1
|
Kobayashi S, Nishiba S, Sato C, Toriumi K, Someya Y, Adachi N, Takeda S, Kurosawa A. Sulforaphane Induces Transient Reactive Oxygen Species-Mediated DNA Damage in HeLa Cells. Genes Cells 2025; 30:e13190. [PMID: 39727047 DOI: 10.1111/gtc.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Sulforaphane (SFN), an isothiocyanate found in plants of the Brassicaceae family, possesses antioxidant, apoptosis-inducing, and radiosensitizing effects. As one of the mechanisms of cytotoxicity by SFN, SFN has been suggested to be involved in the induction of DNA damage and inhibition of DNA repair. Recently, we reported on the potency of SFN in inducing single-ended double-strand breaks (DSBs) that are caused by the collision of replication forks with single-strand breaks (SSBs). However, the mechanism of SSB accumulation by SFN remains unclear. In this study, we examined the effect of SFN on SSB-inducing factors in HeLa cells. Although the inhibitory effect of SFN on DNA topoisomerase I was not observed, we found that the reduced form of glutathione (GSH; an antioxidant) level was decreased in an SFN concentration-dependent manner. Furthermore, the addition of ascorbic acid partially increased the viability of SFN-treated HeLa cells. We subsequently observed that poly(ADP-ribose) accumulated in SFN-treated HeLa cells, which occurs during early SSB repair. Collectively, these findings suggest that SFN may transiently induce SSBs via reactive oxygen species in HeLa cells.
Collapse
Affiliation(s)
- Sakine Kobayashi
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Seiya Nishiba
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Chinatsu Sato
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Kazuya Toriumi
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Yuduki Someya
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Shigeki Takeda
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Aya Kurosawa
- School of Science and Technology, Gunma University, Kiryu, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Gunma University Center for Food and Science and Wellness, Gunma University, Kiryu, Japan
| |
Collapse
|
2
|
Tong YX, Zhu SY, Wang ZY, Zhao YX, Saleem MAU, Malh KK, Li XN, Li JL. Sulforaphane Ameliorate Cadmium-Induced Blood-Thymus Barrier Disruption by Targeting the PI3K/AKT/FOXO1 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13382-13392. [PMID: 38814005 DOI: 10.1021/acs.jafc.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cadmium (Cd) is a transition metal ion that is extremely harmful to human and animal biological systems. Cd is a toxic substance that can accumulate in the food chain and cause various health issues. Sulforaphane (SFN) is a natural bioactive compound with potent antioxidant properties. In our study, 80 1 day-old chicks were fed with Cd (140 mg/kg BW/day) and/or SFN (50 mg/kg BW/day) for 90 days. The blood-thymus barrier (BTB) is a selective barrier separating T-lymphocytes from blood and cortical capillaries in the thymus cortex. Our research revealed that Cd could destroy the BTB by downregulating Wnt/β-catenin signaling and induce immunodeficiency, leading to irreversible injury to the immune system. The study emphasizes the health benefits of SFN in the thymus. SFN could ameliorate Cd-triggered BTB dysfunction and pyroptosis in the thymus tissues. SFN modulated the PI3K/AKT/FOXO1 axis, improving the level of claudin-5 (CLDN5) in the thymus to alleviate BTB breakdown. Our findings indicated the toxic impact of Cd on thymus, and BTB could be the specific target of Cd toxicity. The finding also provides evidence for the role of SFN in maintaining thymic homeostasis for Cd-related health issues.
