1
|
Wang K, Zhan HQ, Hu Y, Yuan ZY, Yang JF, Yang DS, Tao LS, Xu T. The role of interleukin-20 in liver disease: Functions, mechanisms and clinical applications. Heliyon 2024; 10:e29853. [PMID: 38699038 PMCID: PMC11064155 DOI: 10.1016/j.heliyon.2024.e29853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Liver disease is a severe public health concern worldwide. There is a close relationship between the liver and cytokines, and liver inflammation from a variety of causes leads to the release and activation of cytokines. The functions of cytokines are complex and variable, and are closely related to their cellular origin, target molecules and mode of action. Interleukin (IL)-20 has been studied as a pro-inflammatory cytokine that is expressed and regulated in some diseases. Furthermore, accumulating evidences has shown that IL-20 is highly expressed in clinical samples from patients with liver disease, promoting the production of pro-inflammatory molecules involved in liver disease progression, and antagonists of IL-20 can effectively inhibit liver injury and produce protective effects. This review highlights the potential of targeting IL-20 in liver diseases, elucidates the potential mechanisms of IL-20 inducing liver injury, and suggests multiple viable strategies to mitigate the pro-inflammatory response to IL-20. Genomic CRISPR/Cas9-based screens may be a feasible way to further explore the signaling pathways and regulation of IL-20 in liver diseases. Nanovector systems targeting IL-20 offer new possibilities for the treatment and prevention of liver diseases.
Collapse
Affiliation(s)
- Kun Wang
- School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhan-Yuan Yuan
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jun-Fa Yang
- Department of orthopedics, Anhui Children's Hospital, Hefei, Anhui, 230032, China
| | - Da-Shuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Liang-Song Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
2
|
Ni S, Shan F, Geng J. Interleukin-10 family members: Biology and role in the bone and joint diseases. Int Immunopharmacol 2022; 108:108881. [PMID: 35623292 DOI: 10.1016/j.intimp.2022.108881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Interleukin (IL)-10 family cytokines include IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28A, IL-28B, and IL-29. These cytokines play crucial regulatory roles in various biological reactions and diseases. In recent years, several studies have shown that the IL-10 family plays a vital role in bone and joint diseases, including bone metabolic diseases, fractures, osteoarthritis, rheumatoid arthritis, and bone tumors. Herein, the recent progress on the regulatory role of IL-10 family of cytokines in the occurrence and development of bone and joint diseases has been summarized. This review will provide novel directions for immunotherapy of bone and joint diseases.
Collapse
Affiliation(s)
- Shenghui Ni
- Department of Orthopaedics, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning, China
| | - Jin Geng
- Department of Ophthalmology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
3
|
Le Roux M, Ollivier A, Kervoaze G, Beke T, Gillet L, Pichavant M, Gosset P. IL-20 Cytokines Are Involved in Epithelial Lesions Associated with Virus-Induced COPD Exacerbation in Mice. Biomedicines 2021; 9:biomedicines9121838. [PMID: 34944654 PMCID: PMC8699027 DOI: 10.3390/biomedicines9121838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Background: viral infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are responsible for disease progression and mortality. Previous reports showed that IL-20 cytokines facilitate bacterial lung infection, but their production and their role in COPD and viral infection has not yet been investigated. (2) Methods: C57BL/6 WT and IL-20 Rb KO mice were chronically exposed to air or cigarette smoke (CS) to mimic COPD. Cytokine production, antiviral response, inflammation and tissue damages were analyzed after PVM infection. (3) Results: CS exposure was associated with an increase in viral burden and antiviral response. PVM infection in CS mice enhanced IFN-γ, inflammation and tissue damage compared to Air mice. PVM infection and CS exposure induced, in an additive manner, IL-20 cytokines expression and the deletion of IL-20 Rb subunit decreased the expression of interferon-stimulated genes and the production of IFN-λ2/3, without an impact on PVM replication. Epithelial cell damages and inflammation were also reduced in IL-20 Rb-/- mice, and this was associated with reduced lung permeability and the maintenance of intercellular junctions. (4) Conclusions: PVM infection and CS exposure additively upregulates the IL-20 pathway, leading to the promotion of epithelial damages. Our data in our model of viral exacerbation of COPD identify IL-20 cytokine as a potential therapeutic target.
