1
|
Xu Y, Li M, Lin M, Cui D, Xie J. Glutaminolysis of CD4 + T Cells: A Potential Therapeutic Target in Viral Diseases. J Inflamm Res 2024; 17:603-616. [PMID: 38318243 PMCID: PMC10840576 DOI: 10.2147/jir.s443482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
CD4+ T cells play a critical role in the pathogenesis of viral diseases, which are activated by the internal metabolic pathways encountering with viral antigens. Glutaminolysis converts glutamine into tricarboxylic acid (TCA) circulating metabolites by α-ketoglutaric acid, which is essential for the proliferation and differentiation of CD4+ T cells and plays a central role in providing the energy and structural components needed for viral replication after the virus hijacks the host cell. Changes in glutaminolysis in CD4+ T cells are accompanied by changes in the viral status of the host cell due to competition for glutamine between immune cells and host cells. More recently, attempts have been made to treat tumours, autoimmune diseases, and viral diseases by altering the breakdown of glutamine in T cells. In this review, we will discuss the current knowledge of glutaminolysis in the CD4+ T cell subsets from viral diseases, not only increasing our understanding of immunometabolism but also providing a new perspective for therapeutic target in viral diseases.
Collapse
Affiliation(s)
- Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Miaomiao Li
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Mengjiao Lin
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| |
Collapse
|
2
|
Zhang C, Shafaq-Zadah M, Pawling J, Hesketh GG, Dransart E, Pacholczyk K, Longo J, Gingras AC, Penn LZ, Johannes L, Dennis JW. SLC3A2 N-glycosylation and Golgi remodeling regulate SLC7A amino acid exchangers and stress mitigation. J Biol Chem 2023; 299:105416. [PMID: 37918808 PMCID: PMC10698284 DOI: 10.1016/j.jbc.2023.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Proteostasis requires oxidative metabolism (ATP) and mitigation of the associated damage by glutathione, in an increasingly dysfunctional relationship with aging. SLC3A2 (4F2hc, CD98) plays a role as a disulfide-linked adaptor to the SLC7A5 and SLC7A11 exchangers which import essential amino acids and cystine while exporting Gln and Glu, respectively. The positions of N-glycosylation sites on SLC3A2 have evolved with the emergence of primates, presumably in synchrony with metabolism. Herein, we report that each of the four sites in SLC3A2 has distinct profiles of Golgi-modified N-glycans. N-glycans at the primate-derived site N381 stabilized SLC3A2 in the galectin-3 lattice against coated-pit endocytosis, while N365, the site nearest the membrane promoted glycolipid-galectin-3 (GL-Lect)-driven endocytosis. Our results indicate that surface retention and endocytosis are precisely balanced by the number, position, and remodeling of N-glycans on SLC3A2. Furthermore, proteomics and functional assays revealed an N-glycan-dependent clustering of the SLC3A2∗SLC7A5 heterodimer with amino-acid/Na+ symporters (SLC1A4, SLC1A5) that balances branched-chain amino acids and Gln levels, at the expense of ATP to maintain the Na+/K+ gradient. In replete conditions, SLC3A2 interactions require Golgi-modified N-glycans at N365D and N381D, whereas reducing N-glycosylation in the endoplasmic reticulum by fluvastatin treatment promoted the recruitment of CD44 and transporters needed to mitigate stress. Thus, SLC3A2 N-glycosylation and Golgi remodeling of the N-glycans have distinct roles in amino acids import for growth, maintenance, and metabolic stresses.