Collapse
Affiliation(s)
- Yu-Xuan Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhao-Yi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | | | - Kanwar Kumar Malh
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
3
|
Maycotte P, Illanes M, Moreno DA. Glucosinolates, isothiocyanates, and their role in the regulation of autophagy and cellular function. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/27/2024] [Indexed: 01/04/2025]
|
4
|
Yan L, Yan Y. Therapeutic potential of sulforaphane in liver diseases: a review. Front Pharmacol 2023; 14:1256029. [PMID: 37705537 PMCID: PMC10495681 DOI: 10.3389/fphar.2023.1256029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
The burden of liver diseases such as metabolic-associated fatty liver diseases and hepatocellular carcinoma has increased rapidly worldwide over the past decades. However, pharmacological therapies for these liver diseases are insufficient. Sulforaphane (SFN), an isothiocyanate that is mainly found in cruciferous vegetables, has been found to have a broad spectrum of activities like antioxidation, anti-inflammation, anti-diabetic, and anticancer effects. Recently, a growing number of studies have reported that SFN could significantly ameliorate hepatic steatosis and prevent the development of fatty liver, improve insulin sensitivity, attenuate oxidative damage and liver injury, induce apoptosis, and inhibit the proliferation of hepatoma cells through multiple signaling pathways. Moreover, many clinical studies have demonstrated that SFN is harmless to the human body and well-tolerated by individuals. This emerging evidence suggests SFN to be a promising drug candidate in the treatment of liver diseases. Nevertheless, limitations exist in the development of SFN as a hepatoprotective drug due to its special properties, including instability, water insolubility, and high inter-individual variation of bioavailability when used from broccoli sprout extracts. Herein, we comprehensively review the recent progress of SFN in the treatment of common liver diseases and the underlying mechanisms, with the aim to provide a better understanding of the therapeutic potential of SFN in liver diseases.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | |
Collapse
|
5
|
Niture S, Lin M, Qi Q, Moore JT, Levine KE, Fernando RA, Kumar D. Role of Autophagy in Cadmium-Induced Hepatotoxicity and Liver Diseases. J Toxicol 2021; 2021:9564297. [PMID: 34422041 PMCID: PMC8371627 DOI: 10.1155/2021/9564297] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a toxic pollutant that is associated with several severe human diseases. Cd can be easily absorbed in significant quantities from air contamination/industrial pollution, cigarette smoke, food, and water and primarily affects the liver, kidney, and lungs. Toxic effects of Cd include hepatotoxicity, nephrotoxicity, pulmonary toxicity, and the development of various human cancers. Cd is also involved in the development and progression of fatty liver diseases and hepatocellular carcinoma. Cd affects liver function via modulation of cell survival/proliferation, differentiation, and apoptosis. Moreover, Cd dysregulates hepatic autophagy, an endogenous catabolic process that detoxifies damaged cell organelles or dysfunctional cytosolic proteins through vacuole-mediated sequestration and lysosomal degradation. In this article, we review recent developments and findings regarding the role of Cd in the modulation of hepatotoxicity, autophagic function, and liver diseases at the molecular level.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Minghui Lin
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - John T. Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Keith E. Levine
- RTI International, Research Triangle Park, Durham, NC 27709, USA
| | | | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
6
|
Cheng X, Xu HD, Ran HH, Liang G, Wu FG. Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS NANO 2021; 15:8039-8068. [PMID: 33974797 DOI: 10.1021/acsnano.1c00498] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer cells frequently exhibit resistance to various molecular and nanoscale drugs, which inevitably affects the drugs' therapeutic outcomes. Overexpression of glutathione (GSH) has been observed in many cancer cells, and solid evidence has corroborated the resulting tumor resistance to a variety of anticancer therapies, suggesting that this biochemical characteristic of cancer cells can be developed as a potential target for cancer treatments. The single treatment of GSH-depleting agents can potentiate the responses of the cancer cells to different cell death stimuli; therefore, as an adjunctive strategy, GSH depletion is usually combined with mainstream cancer therapies for enhancing the therapeutic outcomes. Propelled by the rapid development of nanotechnology, GSH-depleting agents can be readily constructed into anticancer nanomedicines, which have shown a steep rise over the past decade. Here, we review the common GSH-depleting nanomedicines which have been widely applied in synergistic cancer treatments in recent years. Some current challenges and future perspectives for GSH depletion-based cancer therapies are also presented. With the understanding of the structure-property relationship and action mechanisms of these biomaterials, we hope that the GSH-depleting nanotechnology will be further developed to realize more effective disease treatments and even achieve successful clinical translations.
Collapse
Affiliation(s)
- Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Hai-Dong Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Huan-Huan Ran
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| |
Collapse
|
7
|
Identification of sulforaphane regulatory network in hepatocytes by microarray data analysis based on GEO database. Biosci Rep 2021; 41:227670. [PMID: 33491737 PMCID: PMC7876596 DOI: 10.1042/bsr20194464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
For the past several years, more and more attention has been paid to the exploration of traditional medicinal plants. Further studies have shown that more dietary consumption of cruciferous vegetables can prevent the occurrence of tumor, indicating the potential applications in the chemoprevention of cancer. Sulforaphane (SFN) has been identified by the National Cancer Institute as a candidate for chemopreventive research; it is one of several compounds selected by the National Cancer Institute’s Rapid Access to Preventive Intervention Development Program and is currently in use. In the present study, based on the data of Gene Expression Omnibus database (GEO), the gene expression profile of hepatocytes that were treated with SFN was analyzed. The ANOVA and Limma packets in R were used to analyze the differentially expressed genes (DEGs). On this basis, gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment were further analyzed. The core gene HSP90-α (cytosolic), class A member 1 (HSP90AA1) was screened by protein–protein interaction (PPI) network established by STRING and Cytoscape software for further study. Finally, miRNAs targeted HSP90AA1 were predicted by miRanda. All in all, based on the data of GSE20479 chip, the molecular mechanism of SFN on hepatocytes was studied by a series of bioinformatics analysis methods, and it indicated that SFN might effect on the hepatocyte by regulating HSP90AA1.
