1
|
Moreno CJ, Hernández K, Gittings S, Bolte M, Joglar J, Bujons J, Parella T, Clapés P. Biocatalytic Synthesis of Homochiral 2-Hydroxy-4-butyrolactone Derivatives by Tandem Aldol Addition and Carbonyl Reduction. ACS Catal 2023; 13:5348-5357. [PMID: 37123603 PMCID: PMC10127515 DOI: 10.1021/acscatal.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Indexed: 04/08/2023]
Abstract
Chiral 2-hydroxy acids and 2-hydroxy-4-butyrolactone derivatives are structural motifs often found in fine and commodity chemicals. Here, we report a tandem biocatalytic stereodivergent route for the preparation of these compounds using three stereoselective aldolases and two stereocomplementary ketoreductases using simple and achiral starting materials. The strategy comprises (i) aldol addition reaction of 2-oxoacids to aldehydes using two aldolases from E. coli, 3-methyl-2-oxobutanoate hydroxymethyltransferase (KPHMT Ecoli ), 2-keto-3-deoxy-l-rhamnonate aldolase (YfaU Ecoli ), and trans-o-hydroxybenzylidene pyruvate hydratase-aldolase from Pseudomonas putida (HBPA Pputida ) and (ii) subsequent 2-oxogroup reduction of the aldol adduct by ketopantoate reductase from E. coli (KPR Ecoli ) and a Δ1-piperidine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato DSM 50315 (DpkA Psyrin ) with uncovered promiscuous ketoreductase activity. A total of 29 structurally diverse compounds were prepared: both enantiomers of 2-hydroxy-4-butyrolactone (>99% ee), 21 2-hydroxy-3-substituted-4-butyrolactones with the (2R,3S), (2S,3S), (2R,3R), or (2S,3R) configuration (from 60:40 to 98:2 dr), and 6 2-hydroxy-4-substituted-4-butyrolactones with the (2S,4R) configuration (from 87:13 to 98:2 dr). Conversions of aldol adducts varied from 32 to 98%, while quantitative conversions were achieved by both ketoreductases, with global isolated yields between 20 and 45% for most of the examples. One-pot one-step cascade reactions were successfully conducted achieving isolated yields from 30 to 57%.
Collapse
Affiliation(s)
- Carlos J. Moreno
- Dept. of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Karel Hernández
- Dept. of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Samantha Gittings
- Prozomix Ltd., West End Industrial Estate, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Michael Bolte
- Institut für Anorganische Chemie, J.-W.-Goethe-Universität, Frankfurt/Main, Max-von-Laue-Str. 7, D-60438 Frankfurt/Main, Germany
| | - Jesús Joglar
- Dept. of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Dept. of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear. Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Pere Clapés
- Dept. of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
2
|
Yi Z, Xie J. Assessment of spoilage potential and amino acids deamination & decarboxylation activities of Shewanella putrefaciens in bigeye tuna (Thunnus obesus). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
3
|
Evolving Escherichia coli Host Strains for Efficient Deuterium Labeling of Recombinant Proteins Using Sodium Pyruvate- d3. Int J Mol Sci 2021; 22:ijms22189678. [PMID: 34575837 PMCID: PMC8465070 DOI: 10.3390/ijms22189678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Labeling of proteins with deuterium (2H) is often necessary for structural biology techniques, such as neutron crystallography, NMR spectroscopy, and small-angle neutron scattering. Perdeuteration in which all protium (1H) atoms are replaced by deuterium is a costly process. Typically, expression hosts are grown in a defined medium with heavy water as the solvent, which is supplemented with a deuterated carbon source. Escherichia coli, which is the most widely used host for recombinant protein production, can utilize several compounds as a carbon source. Glycerol-d8 is often used as a carbon source for deuterium labelling due to its lower cost compered to glucose-d7. In order to expand available options for recombinant protein deuteration, we investigated the possibility of producing a deuterated carbon source in-house. E. coli can utilize pyruvate as a carbon source and pyruvate-d3 can be made by a relatively simple procedure. To circumvent the very poor growth of E. coli in minimal media with pyruvate as sole carbon source, adaptive laboratory evolution for strain improvement was applied. E. coli strains with enhanced growth in minimal pyruvate medium was subjected to whole genome sequencing and the genetic changes were revealed. One of the evolved strains was adapted for the widely used T7 RNA polymerase overexpression systems. Using the improved strain E. coli DAP1(DE3) and in-house produced deuterated carbon source (pyruvic acid-d4 and sodium pyruvate-d3), we produce deuterated (>90%) triose-phosphate isomerase, at quantities sufficient enough for large volume crystal production and subsequent analysis by neutron crystallography.
