1
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
2
|
Mei S, Ke J, Tian J, Ying P, Yang N, Wang X, Zou D, Peng X, Yang Y, Zhu Y, Gong Y, Zhong R, Chang J, Miao X. A functional variant in the boundary of a topological association domain is associated with pancreatic cancer risk. Mol Carcinog 2019; 58:1855-1862. [DOI: 10.1002/mc.23077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shufang Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Juntao Ke
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jianbo Tian
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Pingting Ying
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Nan Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiaoyang Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Danyi Zou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiating Peng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Yang Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Yajie Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jiang Chang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
3
|
Gunathilake MN, Lee J, Cho YA, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Interaction between physical activity, PITX1 rs647161 genetic polymorphism and colorectal cancer risk in a Korean population: a case-control study. Oncotarget 2018; 9:7590-7603. [PMID: 29484135 PMCID: PMC5800927 DOI: 10.18632/oncotarget.24136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022] Open
Abstract
This study assessed the interaction between physical activity and colorectal cancer (CRC) risk based on a polymorphism in the paired-like homeodomain 1 (PITX1) gene in Koreans. In total, 923 cases and 1,846 controls were enrolled at the National Cancer Center, Korea. Subjects who did regular exercise showed a significantly reduced risk of CRC than those did not exercise regularly (OR = 0.37, 95% CI = 0.30-0.45). Subjects in the highest tertile of metabolic equivalents of task (MET)-minutes per week showed a significantly lower risk of CRC (OR = 0.62, 95% CI = 0.48-0.79, p-trend < 0.001). In the dominant model, minor allele carriers showed a significantly higher risk of CRC than subjects homozygous for the major allele (OR = 1.46, 95% CI = 1.18-1.80). The PITX1 genetic variant showed significant interactions with regular exercise and CRC risk (p-interaction = 0.018) and colon cancer risk (p-interaction = 0.029) among all subjects. Subjects who carried at least one minor allele and did not regularly exercise showed a greater risk of CRC (OR = 1.81, 95% CI = 1.37-2.41). Subjects who were homozygous for the major allele with high physical activity showed a significantly reduced risk of CRC (OR = 0.56, 95% CI = 0.38-0.82). Thus, individuals with PITX1 genetic variants can have benefit from physical activity regarding prevention of CRC risk in a Korean population.
Collapse
Affiliation(s)
- Madhawa Neranjan Gunathilake
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Jeonghee Lee
- Department of Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Young Ae Cho
- Department of Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul 03080, South Korea
| | - Jeongseon Kim
- Department of Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do 10408, South Korea
| |
Collapse
|
4
|
Ke J, Lou J, Chen X, Li J, Liu C, Gong Y, Yang Y, Zhu Y, Zhang Y, Tian J, Chang J, Zhong R, Gong J, Miao X. Identification of a functional variant for colorectal cancer risk mapping to chromosome 5q31.1. Oncotarget 2018; 7:35199-207. [PMID: 27177089 PMCID: PMC5085221 DOI: 10.18632/oncotarget.9298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies (GWASs) have established chromosome 5q31.1 as a risk locus for colorectal cancer (CRC). We previously identified a potentially regulatory single nucleotide polymorphism (SNP) rs17716310 within 5q31.1. Now, we extended our study with another independent Chinese population, functional assays and analyses of TCGA (The Cancer Genome Atlas) data. Significant associations between rs17716310 and CRC risk were found in Present Study including 1075 CRC cases and 1999 controls (additive model: OR = 1.149, 95% CI = 1.027–1.286, P = 0.016), and in Combined Study including 1766 cases and 2708 controls (additive model: OR = 1.145, 95% CI = 1.045–1.254, P = 0.004). Dual luciferase reporter gene assays indicated that the variant C allele obviously increased transcriptional activity. Using TCGA datasets, we indicated rs17716310 as a cis expression quantitative trait locus (eQTL) for the gene SMAD5, whose expression was significantly higher in CRC tissues. These findings suggested that the functional polymorphism rs17716310 A > C might be a genetic modifier for CRC, promoting the expression of SMAD5 that belonged to the transforming growth factor beta (TGF-β) signaling pathway.
Collapse
Affiliation(s)
- Juntao Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueqin Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Ke J, Tian J, Li J, Gong Y, Yang Y, Zhu Y, Zhang Y, Zhong R, Chang J, Gong J. Identification of a functional polymorphism affecting microRNA binding in the susceptibility locus 1q25.3 for colorectal cancer. Mol Carcinog 2017; 56:2014-2021. [PMID: 28277607 DOI: 10.1002/mc.22649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/12/2017] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
Genome-wide association studies (GWASs) have identified dozens of susceptibility loci for colorectal cancer (CRC). However, most of them lack functional genetic variants and clear biological mechanisms. MicroRNAs (miRNAs) are small noncoding RNAs involved in a variety of physiological and tumorigenic processes. Here we hypothesized that single nucleotide polymorphisms (SNPs) that affect miRNAs biogenesis and binding, could contribute to CRC risk in the Chinese population. To locate miRNA-related SNPs in established GWAS loci, we initially screened out five candidate SNPs using a systematic bioinformatics analysis. Then, we performed a two-stage case-control study consisting of 2347 cases and 3390 controls, and found a positive polymorphism rs1062044, which presented consistently significant associations with CRC in both stages, and with an odds ratio (OR) = 1.32 (95% confidence interval (95%CI) = 1.18-1.49, P = 3.43E-06) under the dominant model in the combined study. Further luciferase reporter gene assays indicated that the variant G allele obviously improved the specific binding between miR-423-5p and the gene LAMC1. These findings suggested that the functional SNP rs1062044 at 1q25.3 might be a genetic modifier for the occurrence and development of CRC.