Collapse
|
8
|
Akone SH, Ntie-Kang F, Stuhldreier F, Ewonkem MB, Noah AM, Mouelle SEM, Müller R. Natural Products Impacting DNA Methyltransferases and Histone Deacetylases. Front Pharmacol 2020; 11:992. [PMID: 32903500 PMCID: PMC7438611 DOI: 10.3389/fphar.2020.00992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetics refers to heritable changes in gene expression and chromatin structure without change in a DNA sequence. Several epigenetic modifications and respective regulators have been reported. These include DNA methylation, chromatin remodeling, histone post-translational modifications, and non-coding RNAs. Emerging evidence has revealed that epigenetic dysregulations are involved in a wide range of diseases including cancers. Therefore, the reversible nature of epigenetic modifications concerning activation or inhibition of enzymes involved could be promising targets and useful tools for the elucidation of cellular and biological phenomena. In this review, emphasis is laid on natural products that inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) making them promising candidates for the development of lead structures for anticancer-drugs targeting epigenetic modifications. However, most of the natural products targeting HDAC and/or DNMT lack isoform selectivity, which is important for determining their potential use as therapeutic agents. Nevertheless, the structures presented in this review offer the well-founded basis that screening and chemical modifications of natural products will in future provide not only leads to the identification of more specific inhibitors with fewer side effects, but also important features for the elucidation of HDAC and DNMT function with respect to cancer treatment.
Collapse
Affiliation(s)
- Sergi Herve Akone
- Department of Chemistry, Faculty of Science, University of Douala, Douala, Cameroon
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Fabian Stuhldreier
- Medical Faculty, Institute of Molecular Medicine I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Alexandre Mboene Noah
- Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | | | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
9
|
Kumar H, Dutta PK. Thioglycolic acid modified chitosan: a template for in-situ synthesis of CdSe QDs for cell imaging. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1766981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hridyesh Kumar
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - P. K. Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
10
|
Sulforaphane-Loaded Ultradeformable Vesicles as A Potential Natural Nanomedicine for the Treatment of Skin Cancer Diseases. Pharmaceutics 2019; 12:pharmaceutics12010006. [PMID: 31861672 PMCID: PMC7023209 DOI: 10.3390/pharmaceutics12010006] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022] Open
Abstract
Sulforaphane is a multi-action drug and its anticancer activity is the reason for the continuous growth of attention being paid to this drug. Sulforaphane shows an in vitro antiproliferative activity against melanoma and other skin cancer diseases. Unfortunately, this natural compound cannot be applied in free form on the skin due to its poor percutaneous permeation determined by its physico-chemical characteristics. The aim of this investigation was to evaluate ethosomes® and transfersomes® as ultradeformable vesicular carriers for the percutaneous delivery of sulforaphane to be used for the treatment of skin cancer diseases. The physico-chemical features of the ultradeformable vesicles were evaluated. Namely, ethosomes® and transfersomes® had mean sizes <400 nm and a polydispersity index close to 0. The stability studies demonstrated that the most suitable ultradeformable vesicles to be used as topical carriers of sulforaphane were ethosomes® made up of ethanol 40% (w/v) and phospholipon 90G 2% (w/v). In particular, in vitro studies of percutaneous permeation through human stratum corneum and epidermis membranes showed an increase of the percutaneous permeation of sulforaphane. The antiproliferative activity of sulforaphane-loaded ethosomes® was tested on SK-MEL 28 and improved anticancer activity was observed in comparison with the free drug.