Collapse
Affiliation(s)
- Cunjie Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Geoffrey G Hesketh
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - Karina Pacholczyk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Zhang W, Zhou M, Chen C, Wu S, Wang L, Xia B, Liu J, Ma X, Pan T, Zhang H, Li L, Liu B. Identification of CD98 as a Novel Biomarker for HIV-1 Permissiveness and Latent Infection. mBio 2022; 13:e0249622. [PMID: 36214569 PMCID: PMC9765422 DOI: 10.1128/mbio.02496-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) can integrate viral DNA into host cell chromosomes to establish a long-term stable latent reservoir, which is a major obstacle to cure HIV-1 infection. The characteristics of the HIV-1 latent reservoir have not been fully understood. Here, we identified 126 upregulated plasma membrane proteins in HIV-1 latently infected cells by a label-free liquid chromatography-tandem mass spectrometry analysis. The higher levels of CD98 expression in multiple HIV-1 latently infected cell lines and primary CD4+ T cells compared to uninfected cells were further confirmed by quantitative reverse transcription PCR (RT-qPCR) and flow cytometry analyses. In addition, CD98high CD4+ T cells displayed hyper-permissiveness to HIV-1 infection and possessed distinct immune phenotypic profiles associated with Th17 and peripheral follicular T helper (pTFH) characteristics. Notably, the CD98high resting memory CD4+ T cells harbored significantly higher cell-associated viral RNA and intact provirus than CD98low counterparts in HIV-1-infected individuals receiving combined antiretroviral therapy. Furthermore, CD98high CD4+ T cells exhibited a robust proliferative capacity and significantly contributed to the clonal expansion of the HIV-1 latent reservoir. Our study demonstrates that CD98 can be used as a novel biomarker of HIV-1 latently infected cells to indicate the effect of various strategies to reduce the viral reservoir. IMPORTANCE Identification of cellular biomarkers is the crucial challenge to eradicate the HIV-1 latent reservoir. In our study, we identified CD98 as a novel plasma membrane biomarker for HIV-1 permissiveness and latent infection. Importantly, CD98high CD4+ T cells exhibited a hyper-permissiveness to HIV-1 infection and significantly contributed to the clonal expansion of the HIV-1 latent reservoir. CD98 could be targeted to develop therapeutic strategies to reduce the HIV-1 latent reservoir in further research.
Collapse
Affiliation(s)
- Wanying Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Infectious Diseases Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mo Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Wu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lilin Wang
- Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Baijin Xia
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Liu
- Qianyang Biomedical Research Institute, Guangzhou, Guangdong, China
| | - Xiancai Ma
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linghua Li
- Infectious Diseases Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Köseer AS, Loureiro LR, Jureczek J, Mitwasi N, González Soto KE, Aepler J, Bartsch T, Feldmann A, Kunz-Schughart LA, Linge A, Krause M, Bachmann M, Arndt C, Dubrovska A. Validation of CD98hc as a Therapeutic Target for a Combination of Radiation and Immunotherapies in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:1677. [PMID: 35406454 PMCID: PMC8997111 DOI: 10.3390/cancers14071677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Most patients with head and neck squamous cell carcinomas (HNSCC) are diagnosed at a locally advanced stage and show heterogeneous treatment responses. Low SLC3A2 (solute carrier family 3 member 2) mRNA and protein (CD98hc) expression levels are associated with higher locoregional control in HNSCC patients treated with primary radiochemotherapy or postoperative radiochemotherapy, suggesting that CD98hc could be a target for HNSCC radiosensitization. One of the targeted strategies for tumor radiosensitization is precision immunotherapy, e.g., the use of chimeric antigen receptor (CAR) T cells. This study aimed to define the potential clinical value of new treatment approaches combining conventional radiotherapy with CD98hc-targeted immunotherapy. To address this question, we analyzed the antitumor activity of the combination of fractionated irradiation and switchable universal CAR (UniCAR) system against radioresistant HNSCC cells in 3D culture. CD98hc-redirected UniCAR T cells showed the ability to destroy radioresistant HNSCC spheroids. Also, the infiltration rate of the UniCAR T cells was enhanced in the presence of the CD98hc target module. Furthermore, sequential treatment with fractionated irradiation followed by CD98hc-redirected UniCAR T treatment showed a synergistic effect. Taken together, our obtained data underline the improved antitumor effect of the combination of radiotherapy with CD98hc-targeted immunotherapy. Such a combination presents an attractive approach for the treatment of high-risk HNSCC patients.