Collapse
Affiliation(s)
- Mélina Le Roux
- CIIL-Center for Infection and Immunity of Lille, CHRU Lille, Institute Pasteur de Lille, University Lille, CNRS UMR9017, Inserm U1019, 59000 Lille, France; (M.L.R.); (A.O.); (G.K.); (T.B.); (M.P.)
| | - Anaïs Ollivier
- CIIL-Center for Infection and Immunity of Lille, CHRU Lille, Institute Pasteur de Lille, University Lille, CNRS UMR9017, Inserm U1019, 59000 Lille, France; (M.L.R.); (A.O.); (G.K.); (T.B.); (M.P.)
| | - Gwenola Kervoaze
- CIIL-Center for Infection and Immunity of Lille, CHRU Lille, Institute Pasteur de Lille, University Lille, CNRS UMR9017, Inserm U1019, 59000 Lille, France; (M.L.R.); (A.O.); (G.K.); (T.B.); (M.P.)
| | - Timothé Beke
- CIIL-Center for Infection and Immunity of Lille, CHRU Lille, Institute Pasteur de Lille, University Lille, CNRS UMR9017, Inserm U1019, 59000 Lille, France; (M.L.R.); (A.O.); (G.K.); (T.B.); (M.P.)
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, Department of Infection and Parasitic Diseases, FARAH, University of Liege, 4000 Liege, Belgium;
| | - Muriel Pichavant
- CIIL-Center for Infection and Immunity of Lille, CHRU Lille, Institute Pasteur de Lille, University Lille, CNRS UMR9017, Inserm U1019, 59000 Lille, France; (M.L.R.); (A.O.); (G.K.); (T.B.); (M.P.)
| | - Philippe Gosset
- CIIL-Center for Infection and Immunity of Lille, CHRU Lille, Institute Pasteur de Lille, University Lille, CNRS UMR9017, Inserm U1019, 59000 Lille, France; (M.L.R.); (A.O.); (G.K.); (T.B.); (M.P.)
- Correspondence: ; Tel.: +33-320-877-965
| |
Collapse
|
4
|
Dayton JR, Yuan Y, Pacumio LP, Dorflinger BG, Yoo SC, Olson MJ, Hernández-Suárez SI, McMahon MM, Cruz-Orengo L. Expression of IL-20 Receptor Subunit β Is Linked to EAE Neuropathology and CNS Neuroinflammation. Front Cell Neurosci 2021; 15:683687. [PMID: 34557075 PMCID: PMC8452993 DOI: 10.3389/fncel.2021.683687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Considerable clinical evidence supports that increased blood-brain barrier (BBB) permeability is linked to immune extravasation of CNS parenchyma during neuroinflammation. Although BBB permeability and immune extravasation are known to be provoked by vascular endothelial growth factor-A (i.e., VEGF-A) and C-X-C motif chemokine ligand 12 (CXCL12), respectively, the mechanisms that link both processes are still elusive. The interleukin-20 (i.e., IL-20) cytokine signaling pathway was previously implicated in VEGF-mediated angiogenesis and is known to induce cellular response by way of signaling through IL-20 receptor subunit β (i.e., IL-20RB). Dysregulated IL-20 signaling is implicated in many inflammatory pathologies, but it's contribution to neuroinflammation has yet to be reported. We hypothesize that the IL-20 cytokine, and the IL cytokine subfamily more broadly, play a key role in CNS neuroinflammation by signaling through IL-20RB, induce VEGF activity, and enhance both BBB-permeability and CXCL12-mediated immune extravasation. To address this hypothesis, we actively immunized IL-20RB-/- mice and wild-type mice to induce experimental autoimmune encephalomyelitis (EAE) and found that IL-20RB-/- mice showed amelioration of disease progression compared to wild-type mice. Similarly, we passively immunized IL-20RB-/- mice and wild-type mice with myelin-reactive Th1 cells from either IL-20RB-/- and wild-type genotype. Host IL-20RB-/- mice showed lesser disease progression than wild-type mice, regardless of the myelin-reactive Th1 cells genotype. Using multianalyte bead-based immunoassay and ELISA, we found distinctive changes in levels of pro-inflammatory cytokines between IL-20RB-/- mice and wild-type mice at peak of EAE. We also found detectable levels of all cytokines of the IL-20 subfamily within CNS tissues and specific alteration to IL-20 subfamily cytokines IL-19, IL-20, and IL-24, expression levels. Immunolabeling of CNS region-specific microvessels confirmed IL-20RB protein at the spinal cord microvasculature and upregulation during EAE. Microvessels isolated from macaques CNS tissues also expressed IL-20RB. Moreover, we identified the expression of all IL-20 receptor subunits: IL-22 receptor subunit α-1 (IL-22RA1), IL-20RB, and IL-20 receptor subunit α (IL-20RA) in human CNS microvessels. Notably, human cerebral microvasculature endothelial cells (HCMEC/D3) treated with IL-1β showed augmented expression of the IL-20 receptor. Lastly, IL-20-treated HCMEC/D3 showed alterations on CXCL12 apicobasal polarity consistent with a neuroinflammatory status. This evidence suggests that IL-20 subfamily cytokines may signal at the BBB via IL-20RB, triggering neuroinflammation.