Collapse
|
11
|
Taguchi K, Kensler TW. Nrf2 in liver toxicology. Arch Pharm Res 2019; 43:337-349. [PMID: 31782059 DOI: 10.1007/s12272-019-01192-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Liver plays essential roles in the metabolism of many endogenous chemicals and exogenous toxicants. Mechanistic studies in liver have been at the forefront of efforts to probe the roles of bioactivation and detoxication of environmental toxins and toxicants in hepatotoxicity. Moreover, idiosyncratic hepatoxicity remains a key barrier in the clinical development of drugs. The now vast Nrf2 field emerged in part from biochemical and molecular studies on chemical inducers of hepatic detoxication enzymes and subsequent characterization of the modulation of drug/toxicant induced hepatotoxicities in mice through disruption of either Nrf2 or Keap1 genes. In general, loss of Nrf2 increases the sensitivity to such toxic chemicals, highlighting a central role of this transcription factor and its downstream target genes as a modifier to chemical stress. In this review, we summarize the impact of Nrf2 on the toxicology of multiple hepatotoxicants, and discuss efforts to utilize the Nrf2 response in predictive toxicology.
Collapse
Affiliation(s)
- Keiko Taguchi
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba, Sendai, 980-8575, Japan.
| | - Thomas W Kensler
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA, 98109, USA
| |
Collapse
|
12
|
Xu Y, Han X, Li Y, Min H, Zhao X, Zhang Y, Qi Y, Shi J, Qi S, Bao Y, Nie G. Sulforaphane Mediates Glutathione Depletion via Polymeric Nanoparticles to Restore Cisplatin Chemosensitivity. ACS NANO 2019; 13:13445-13455. [PMID: 31670945 DOI: 10.1021/acsnano.9b07032] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Platinum (Pt)-based chemotherapy is a broadly used therapeutic regimen against various cancers. However, the insufficient cellular uptake, deactivation by thiol-containing species and nonspecific distribution of cisplatin (CDDP) result in its low chemosensitivity as well as systemic side effects, which can largely constrain the employment of CDDP in clinical treatment. To circumvent these problems, in this study, polymeric nanoparticles were utilized to codeliver a water-soluble CDDP derivative, poly(γ,l-glutamic acid)-CDDP conjugate, and a naturally occurring compound derived from broccoli, sulforaphane, which can achieve efficient glutathione (GSH) depletion, to improve the accumulation of CDDP in cancer cells. Results show that compared with combinational treatment of CDDP and SFN, the nanoparticles were more effectively internalized and could significantly reduce GSH content in breast cancer cells, leading to a notable increase in DNA-bound Pt and DNA damage-induced apoptosis. Moreover, in an orthotopic breast cancer model, the nanoparticles achieved a significantly higher tumor accumulation and exhibited a more powerful antitumor activity. Finally, this nanoenhanced chemotherapy was further confirmed in a liver cancer model with high-expression of GSH. Taken together, this sulforaphane-based nanostrategy holds great promise to enhance the sensitivity and therapeutic efficacy of Pt-based chemotherapy.
Collapse
Affiliation(s)
- Ying Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Sino-Danish Center for Education and Research , Sino-Danish College of University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Huan Min
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yingqiu Qi
- School of Basic Medical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan , P.R. China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Sheng Qi
- School of Pharmacy , University of East Anglia , Norwich , Norfolk NR4 7TJ , U.K
| | - Yongping Bao
- Norwich Medical School , University of East Anglia , Norwich , Norfolk NR4 7UQ , U.K
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| |
Collapse
|
13
|
Houghton CA. Sulforaphane: Its "Coming of Age" as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2716870. [PMID: 31737167 PMCID: PMC6815645 DOI: 10.1155/2019/2716870] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Abstract
A growing awareness of the mechanisms by which phytochemicals can influence upstream endogenous cellular defence processes has led to intensified research into their potential relevance in the prevention and treatment of disease. Pharmaceutical medicine has historically looked to plants as sources of the starting materials for drug development; however, the focus of nutraceutical medicine is to retain the plant bioactive in as close to its native state as possible. As a consequence, the potency of a nutraceutical concentrate or an extract may be lower than required for significant gene expression. The molecular structure of bioactive phytochemicals to a large extent determines the molecule's bioavailability. Polyphenols are abundant in dietary phytochemicals, and extensive in vitro research has established many of the signalling mechanisms involved in favourably modulating human biochemical pathways. Such pathways are associated with core processes such as redox modulation and immune modulation for infection control and for downregulating the synthesis of inflammatory cytokines. Although the relationship between oxidative stress and chronic disease continues to be affirmed, direct-acting antioxidants such as vitamins A, C, and E, beta-carotene, and others have not yielded the expected preventive or therapeutic responses, even though several large meta-analyses have sought to evaluate the potential benefit of such supplements. Because polyphenols exhibit poor bioavailability, few of their impressive in vitro findings have been replicated in vivo. SFN, an aliphatic isothiocyanate, emerges as a phytochemical with comparatively high bioavailability. A number of clinical trials have demonstrated its ability to produce favourable outcomes in conditions for which there are few satisfactory pharmaceutical solutions, foreshadowing the potential for SFN as a clinically relevant nutraceutical. Although myrosinase-inert broccoli sprout extracts are widely available, there now exist myrosinase-active broccoli sprout supplements that yield sufficient SFN to match the doses used in clinical trials.
