapeutic and biological treatments and highlights the potential of glycosylation inhibitors as future combination treatments for breast cancer.
Collapse
Affiliation(s)
- Diluka Peiris
- Attana AB, Bjornnasvagen 21, SE-11419, Stockholm, Sweden
| | - Alexander F Spector
- Division of Surgery and Interventional Science, UCL Medical School Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Hannah Lomax-Browne
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish St, W1W 6UW, UK
| | - Tayebeh Azimi
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish St, W1W 6UW, UK
| | - Bala Ramesh
- Division of Surgery and Interventional Science, UCL Medical School Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, UCL Medical School Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Hazel Welch
- Division of Surgery and Interventional Science, UCL Medical School Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Miriam V Dwek
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish St, W1W 6UW, UK
| |
Collapse
|
15
|
Wolters-Eisfeld G, Schumacher U. Lectin Histochemistry for Metastasizing and Non-metastasizing Cancer Cells. Methods Mol Biol 2017; 1560:121-132. [PMID: 28155149 DOI: 10.1007/978-1-4939-6788-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Changes in glycosylation of the cancer cell glycocalyx are a hallmark of metastasizing cancers and critically contribute to distant metastasis. In this chapter we concentrate on two lectins capable of specifically binding tumor-associated glycans in cryostat or formalin-fixed, paraffin-embedded tissue sections derived from primary clinical material, genetically engineered mouse models with endogenous cancer formation or xenograft mouse models. The snail lectin of Helix pomatia (HPA) binds N-acetylgalactosamine (GalNAc) that is expressed among others as Tn antigen (O-linked GalNAc) in primary tumors and metastases in several human adenocarcinomas. Another lectin, Phaseolus vulgaris leucoagglutinin (PHA-L) binds to complex β1-6 branched N-linked oligosaccharides associated with increased metastatic potential in breast, colon, and prostate cancer. Using these two lectins both O- and N-linked alterations in the glycocalyx of cancer cells can be monitored. As they are commercially available in a biotinylated or fluorescence-labeled form they can be readily used in cancer metastasis studies.
Collapse
Affiliation(s)
- Gerrit Wolters-Eisfeld
- Medical Glycobiology Group, Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
16
|
Abstract
Lectins, discovered more than 100 years ago and defined by their ability to selectively recognize specific carbohydrate structures, are ubiquitous in living organisms. Their precise functions are as yet under-explored and incompletely understood but they are clearly involved, through recognition of their binding partners, in a myriad of biological mechanisms involved in cell identity, adhesion, signaling, growth regulation, in health and disease. Understanding the complex "sugar code" represented by the glycome is a major challenge and at the forefront of current biological research. Lectins have been widely employed in histochemical studies to map glycosylation in cells and tissues. Here, a brief history of the discovery of lectins and early developments in their use is presented along with a selection of some of the most interesting and significant discoveries to emerge from use of lectin histochemistry. Further, an evaluation of the next generation of lectin-based technologies is presented, including the potential for designing recombinant lectins with more precisely defined binding characteristics, linking lectin-based studies with other technologies to answer fundamental questions in glycobiology, and approaches to exploring the interactions of lectins with their binding partners in more detail.
Collapse
Affiliation(s)
- Susan A Brooks
- Department of Biological & Medical Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK.
| |
Collapse
|