Collapse
Affiliation(s)
- Juntao Ke
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Key Laboratory for Environment and Health (Ministry of Education), School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jing Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Zeng JH, Liang L, He RQ, Tang RX, Cai XY, Chen JQ, Luo DZ, Chen G. Comprehensive investigation of a novel differentially expressed lncRNA expression profile signature to assess the survival of patients with colorectal adenocarcinoma. Oncotarget 2017; 8:16811-16828. [PMID: 28187432 PMCID: PMC5370003 DOI: 10.18632/oncotarget.15161] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
Growing evidence has shown that long non-coding RNAs (lncRNAs) can serve as prospective markers for survival in patients with colorectal adenocarcinoma. However, most studies have explored a limited number of lncRNAs in a small number of cases. The objective of this study is to identify a panel of lncRNA signature that could evaluate the prognosis in colorectal adenocarcinoma based on the data from The Cancer Genome Atlas (TCGA). Altogether, 371 colon adenocarcinoma (COAD) patients with complete clinical data were included in our study as the test cohort. A total of 578 differentially expressed lncRNAs (DELs) were observed, among which 20 lncRNAs closely related to overall survival (OS) in COAD patients were identified using a Cox proportional regression model. A risk score formula was developed to assess the prognostic value of the lncRNA signature in COAD with four lncRNAs (LINC01555, RP11-610P16.1, RP11-108K3.1 and LINC01207), which were identified to possess the most remarkable correlation with OS in COAD patients. COAD patients with a high-risk score had poorer OS than those with a low-risk score. The multivariate Cox regression analyses confirmed that the four-lncRNA signature could function as an independent prognostic indicator for COAD patients, which was largely mirrored in the validating cohort with rectal adenocarcinoma (READ) containing 158 cases. In addition, the correlative genes of LINC01555 and LINC01207 were enriched in the cAMP signaling and mucin type O-Glycan biosynthesis pathways. With further validation in the future, our study indicates that the four-lncRNA signature could serve as an independent biomarker for survival of colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Jiang-Hui Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West Branch), Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rui-Xue Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiao-Yong Cai
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West Branch), Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
7
|
Verma M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol 2016; 12:1645-64. [PMID: 27079684 PMCID: PMC5551540 DOI: 10.2217/fon-2015-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
Completion of the human genome a decade ago laid the foundation for: using genetic information in assessing risk to identify individuals and populations that are likely to develop cancer, and designing treatments based on a person's genetic profiling (precision medicine). Genome-wide association studies (GWAS) completed during the past few years have identified risk-associated single nucleotide polymorphisms that can be used as screening tools in epidemiologic studies of a variety of tumor types. This led to the conduct of epigenome-wide association studies (EWAS). This article discusses the current status, challenges and research opportunities in GWAS and EWAS. Information gained from GWAS and EWAS has potential applications in cancer control and treatment.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods & Technologies Branch, Epidemiology & Genomics Research Program, Division of Cancer Control & Population Sciences, National Cancer Institute (NCI), NIH, 9609 Medical Center Drive, Suite 4E102, Rockville, MD 20850, USA
| |
Collapse
|
8
|
Identification of a Potential Regulatory Variant for Colorectal Cancer Risk Mapping to 3p21.31 in Chinese Population. Sci Rep 2016; 6:25194. [PMID: 27120998 PMCID: PMC4848543 DOI: 10.1038/srep25194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/12/2016] [Indexed: 01/30/2023] Open
Abstract
Genome-wide association studies (GWAS) have established chromosome 3p21.31 as a susceptibility locus for colorectal cancer (CRC) that lacks replication and exploration in the Chinese population. We searched potentially functional single nucleotide polymorphisms (SNPs) in the linkage disequilibrium (LD) block of 3p21.31 with chromatin immunoprecipitation-sequencing (ChIP-seq) data of histone modification, and tested their association with CRC via a case-control study involving 767 cases and 1397 controls in stage 1 and 528 cases and 678 controls in stage 2. In addition to the tag SNP rs8180040 (odds ratio (OR) = 0.875, 95% confidence interval (95% CI) = 0.793−0.966, P = 0.008, P-FDR (false discovery rate) = 0.040), rs1076394 presented consistently significant associations with CRC risk at both stages with OR = 0.850 (95% CI = 0.771−0.938, P = 0.001, P-FDR = 0.005) under the additive model in combined analyses. Supported by the analyses of data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), it was suggested that rs1076394 served as an expression Quantitative Trait Loci (eQTL) for gene CCDC12 and NME6, while NME6’s expression was obviously higher in CRC tissues. Using biofeature information such as ChIP-seq and RNA sequencing (RNA-seq) data might help researchers to interpret GWAS results and locate functional variants for diseases in the post-GWAS era.
Collapse
|
9
|
Gong J, Tian J, Lou J, Ke J, Li L, Li J, Yang Y, Gong Y, Zhu Y, Zhang Y, Zhong R, Chang J, Miao X. A functional polymorphism inlnc-LAMC2-1:1confers risk of colorectal cancer by affecting miRNA binding. Carcinogenesis 2016; 37:443-51. [DOI: 10.1093/carcin/bgw024] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/12/2016] [Indexed: 02/07/2023] Open
|