Collapse
|
14
|
Gonda A, Zhao N, Shah JV, Calvelli HR, Kantamneni H, Francis NL, Ganapathy V. Engineering Tumor-Targeting Nanoparticles as Vehicles for Precision Nanomedicine. MED ONE 2019; 4:e190021. [PMID: 31592196 PMCID: PMC6779336 DOI: 10.20900/mo.20190021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a nascent and emerging field that holds great potential for precision oncology, nanotechnology has been envisioned to improve drug delivery and imaging capabilities through precise and efficient tumor targeting, safely sparing healthy normal tissue. In the clinic, nanoparticle formulations such as the first-generation Abraxane® in breast cancer, Doxil® for sarcoma, and Onivyde® for metastatic pancreatic cancer, have shown advancement in drug delivery while improving safety profiles. However, effective accumulation of nanoparticles at the tumor site is sub-optimal due to biological barriers that must be overcome. Nanoparticle delivery and retention can be altered through systematic design considerations in order to enhance passive accumulation or active targeting to the tumor site. In tumor niches where passive targeting is possible, modifications in the size and charge of nanoparticles play a role in their tissue accumulation. For niches in which active targeting is required, precision oncology research has identified targetable biomarkers, with which nanoparticle design can be altered through bioconjugation using antibodies, peptides, or small molecule agonists and antagonists. This review is structured to provide a better understanding of nanoparticle engineering design principles with emphasis on overcoming tumor-specific biological barriers.
Collapse
Affiliation(s)
- Amber Gonda
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Nanxia Zhao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Jay V. Shah
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Hannah R. Calvelli
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Harini Kantamneni
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Nicola L. Francis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Wang G, Nie JH, Bao Y, Yang X. Sulforaphane Rescues Ethanol-Suppressed Angiogenesis through Oxidative and Endoplasmic Reticulum Stress in Chick Embryos. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9522-9533. [PMID: 30125492 DOI: 10.1021/acs.jafc.8b02949] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Our previous study showed that ethanol exposure inhibited embryonic angiogenesis mainly due to the excessive stimulation of reactive oxygen species (ROS) production. In this study, we investigated whether sulforaphane (SFN), a known dietary bioactive compound, could ameliorate ethanol-suppressed angiogenesis using chick embryo angiogenesis models. Using chick yolk sac membrane (YSM) and chorioallantoic membrane (CAM) models, we demonstrated that administration of low concentrations of SFN (2.5-10 μM) alone increased angiogenesis, but high concentrations of SFN (20-40 μM) inhibited angiogenesis. SFN administration alleviated ethanol-suppressed angiogenesis and angiogenesis-related gene expression in both angiogenesis models. Ethanol exposure caused cell apoptosis in chick CAM, and the cell apoptosis could be remitted by administration of SFN. Subsequently, we demonstrated that the ethanol-induced increase in production of ROS and reduction of antioxidant enzymes' activity were partially rescued by SFN. Similar results were obtained in endoplasmic reticulum (ER) stress determination, indicated by ATF6 and GRP78 expression or thapsigargin-induced ER stress in the presence or absence of SFN. Taken together, our experiments show that SFN administration can ameliorate ethanol-suppressed embryonic angiogenesis, and this is mainly achieved by alleviating excessive ROS production and ER stress. This study suggests that SFN, in appropriate concentrations, could be a potential candidate compound for preventing the negative impact of alcohol on angiogenesis.