Collapse
|
4
|
Zhang D, Zhu X, Hu D, Wen Z, Zhang C, Wu M. Improvement in the catalytic performance of a phenylpyruvate reductase from Lactobacillus plantarum by site-directed and saturation mutagenesis based on the computer-aided design. 3 Biotech 2021; 11:69. [PMID: 33489686 DOI: 10.1007/s13205-020-02633-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023] Open
Abstract
To enhance the specific activity and catalytic efficiency (k cat/K m) of an NADH-dependent LpPPR, its directed modification was performed based on the computer-aided design using molecular docking simulation and multiple sequence alignment. Firstly, five single-site variants of an LpPPR-encoding gene (lpppr) were amplified and expressed in E. coli BL21 (DE3). The asymmetric reduction of 20 mM phenylpyruvic acid (PPA) was carried out using 50 mg/mL E. coli/lpppr R53Q or /lpppr A79V whole wet cells at 37 °C for 20 min, giving d-phenyllactic acid (PLA) with 41.1 or 44.3% yield, being 1.17- or 1.26-fold that by E. coli/lpppr. Secondly, double-site variants were obtained by saturation mutagenesis of Ala79 in LpPPRR53Q. Among all tested E. coli transformants, E. coli/lpppr R53Q/A79V exhibited the highest d-PLA yield of 85.3%. The specific activity and k cat/K m of the purified LpPPRR53Q/A79V increased to 67.5 U/mg and 169.8 mM-1 s-1, which were 3.0- and 13.2-fold those of LpPPR, respectively. Finally, the catalytic mechanism analysis of LpPPRR53Q/A79V by molecular docking simulation indicated that the replacement of Arg53 in LpPPR with Gln expanded its substrate-binding pocket, while that Ala79 with Val formed an additional π-sigma interaction with phenyl group of PPA. SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s13205-020-02633-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiuxiu Zhu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122 China
| | - Die Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 China
| | - Zheng Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Chen Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122 China
| | - Minchen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
5
|
Zhuang S, Liu X, Li Y, Zhang L, Hong H, Liu J, Luo Y. Biochemical changes and amino acid deamination & decarboxylation activities of spoilage microbiota in chill-stored grass carp (Ctenopharyngodon idella) fillets. Food Chem 2020; 336:127683. [PMID: 32771900 DOI: 10.1016/j.foodchem.2020.127683] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/11/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
This study aimed to reveal amino acid deamination and decarboxylation activities of spoilage microbiota in chill-stored grass carp fillets. Results showed that microbial deamination activities of umami/sweet-taste amino acids were higher than that of bitter-taste amino acids. The total deamination activity of tested amino acids decreased during the late period of storage, which inhibited the increase of ammonia in fish flesh. Microbial decarboxylation activity of ornithine was much higher than lysine and histidine, which was consistent with the rapid increase of putrescine in fish fillets. Meanwhile, putrescine could be produced in large quantities through arginine deiminase pathway of spoilage bacteria. Glucose utilization by spoilage microbiota was active during the late period of storage, which was consistent with the rapid consumption of lactate and total sugar in fish flesh. Overall, results of this study could be beneficial for revealing fish spoilage mechanisms and providing theoretical guidance for developing fish preservation technologies.
Collapse
Affiliation(s)
- Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochang Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jun Liu
- National Research and Development Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Research and Development Center for Freshwater Fish Processing (Beijing), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Wu B, Yu Q, Zheng S, Pedroso MM, Guddat LW, He B, Schenk G. Relative catalytic efficiencies and transcript levels of three d- and two l-lactate dehydrogenases for optically pure d-lactate production in Sporolactobacillus inulinus. Microbiologyopen 2018; 8:e00704. [PMID: 30066438 PMCID: PMC6528580 DOI: 10.1002/mbo3.704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/23/2022] Open
Abstract
As the optical purity of the lactate monomer is pivotal for polymerization, the production of optically pure d‐lactate is of significant importance. Sporolactobacillus inulinus YBS1‐5 is a superior optically pure d‐lactate‐producing bacterium. However, little is known about the relationship between lactate dehydrogenases in S. inulinus YBS1‐5 and the optical purity of d‐lactate. Three potential d‐lactate dehydrogenase (D‐LDH1‐3)‐ and two putative l‐lactate dehydrogenase (L‐LDH1‐2)‐encoding genes were cloned from the YBS1‐5 strain and expressed in Escherichia coli D‐LDH1 exhibited the highest catalytic efficiency toward pyruvate, whereas two L‐LDHs showed low catalytic efficiency. Different neutralizers significantly affected the optical purity of d‐lactate produced by strain YBS1‐5 as well as the transcription levels of ldhDs and ldhLs. The high catalytic efficiency of D‐LDH1 and elevated ldhD1 mRNA levels suggest that this enzyme is essential for d‐lactate synthesis in S. inulinus YBS1‐5. The correlation between the optical purity of d‐lactate and transcription levels of ldhL1 in the case of different neutralizers indicate that ldhL1 is a key factor affecting the optical purity of d‐lactate in S. inulinus YBS1‐5.