Collapse
Affiliation(s)
- Ayşe Sedef Köseer
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
| | - Liliana R. Loureiro
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Justyna Jureczek
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nicola Mitwasi
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Karla Elizabeth González Soto
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Julia Aepler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Tabea Bartsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Anja Feldmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Leoni A. Kunz-Schughart
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - Annett Linge
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mechthild Krause
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany
| | - Michael Bachmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Claudia Arndt
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany
| |
Collapse
|
5
|
Ye H, Li X, Lin J, Yang P, Su M. CD98hc has a pivotal role in maintaining the immuno-barrier integrity of basal layer cells in esophageal epithelium. Cancer Cell Int 2022; 22:98. [PMID: 35193580 PMCID: PMC8864845 DOI: 10.1186/s12935-021-02399-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The current study aims to find the linker between esophageal epithelial carcinogenesis and chronic inflammation and the origin of hyperproliferative cells in precancerous lesions of esophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS Twenty one normal esophageal tissues from cadavers and 180 paired tissues from 60 surgical resected ESCC specimens were utilized for immunohistochemistry staining against CK14, CK6, CD98hc and Ki67. NE6 cell line was treated with H2O2 to mimic chronic inflammation microenvironment and TPA for malignant orientated transformation. Cell proliferation and CD98hc mRNA were assessed by CCK8 assay and RT-qPCR. RESULTS CD98hc expression was correlated with chronic inflammation severity, precancerous lesion stage, and epithelial cell proliferative activity. CD98hc expression and proliferation rate of NE6 were up regulated by low dose H2O2 treatment and long term TPA treatment. The proliferating cells in hyperplastic and dysplastic tissues could be divided into two patterns by the expression of CK14, CD98hc, CK6 and Ki67: CK14+CD98hc+CK6-Ki67- in basal cells with CK14-CD98hc-CK6+Ki67+ in proliferating cells and CK14+CD98hc+CK6+Ki67+ in both basal cells and proliferating cells. CONCLUSIONS Our study revealed that CD98hc was a marker of cells originated from basal cell in esophagus, ectopic expression of CD98hc in hyperplastic/dysplastic cells by chronic inflammation stimulation crippled the linkage between basal cell and basement membrane, sabotaged the integrity of the barrier in between lamina propria and epithelium, subsequentially initiate carcinogenesis.
Collapse
Affiliation(s)
- Hao Ye
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Xiang Li
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Jing Lin
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Peng Yang
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Min Su
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Saha SS, Samanas NB, Miralda I, Shubin NJ, Niino K, Bhise G, Acharya M, Seo AJ, Camp N, Deutsch GH, James RG, Piliponsky AM. Mast cell surfaceome characterization reveals CD98 heavy chain is critical for optimal cell function. J Allergy Clin Immunol 2022; 149:685-697. [PMID: 34324892 PMCID: PMC8792104 DOI: 10.1016/j.jaci.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mast cells are involved in many distinct pathologic conditions, suggesting that they recognize and respond to various stimuli and thus require a rich repertoire of cell surface proteins. However, mast cell surface proteomes have not been comprehensively characterized. OBJECTIVE We aimed to further characterize the mast cell surface proteome to obtain a better understanding of how mast cells function in health and disease. METHODS We enriched for glycosylated surface proteins expressed in mouse bone marrow-derived cultured mast cells (BMCMCs) and identified them using mass spectrometry analysis. The presence of novel surface proteins in mast cells was validated by real-time quantitative PCR and flow cytometry analysis in BMCMCs and peritoneal mast cells (PMCs). We developed a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to disrupt genes of interest in BMCMCs. RESULTS The glycoprotein enrichment approach resulted in the identification of 1270 proteins in BMCMCs, 378 of which were localized to the plasma membrane. The most common protein classes among plasma membrane proteins were small GTPases, receptors, and transporters. One such cell surface protein was CD98 heavy chain (CD98hc), encoded by the Slc3a2 gene. Slc3a2 gene disruption resulted in a significant reduction in CD98hc expression, adhesion, and proliferation. CONCLUSIONS Glycoprotein enrichment coupled with mass spectrometry can be used to identify novel surface molecules in mast cells. Moreover, CD98hc plays an important role in mast cell function.