Collapse
Affiliation(s)
- Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College , Jinan University , Guangzhou 510632 , China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College , Jinan University , Guangzhou 510632 , China
| | - Jia-Hui Nie
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College , Jinan University , Guangzhou 510632 , China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College , Jinan University , Guangzhou 510632 , China
| | - Yongping Bao
- Norwich Medical School , University of East Anglia , Norwich , Norfolk NR4 7UQ , U.K
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College , Jinan University , Guangzhou 510632 , China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
16
|
Liu P, Wang W, Zhou Z, Smith AJO, Bowater RP, Wormstone IM, Chen Y, Bao Y. Chemopreventive Activities of Sulforaphane and Its Metabolites in Human Hepatoma HepG2 Cells. Nutrients 2018; 10:nu10050585. [PMID: 29747418 PMCID: PMC5986465 DOI: 10.3390/nu10050585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/04/2022] Open
Abstract
Sulforaphane (SFN) exhibits chemopreventive effects through various mechanisms. However, few studies have focused on the bioactivities of its metabolites. Here, three metabolites derived from SFN were studied, known as sulforaphane glutathione, sulforaphane cysteine and sulforaphane-N-acetylcysteine. Their effects on cell viability, DNA damage, tumorigenicity, cell migration and adhesion were measured in human hepatoma HepG2 cells, and their anti-angiogenetic effects were determined in a 3D co-culture model of human umbilical vein endothelial cells (HUVECs) and pericytes. Results indicated that these metabolites at high doses decreased cancer cell viability, induced DNA damage and inhibited motility, and impaired endothelial cell migration and tube formation. Additionally, pre-treatment with low doses of SFN metabolites protected against H2O2 challenge. The activation of the nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway and the induction of intracellular glutathione (GSH) played an important role in the cytoprotective effects of SFN metabolites. In conclusion, SFN metabolites exhibited similar cytotoxic and cytoprotective effects to SFN, which proves the necessity to study the mechanisms of action of not only SFN but also of its metabolites. Based on the different tissue distribution profiles of these metabolites, the most relevant chemical forms can be selected for targeted chemoprevention.
Collapse
Affiliation(s)
- Peng Liu
- Norwich Medical School, University of East Anglia, Norfolk, Norwich NR4 7UQ, UK.
| | - Wei Wang
- Norwich Medical School, University of East Anglia, Norfolk, Norwich NR4 7UQ, UK.
| | - Zhigang Zhou
- Norwich Medical School, University of East Anglia, Norfolk, Norwich NR4 7UQ, UK.
| | - Andrew J O Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Richard P Bowater
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Ian Michael Wormstone
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Yuqiong Chen
- College of Horticulture and Forestry Science Huazhong Agricultural University, Wuhan 430070, China.
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norfolk, Norwich NR4 7UQ, UK.
| |
Collapse
|
17
|
Alkharashi NAO, Periasamy VS, Athinarayanan J, Alshatwi AA. Assessment of sulforaphane-induced protective mechanisms against cadmium toxicity in human mesenchymal stem cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10080-10089. [PMID: 29383641 DOI: 10.1007/s11356-018-1228-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Cd is a hazardous substance and carcinogen that is present in the environment; it is known to cause toxic effects in living organisms. Sulforaphane is a naturally available phytochemical with antioxidant, anti-inflammatory, and anticarcinogenic properties. However, the effects of sulforaphane on Cd toxicity in human mesenchymal stem cells (hMSCs) are unknown. In the present study, we investigated the molecular mechanisms of the effects of sulforaphane on Cd toxicity in hMSCs by using MTT assays, acridine orange/ethidium bromide staining, Hoechst staining, LysoRed staining, assessment of mitochondrial membrane potential, and gene expression analysis. Cd decreased hMSC viability in a dose-dependent manner with an IC50 value of 56.5 μM. However, sulforaphane did not induce any significant reduction in cell viability. Nuclear morphological analysis revealed that Cd induced necrotic cell death. Additionally, Cd caused mitochondrial membrane potential loss in hMSCs. The treatment of Cd-exposed cells with sulforaphane (Cd-sulforaphane co-treatment) resulted in a significant recovery of the cell viability and nuclear morphological changes compared with that of cells treated with Cd only. The gene expression pattern of cells co-treated with Cd-sulforaphane was markedly different from that of Cd-treated cells, owing to the reduction in Cd toxicity. Our results clearly indicated that sulforaphane reduced Cd-induced toxic effects in hMSCs. Overall, the results of our study suggested that sulforaphane-rich vegetables and fruits can help to improve human health through amelioration of the molecular effects of Cd poisoning.