Collapse
Affiliation(s)
- Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Shan Zheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Zhang C, Zhou C, Assavasirijinda N, Yu B, Wang L, Ma Y. Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain. Microb Cell Fact 2017; 16:213. [PMID: 29178877 PMCID: PMC5702109 DOI: 10.1186/s12934-017-0827-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/16/2017] [Indexed: 12/03/2022] Open
Abstract
Background Optically pure d-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on d-lactic acid fermentation compared with the extensive investigation of l-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure d-lactic acid produced at high temperature not only could reduce the costs of sterilization but also could inhibit the growth of other bacteria, such as l-lactic acid producers. Results Thermophilic Bacillus coagulans is an excellent producer of l-lactic acid with capable of growing at 50 °C. In our previous study, the roles of two l-lactic acid dehydrogenases have been demonstrated in B. coagulans DSM1. In this study, the function of another annotated possible l-lactate dehydrogenase gene (ldhL3) was verified to be leucine dehydrogenase with an activity of 0.16 units (μmol/min) per mg protein. Furthermore, the activity of native d-lactate dehydrogenase was too low to support efficient d-lactic acid production, even under the control of strong promoter. Finally, an engineered B. coagulans D-DSM1 strain with the capacity for efficient production of d-lactic acid was constructed by deletion of two l-lactate dehydrogenases genes (ldhL1 and ldhL2) and insertion of the d-lactate dehydrogenase gene (LdldhD) from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 at the position of ldhL1. Conclusions This genetically engineered strain produced only d-lactic acid under non-sterilized condition, and finally 145 g/L of d-lactic acid was produced with an optical purity of 99.9% and a high yield of 0.98 g/g. This is the highest optically pure d-lactic acid titer produced by a thermophilic strain. Electronic supplementary material The online version of this article (10.1186/s12934-017-0827-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caili Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Nilnate Assavasirijinda
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| |
Collapse
|
8
|
Ito S, Takeya M, Osanai T. Substrate Specificity and Allosteric Regulation of a D-Lactate Dehydrogenase from a Unicellular Cyanobacterium are Altered by an Amino Acid Substitution. Sci Rep 2017; 7:15052. [PMID: 29118438 PMCID: PMC5678113 DOI: 10.1038/s41598-017-15341-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/25/2017] [Indexed: 01/11/2023] Open
Abstract
Lactate/lactic acid is an important chemical compound for the manufacturing of bioplastics. The unicellular cyanobacterium Synechocystis sp. PCC 6803 can produce lactate from carbon dioxide and possesses d-lactate dehydrogenase (Ddh). Here, we performed a biochemical analysis of the Ddh from this cyanobacterium (SyDdh) using recombinant proteins. SyDdh was classified into a cyanobacterial clade similar to those from Gram-negative bacteria, although it was distinct from them. SyDdh can use both pyruvate and oxaloacetate as a substrate and is activated by fructose-1,6-bisphosphate and repressed by divalent cations. An amino acid substitution based on multiple sequence alignment data revealed that the glutamine at position 14 and serine at position 234 are important for the allosteric regulation by Mg2+ and substrate specificity of SyDdh, respectively. These results reveal the characteristic biochemical properties of Ddh in a unicellular cyanobacterium, which are different from those of other bacterial Ddhs.
Collapse
Affiliation(s)
- Shoki Ito
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Masahiro Takeya
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
9
|
Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans. Sci Rep 2016; 6:37916. [PMID: 27885267 PMCID: PMC5122838 DOI: 10.1038/srep37916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 11/04/2016] [Indexed: 02/06/2023] Open
Abstract
Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.
Collapse
|
10
|
Efficient production of enantiomerically pure D-phenyllactate from phenylpyruvate by structure-guided design of an engineered D-lactate dehydrogenase. Appl Microbiol Biotechnol 2016; 100:7471-8. [PMID: 27020295 DOI: 10.1007/s00253-016-7456-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/06/2023]
Abstract
3-Phenyllactic acid (PLA) is an antimicrobial compound with broad-spectrum activity against bacteria and fungi that could be widely used in the food industry and livestock feeds. Notably, D-PLA exhibits higher antibacterial activity, which gains more attention than L-PLA. In this report, the D-lactate dehydrogenase DLDH744 from Sporolactobacillus inulinus CASD was engineered to increase the enzymatic activities toward phenylpyruvate by protein structure-guided modeling analysis. The phenylpyruvate molecule was first docked in the active center of DLDH744. The residues that might tightly pack around the benzene ring of phenylpyruvate were all selected for mutation. The single site mutant M307L showed the highest increased activity toward bulkier substrate phenylpyruvate than the wild type. By using the engineered D-lactate dehydrogenase M307L expressed in Escherichia coli strains, without coexpression of the cofactor regeneration system, 21.43 g/L D-PLA was produced from phenylpyruvate with a productivity of 1.58 g/L/h in the fed-batch biotransformation process, which ranked in the list as the highest production titer of D-PLA by D-lactate dehydrogenase. The enantiomeric excess value of produced D-PLA in the broth was higher than 99.7 %. Additionally, the structure-guided design of this enzyme will also provide referential information for further engineering other 2-hydroxyacid dehydrogenases, which are useful for a wide range of fine chemical synthesis.
Collapse
|