Collapse
Affiliation(s)
- Siddhartha S. Saha
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nyssa B. Samanas
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Irina Miralda
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nicholas J. Shubin
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kerri Niino
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Gauri Bhise
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Manasa Acharya
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Albert J. Seo
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nathan Camp
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Gail H. Deutsch
- Department of Laboratories, Seattle Children’s Research Institute, Seattle, Washington, United States of America,Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Richard G. James
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America,Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America,Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America,Corresponding author: Adrian M. Piliponsky, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, 1900 9th Ave, Room 721, , Phone number: 206-884-7226, Fax number: 206-987-7310
| |
Collapse
|
7
|
Tan AHM, Tso GHW, Zhang B, Teo PY, Ou X, Ng SW, Wong AXF, Tan SJX, Sanny A, Kim SSY, Lee AP, Xu S, Lam KP. TACI Constrains T H17 Pathogenicity and Protects against Gut Inflammation. iScience 2020; 23:101707. [PMID: 33205021 PMCID: PMC7653077 DOI: 10.1016/j.isci.2020.101707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/20/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor) plays critical roles in B cells by promoting immunoglobulin class switching and plasma cell survival. However, its expression and function in T cells remain controversial. We show here that TACI expression can be strongly induced in murine CD4+ T cells in vitro by cytokines responsible for TH17 but not TH1 or TH2 differentiation. Frequencies and numbers of TH17 cells were elevated in TACI-/ - compared with wild-type mice as well as among TACI-/ - versus wild-type CD4+ T cells in mixed bone marrow chimeras, arguing for a T cell-intrinsic effect in the contribution of TACI deficiency to TH17 cell accumulation. TACI-/ - mice were more susceptible to severe colitis induced by dextran sodium sulfate or adoptive T cell transfer, suggesting that TACI negatively regulates TH17 function and limits intestinal inflammation in a cell-autonomous manner. Finally, transcriptomic and biochemical analyses revealed that TACI-/ - CD4+ T cells exhibited enhanced activation of TH17-promoting transcription factors NFAT, IRF4, c-MAF, and JUNB. Taken together, these findings reveal an important role of TACI in constraining TH17 pathogenicity and protecting against gut disease.
Collapse
Affiliation(s)
- Andy Hee-Meng Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Gloria Hoi Wan Tso
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Biyan Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Pei-Yun Teo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Xijun Ou
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Sze-Wai Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Alex Xing Fah Wong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Sean Jing Xiang Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Arleen Sanny
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Susana Soo-Yeon Kim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Alison P Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Shengli Xu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Departments of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Departments of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
8
|
Aoki JI, Muxel SM, Laranjeira-Silva MF, Zampieri RA, Müller KE, Nerland AH, Floeter-Winter LM. Dual transcriptome analysis reveals differential gene expression modulation influenced by Leishmania arginase and host genetic background. Microb Genom 2020; 6:mgen000427. [PMID: 32886592 PMCID: PMC7643972 DOI: 10.1099/mgen.0.000427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023] Open
Abstract
The outcome of Leishmania infection is strongly influenced by the host's genetic background. BALB/c mice are susceptible to Leishmania infection, while C57BL/6 mice show discrete resistance. Central to the fate of the infection is the availability of l-arginine and the related metabolic processes in the host and parasite. Depending on l-arginine availability, nitric oxide synthase 2 (NOS2) of the host cell produces nitric oxide (NO) controlling the parasite growth. On the other hand, Leishmania can also use host l-arginine for the production of polyamines through its own arginase activity, thus favouring parasite replication. Considering RNA-seq data, we analysed the dual modulation of host and parasite gene expression of BALB/c or C57BL/6 mouse bone marrow-derived macrophages (BMDMs) after 4 h of infection with Leishmania amazonensis wild-type (La-WT) or L. amazonensis arginase knockout (La-arg-). We identified 12 641 host transcripts and 8282 parasite transcripts by alignment analysis with the respective Mus musculus and L. mexicana genomes. The comparison of BALB/c_La-arg-versus BALB/c_La-WT revealed 233 modulated transcripts, with most related to the immune response and some related to the amino acid transporters and l-arginine metabolism. In contrast, the comparison of C57BL/6_La-arg-vs. C57BL/6_La-WT revealed only 30 modulated transcripts, including some related to the immune response but none related to amino acid transport or l-arginine metabolism. The transcriptome profiles of the intracellular amastigote revealed 94 modulated transcripts in the comparison of La-arg-_BALB/c vs. La-WT_BALB/c and 45 modulated transcripts in the comparison of La-arg-_C57BL/6 vs. La-WT_C57BL/6. Taken together, our data present new insights into the impact of parasite arginase activity on the orchestration of the host gene expression modulation, including in the immune response and amino acid transport and metabolism, mainly in susceptible BALB/c-infected macrophages. Moreover, we show how parasite arginase activity affects parasite gene expression modulation, including amino acid uptake and amastin expression.