Collapse
Affiliation(s)
- Nouf Abdulkareem Omer Alkharashi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
- Department of Home Economics, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
18
|
Liang XY, Wang L, Chang ZY, Ding LS, Li BJ, Zhang S. Reusable Xerogel Containing Quantum Dots with High Fluorescence Retention. Polymers (Basel) 2018; 10:polym10030310. [PMID: 30966345 PMCID: PMC6414965 DOI: 10.3390/polym10030310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/02/2018] [Accepted: 03/07/2018] [Indexed: 12/03/2022] Open
Abstract
Although various analytical methods have been established based on quantum dots (QDs), most were conducted in solution, which is inadequate for storage/transportation and rapid analysis. Moreover, the potential environmental problems caused by abandoned QDs cannot be ignored. In this paper, a reusable xerogel containing CdTe with strong emission is established by introducing host–guest interactions between QDs and polymer matrix. This xerogel shows high QDs loading capacity without decrease or redshift in fluorescence (the maximum of loading is 50 wt % of the final xerogel), which benefits from the steric hindrance of β-cyclodextrin (βCD) molecules. Host–guest interactions immobilize QDs firmly, resulting in the excellent fluorescence retention of the xerogel. The good detecting performance and reusability mean this xerogel could be employed as a versatile analysis platform (for quantitative and qualitative analyses). In addition, the xerogel can be self-healed by the aid of water.
Collapse
Affiliation(s)
- Xiang-Yong Liang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lu Wang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Yi Chang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li-Sheng Ding
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
19
|
Struchtrup A, Wiegering A, Stork B, Rüther U, Gerhardt C. The ciliary protein RPGRIP1L governs autophagy independently of its proteasome-regulating function at the ciliary base in mouse embryonic fibroblasts. Autophagy 2018; 14:567-583. [PMID: 29372668 PMCID: PMC5959336 DOI: 10.1080/15548627.2018.1429874] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previously, macroautophagy/autophagy was demonstrated to be regulated inter alia by the primary cilium. Mutations in RPGRIP1L cause ciliary dysfunctions resulting in severe human diseases summarized as ciliopathies. Recently, we showed that RPGRIP1L deficiency leads to a decreased proteasomal activity at the ciliary base in mice. Importantly, the drug-induced restoration of proteasomal activity does not rescue ciliary length alterations in the absence of RPGRIP1L indicating that RPGRIP1L affects ciliary function also via other mechanisms. Based on this knowledge, we analyzed autophagy in Rpgrip1l-negative mouse embryos. In these embryos, autophagic activity was decreased due to an increased activation of the MTOR complex 1 (MTORC1). Application of the MTORC1 inhibitor rapamycin rescued dysregulated MTORC1, autophagic activity and cilia length but not proteasomal activity in Rpgrip1l-deficient mouse embryonic fibroblasts demonstrating that RPGRIP1L seems to regulate autophagic and proteasomal activity independently from each other.
Collapse
Affiliation(s)
- Andreas Struchtrup
- a Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany
| | - Antonia Wiegering
- a Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany
| | - Björn Stork
- b Institute of Molecular Medicine I, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany
| | - Ulrich Rüther
- a Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany
| | - Christoph Gerhardt
- a Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany
| |
Collapse
|
20
|
Nazmy EA, El-Khouly OA, Atef H, Said E. Sulforaphane protects against sodium valproate–induced acute liver injury. Can J Physiol Pharmacol 2017; 95:420-426. [DOI: 10.1139/cjpp-2016-0447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug-induced hepatotoxicity is one of the most commonly encountered obstacles in the field of medical practice. Sodium valproate (VPA) is among many drugs with reported hepatotoxic effects. Sulforaphane (SFN) is a thiol compound found in wide abundance in cruciferous plants that has numerous reported therapeutic efficacies. The current investigation sheds light on the potential hepatoprotective effect of SFN against VPA-induced liver injury in rats. Twice daily VPA (700 mg/kg, i.p.) for 7 days induced significant biochemical alterations and hepatic histopathological damage. SFN (0.5 mg/kg, orally) for 7 days significantly boosted liver function biomarkers; it reduced serum alanine transaminase, aspartate aminotransferase, and alkaline phosphatase, and restored serum albumin concentration in a significant manner. Meanwhile, SFN significantly mitigated VPA-induced histopathological alterations. To highlight the mechanisms implicated in the observed hepatoprotective action, hepatic malondialdehyde and tumour necrosis factor α content significantly declined with concomitant increase in hepatic heme oxygenase-1 content and glutathione concentration with SFN treatment. In conclusion, SFN can significantly ameliorate VPA-induced hepatotoxicity and liver injury primarily by direct association between antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
| | | | - Hoda Atef
