1
|
Zhan C, Zhu Y, Fok MR, Jin L, Han B, Lin Y. Proteome-Wide Mendelian Randomisation Identifies Causal Links of Plasma Proteins With Periodontitis. Int Dent J 2024; 74:1258-1265. [PMID: 38729796 PMCID: PMC11551566 DOI: 10.1016/j.identj.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Periodontitis is a complex and multifactorial disease and it is challenging to decipher its underlying causes and mechanisms. This study attempted to explore potential circulating proteins in connection to periodontitis through proteome-wide Mendelian randomisation (MR). METHODS We analysed 1722 circulating proteins to identify prospective drug targets for tackling periodontitis, using the genomic dataset from the FinnGen study. Two-sample MR was conducted to evaluate the bidirectional relationship between circulating proteins and periodontitis risk. A dataset from the UK Biobank was used to validate the findings. Single-cell analysis was performed to assess the cellular expression of the identified proteins within gingival tissues. RESULTS MR analyses found that genetically predicted circulating levels of von Willebrand factor A domain-containing 1 (von Willebrand factor A domain containing 1 [VWA1], odds ratios: 0.94, 95% CI 0.92-0.97, P = 1.28 × 10-5) were inversely associated with periodontitis. In contrast, the level of growth differentiation factor 15 (growth differentiation factor 15 [GDF15], odds ratios: 1.05, 95% CI 1.02-1.07, P = 2.12 × 10-5) might be associated with an increased risk of periodontitis. Single-cell analysis indicated that VWA1 was primarily expressed in endothelial cells of healthy gingival tissues, while the main source of GDF15 was not derived from periodontal cells. CONCLUSIONS The present study suggests that certain plasma proteins like VWA1 and GDF15 may be potentially indicative of the risk and susceptibility to periodontitis. These proteins could possibly be the potential therapeutic targets for treating periodontitis, and further investigation is highly warranted.
Collapse
Affiliation(s)
- Chaoning Zhan
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yuexin Zhu
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Melissa Rachel Fok
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Lijian Jin
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Bing Han
- Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Chute M, Aujla PK, Li Y, Jana S, Zhabyeyev P, Rasmuson J, Owen CA, Abraham T, Oudit GY, Kassiri Z. ADAM15 is required for optimal collagen cross-linking and scar formation following myocardial infarction. Matrix Biol 2022; 105:127-143. [PMID: 34995785 DOI: 10.1016/j.matbio.2021.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023]
Abstract
Collagen cross-linking is an important step in optimal scar formation. Myocardial infarction (MI) results in loss of cardiomyocytes that are replaced with a scar (infarct) tissue. Disintegrin and metalloproteinases (ADAMs) are membrane-bound proteases that can interact with molecules intra- and extra-cellularly to mediate various cellular functions. ADAM15 is expressed in the myocardium, however its function in heart disease has been poorly explored. We utilized mice lacking ADAM15 (Adam15-/-) and wildtype (WT) mice. MI, induced by ligation of the left anterior descending artery, resulted in a transient but significant rise in ADAM15 protein in the WT myocardium at 3-days. Following MI, Adam15-/- mice exhibited markedly higher rate of left ventricular (LV) rupture compared to WT mice (66% vs. 15%, p<0.05). Echocardiography and strain analyses showed worsened LV dysfunction in Adam15-/- mice at 3days, prior to the onset of LV rupture. Second harmonic generation imaging revealed significant disarray and reduction in fibrillar collagen density in Adam15-/- compared to WT hearts. This was associated with lower insoluble and higher soluble collagen fractions, reduced cross-linking enzyme, lysyl oxidase-1 (LOX-1), and fibronectin which is required for LOX-1 function, in Adam15-/--MI hearts. Post-MI myocardial inflammation was comparable between the genotypes. In vitro, primary adult cardiac fibroblasts from Adam15-/- mice showed suppressed activation in response to ischemia (hypoxia+nutrient depletion) compared to WT fibroblasts. Adam15-deficiency was associated with reduced PAK1(p21-activated kinase-1) levels, a regulator of fibronectin and LOX-1 expression. In female mice, the rate of post-MI LV rupture, PAK1 signaling, LOX-1 and fibronectin protein levels were comparable between Adam15-/- and WT, indicating lack of sex-dependent effects of ADAM15 post- MI. This study reports a novel function for ADAM15 in collagen cross-linking and optimal scar formation post-MI which may also apply to scar formation in other tissues.
Collapse
Affiliation(s)
- Michael Chute
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Preetinder K Aujla
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Yingxi Li
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Sayantan Jana
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Pavel Zhabyeyev
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Jaslyn Rasmuson
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Caroline A Owen
- Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA, Penn State College of Medicine, Hershey, PA, USA
| | | | - Gavin Y Oudit
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Abstract
The inbred mouse strain C57BL/6 has been widely used as a background strain for spontaneous and induced mutations. Developed in the 1930s, the C57BL/6 strain
diverged into two major groups in the 1950s, namely, C57BL/6J and C57BL/6N, and more than 20 substrains have been established from them worldwide. We previously
reported genetic differences among C57BL/6 substrains in 2009 and 2015. Since then, dozens of reports have been published on phenotypic differences in
behavioral, neurological, cardiovascular, and metabolic traits. Substrains need to be chosen according to the purpose of the study because phenotypic
differences might affect the experimental results. In this paper, we review recent reports of phenotypic and genetic differences among C57BL/6 substrains, focus
our attention on the proper use of C57BL/6 and other inbred strains in the era of genome editing, and provide the life science research community wider
knowledge about this subject.
Collapse
Affiliation(s)
- Kazuyuki Mekada
- Department of Zoology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.,Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
4
|
Fitzgerald J. WARP: A Unique Extracellular Matrix Component of Cartilage, Muscle, and Endothelial Cell Basement Membranes. Anat Rec (Hoboken) 2019; 303:1619-1623. [PMID: 30768857 DOI: 10.1002/ar.24087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/16/2018] [Accepted: 09/07/2018] [Indexed: 11/09/2022]
Abstract
The von Willebrand factor A-domain-related protein (WARP) encoded by the VWA1 gene, is an orphan extracellular matrix protein that is expressed in a subset of ECM structures but whose function is poorly understood. Here, recent advances on understanding VWA1/WARP will be reviewed including analysis of VWA1 reporter and global knock-out mice, interaction studies, and recent transcriptome analyses. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jamie Fitzgerald
- Department of Orthopedic Surgery, Bone and Joint Center, Henry Ford Hospital System, Detroit, Michigan
| |
Collapse
|