Collapse
Affiliation(s)
- Juliana Ide Aoki
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Sandra Marcia Muxel
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | | | | - Karl Erik Müller
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Drammen Hospital, Drammen, Norway
| | | | | |
Collapse
|
9
|
Metabolic Pathways That Control Skin Homeostasis and Inflammation. Trends Mol Med 2020; 26:975-986. [PMID: 32371170 DOI: 10.1016/j.molmed.2020.04.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022]
Abstract
Keratinocytes and skin immune cells are actively metabolizing nutrients present in their microenvironment. This is particularly important in common chronic inflammatory skin diseases such as psoriasis and atopic dermatitis, characterized by hyperproliferation of keratinocytes and expansion of inflammatory cells, thus suggesting increased cell nutritional requirements. Proliferating inflammatory cells and keratinocytes express high levels of glucose transporter (GLUT)1, l-type amino acid transporter (LAT)1, and cationic amino acid transporters (CATs). Main metabolic regulators such as hypoxia-inducible factor (HIF)-1α, MYC, and mechanistic target of rapamycin (mTOR) control immune cell activation, proliferation, and cytokine release. Here, we provide an updated perspective regarding the potential role of nutrient transporters and metabolic pathways that could be common to immune cells and keratinocytes, to control psoriasis and atopic dermatitis.
Collapse
|
10
|
Chapman NM, Shrestha S, Chi H. Metabolism in Immune Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:1-85. [PMID: 28875486 DOI: 10.1007/978-94-024-1170-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune system is a central determinant of organismal health. Functional immune responses require quiescent immune cells to rapidly grow, proliferate, and acquire effector functions when they sense infectious agents or other insults. Specialized metabolic programs are critical regulators of immune responses, and alterations in immune metabolism can cause immunological disorders. There has thus been growing interest in understanding how metabolic processes control immune cell functions under normal and pathophysiological conditions. In this chapter, we summarize how metabolic programs are tuned and what the physiological consequences of metabolic reprogramming are as they relate to immune cell homeostasis, differentiation, and function.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sharad Shrestha
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
11
|
Hegedus A, Kavanagh Williamson M, Khan MB, Dias Zeidler J, Da Poian AT, El-Bacha T, Struys EA, Huthoff H. Evidence for Altered Glutamine Metabolism in Human Immunodeficiency Virus Type 1 Infected Primary Human CD4 + T Cells. AIDS Res Hum Retroviruses 2017; 33:1236-1247. [PMID: 28844150 PMCID: PMC5709700 DOI: 10.1089/aid.2017.0165] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glutamine is a conditionally essential amino acid that is an important metabolic resource for proliferating tissues by acting as a proteinogenic amino acid, a nitrogen donor for biosynthetic reactions and as a substrate for the citric acid or tricarboxylic acid cycle. The human immunodeficiency virus type 1 (HIV-1) productively infects activated CD4+ T cells that are known to require glutamine for proliferation and for carrying out effector functions. As a virus, HIV-1 is furthermore entirely dependent on host metabolism to support its replication. In this study, we compared HIV-1 infected with uninfected activated primary human CD4+ T cells with regard to glutamine metabolism. We report that glutamine concentrations are elevated in HIV-1-infected cells and that glutamine is important to support HIV-1 replication, although the latter is closely linked to the glutamine dependency of cell survival. Metabolic tracer experiments showed that entry of glutamine-derived carbon into the citric acid cycle is unaffected by HIV-1 infection, but that there is an increase in the secretion of glutamine-derived glutamic acid from HIV-1-infected cells. Western blotting of key enzymes that metabolize glutamine revealed marked differences in the expression of glutaminase isoforms, KGA and CAG, as well as the PPAT enzyme that targets glutamine-derived nitrogen toward nucleotide synthesis. Altogether, this demonstrates that infection of CD4+ T cells with HIV-1 leads to considerable changes in the cellular glutamine metabolism.