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Gu J, Cheng Y, Wu H, Kong L, Wang S, Xu Z, Zhang Z, Tan Y, Keller BB, Zhou H, Wang Y, Xu Z, Cai L. Metallothionein Is Downstream of Nrf2 and Partially Mediates Sulforaphane Prevention of Diabetic Cardiomyopathy. Diabetes 2017; 66:529-542. [PMID: 27903744 PMCID: PMC5248986 DOI: 10.2337/db15-1274] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/04/2016] [Indexed: 12/22/2022]
Abstract
We have reported that sulforaphane (SFN) prevented diabetic cardiomyopathy in both type 1 and type 2 diabetes (T2DM) animal models via the upregulation of nuclear transcription factor erythroid 2-related factor 2 (Nrf2) and metallothionein (MT). In this study, we tested whether SFN protects the heart from T2DM directly through Nrf2, MT, or both. Using Nrf2-knockout (KO), MT-KO, and wild-type (WT) mice, T2DM was induced by feeding a high-fat diet for 3 months followed by a small dose of streptozotocin. Age-matched controls were given a normal diet. Both T2DM and control mice were then treated with or without SFN for 4 months by continually feeding a high-fat or normal diet. SFN prevented diabetes-induced cardiac dysfunction as well as diabetes-associated cardiac oxidative damage, inflammation, fibrosis, and hypertrophy, with increases in Nrf2 and MT expressions in the WT mice. Both Nrf2-KO and MT-KO diabetic mice exhibited greater cardiac damage than WT diabetic mice. SFN did not provide cardiac protection in Nrf2-KO mice, but partially or completely protected the heart from diabetes in MT-KO mice. SFN did not induce MT expression in Nrf2-KO mice, but stimulated Nrf2 function in MT-KO mice. These results suggest that Nrf2 plays the indispensable role for SFN cardiac protection from T2DM with significant induction of MT and other antioxidants. MT expression induced by SFN is Nrf2 dependent, but is not indispensable for SFN-induced cardiac protection from T2DM.
Collapse
Affiliation(s)
- Junlian Gu
- The First Hospital of Jilin University, Changchun, Jilin, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Yanli Cheng
- The First Hospital of Jilin University, Changchun, Jilin, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Hao Wu
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lili Kong
- The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Shudong Wang
- The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Zheng Xu
- The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Zhiguo Zhang
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Bradley B Keller
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY
| | - Honglan Zhou
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuehui Wang
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhonggao Xu
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cai
- The First Hospital of Jilin University, Changchun, Jilin, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| |
Collapse
|
22
|
Chinnathambi S, Abu N, Hanagata N. Biocompatible CdSe/ZnS quantum dot micelles for long-term cell imaging without alteration to the native structure of the blood plasma protein human serum albumin. RSC Adv 2017. [DOI: 10.1039/c6ra26592h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water soluble super paramagnetic CdSe/ZnS QD micelles can be useful for long-term imaging of biological samples.
Collapse
Affiliation(s)
| | - Norhidayah Abu
- Advanced Materials Research Centre
- SIRIM Berhad
- 09000 Kulim
- Malaysia
| | - Nobutaka Hanagata
- Nanotechnology Innovation Station
- National Institute for Materials Science
- Tsukuba
- Japan
- Graduate School of Life Science
| |
Collapse
|
23
|
Kim JK, Park SU. Current potential health benefits of sulforaphane. EXCLI JOURNAL 2016; 15:571-577. [PMID: 28096787 PMCID: PMC5225737 DOI: 10.17179/excli2016-485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 406-772, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea
| |
Collapse
|
24
|
Sandbichler AM, Höckner M. Cadmium Protection Strategies--A Hidden Trade-Off? Int J Mol Sci 2016; 17:ijms17010139. [PMID: 26805823 PMCID: PMC4730378 DOI: 10.3390/ijms17010139] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a non-essential transition metal which is introduced into the biosphere by various anthropogenic activities. Environmental pollution with Cd poses a major health risk and Cd toxicity has been extensively researched over the past decades. This review aims at changing the perspective by discussing protection mechanisms available to counteract a Cd insult. Antioxidants, induction of antioxidant enzymes, and complexation of Cd to glutathione (GSH) and metallothionein (MT) are the most potent protective measures to cope with Cd-induced oxidative stress. Furthermore, protection mechanisms include prevention of endoplasmic reticulum (ER) stress, mitophagy and metabolic stress, as well as expression of chaperones. Pre-exposure to Cd itself, or co-exposure to other metals or trace elements can improve viability under Cd exposure and cells have means to reduce Cd uptake and improve Cd removal. Finally, environmental factors have negative or positive effects on Cd toxicity. Most protection mechanisms aim at preventing cellular damage. However, this might not be possible without trade-offs like an increased risk of carcinogenesis.
Collapse
Affiliation(s)
| | - Martina Höckner
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|