Collapse
Affiliation(s)
- Andrea Hegedus
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | | | - Mariam B. Khan
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Julianna Dias Zeidler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana El-Bacha
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduard A. Struys
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Amsterdam, the Netherlands
| | - Hendrik Huthoff
- Department of Infectious Diseases, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Ikeda K, Kinoshita M, Kayama H, Nagamori S, Kongpracha P, Umemoto E, Okumura R, Kurakawa T, Murakami M, Mikami N, Shintani Y, Ueno S, Andou A, Ito M, Tsumura H, Yasutomo K, Ozono K, Takashima S, Sakaguchi S, Kanai Y, Takeda K. Slc3a2 Mediates Branched-Chain Amino-Acid-Dependent Maintenance of Regulatory T Cells. Cell Rep 2017; 21:1824-1838. [DOI: 10.1016/j.celrep.2017.10.082] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 08/06/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022] Open
|
13
|
Nishio Y, Fujino M, Cai S, Kitajima Y, Saito T, Tsumura H, Ito M, Ito Y, Nagahara Y, Li XK. Impaired CD98 signaling protects against graft-versus-host disease by increasing regulatory T cells. Transpl Immunol 2016; 35:34-9. [PMID: 26836475 DOI: 10.1016/j.trim.2016.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 01/08/2023]
Abstract
Graft-versus-host disease (GvHD) is a major barrier to the broader use of allogenic hematopoietic stem cell transplantation for non-malignant clinical applications. A murine model of C57BL/6 to B6D2F1 acute GvHD was employed with T lymphocytes harboring a deletion of the CD98 heavy chain (CD98hc(-/-)) as donor cells. The CD98hc(-/-) resulted in lower responses to alloantigen stimulation in a mixed leukocyte reaction assay, and prevented the mortality associated with disease progression. The percentage of donor CD8 T lymphocytes was significantly decreased, while the percentage of Foxp3-positive regulatory T cells (Tregs) in recipients was increased by CD98hc(-/-). Decreased expression of FAS, FASL, ICOS, ICOSL, PD-1 and PD-L1 by donor CD8 T cells, and mRNA expression of cytotoxic T cell-related cytokines in the recipients were shown in those with CD98hc(-/-). Fewer infiltrated cells are found in the lungs, liver, tongue and skin of recipients with CD98hc(-/-) compared with the wild type recipients. Taken together, our data indicate that T cell-specific deletion of CD98hc can contribute to the prevention of GvHD development due to the attenuation of lymphocyte migration and by increasing the generation of Treg cells. These findings are expected to make it possible to develop novel approaches for the prevention of GvHD.
Collapse
Affiliation(s)
- Yoshiaki Nishio
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Songjie Cai
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuya Kitajima
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Division of Life Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Taro Saito
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Division of Life Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Hideki Tsumura
- Division of Laboratory Animal Resources, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Morihiro Ito
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Yasuhiko Ito
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Yukitoshi Nagahara
- Division of Life Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|