Collapse
Affiliation(s)
- Jacquelyn R Dayton
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Yinyu Yuan
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Lisa P Pacumio
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Bryce G Dorflinger
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Samantha C Yoo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Mariah J Olson
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Sara I Hernández-Suárez
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Bayer School of Natural and Environmental Sciences, Duquesne University of the Holy Spirit, Pittsburgh, PA, United States
| | - Moira M McMahon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Lillian Cruz-Orengo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
Hinz N, Jücker M. AKT in Bone Metastasis of Solid Tumors: A Comprehensive Review. Cancers (Basel) 2021; 13:cancers13102287. [PMID: 34064589 PMCID: PMC8151478 DOI: 10.3390/cancers13102287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Bone metastasis is a frequent complication of solid tumors and leads to a reduced overall survival. Although much progress has been made in the field of tumor therapy in the last years, bone metastasis depicts a stage of the disease with a lack of appropriate therapeutical options. Hence, this review aims to present the role of AKT in bone metastasis of solid tumors to place the spotlight on AKT as a possible therapeutical approach for patients with bone metastases. Furthermore, we intended to discuss postulated underlying molecular mechanisms of the bone metastasis-promoting effect of AKT, especially in highly bone-metastatic breast, prostate, and lung cancer. To conclude, this review identified the AKT kinase as a potential therapeutical target in bone metastasis and revealed remaining questions, which need to be addressed in further research projects. Abstract Solid tumors, such as breast cancer and prostate cancer, often form bone metastases in the course of the disease. Patients with bone metastases frequently develop complications, such as pathological fractures or hypercalcemia and exhibit a reduced life expectancy. Thus, it is of vital importance to improve the treatment of bone metastases. A possible approach is to target signaling pathways, such as the PI3K/AKT pathway, which is frequently dysregulated in solid tumors. Therefore, we sought to review the role of the serine/threonine kinase AKT in bone metastasis. In general, activation of AKT signaling was shown to be associated with the formation of bone metastases from solid tumors. More precisely, AKT gets activated in tumor cells by a plethora of bone-derived growth factors and cytokines. Subsequently, AKT promotes the bone-metastatic capacities of tumor cells through distinct signaling pathways and secretion of bone cell-stimulating factors. Within the crosstalk between tumor and bone cells, also known as the vicious cycle, the stimulation of osteoblasts and osteoclasts also causes activation of AKT in these cells. As a consequence, bone metastasis is reduced after experimental inhibition of AKT. In summary, AKT signaling could be a promising therapeutical approach for patients with bone metastases of solid tumors.
Collapse
|
6
|
Chen X, Liu Y, Meng B, Wu D, Wu Y, Cao Y. Interleukin-20 inhibits the osteogenic differentiation of MC3T3-E1 cells via the GSK3β/β-catenin signalling pathway. Arch Oral Biol 2021; 125:105111. [PMID: 33798924 DOI: 10.1016/j.archoralbio.2021.105111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the effects of interleukin-20 (IL-20) on the osteogenic differentiation of MC3T3-E1 cells. METHODS The pre-osteoblast line MC3T3-E1 was treated with different concentrations of IL-20 (0, 2, 20 and 100 ng/mL), and the cell viability was detected by the CCK8 assay. To assess the influence of IL-20 on osteogenic differentiation, alkaline phosphatase (ALP) activity and Alizarin red staining were performed at predetermined times. The expression levels of Runt-related transcription factor 2 (RUNX2), Osterix (Osx), glycogen synthase kinase-3β (GSK-3β) and β-catenin were detected by qRT-PCR and Western blotting analyses. 5 nmol/L lithium chloride (LiCl) was used as GSK-3β inhibitor. RESULTS IL-20 promoted cell proliferation but decreased ALP activity and mineralization. Moreover, IL-20 downregulated the expression of RUNX2, Osx and β-catenin but upregulated the level of GSK-3β. CONCLUSIONS The results suggest that IL-20 could inhibit the osteogenic differentiation of MC3T3-E1 cells via the GSK3β/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yuanbo Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bowen Meng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dongle Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yilin Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
IL-20R Activation via rIL-19 Enhances Hematoma Resolution through the IL-20R1/ERK/Nrf2 Pathway in an Experimental GMH Rat Pup Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5913424. [PMID: 33532035 PMCID: PMC7837781 DOI: 10.1155/2021/5913424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/11/2020] [Accepted: 01/02/2021] [Indexed: 11/17/2022]
Abstract
Aims Blood clots play the primary role in neurological deficits after germinal matrix hemorrhage (GMH). Previous studies have shown a beneficial effect in blood clot clearance after hemorrhagic stroke. The purpose of this study is to investigate interleukin-19's role in hematoma clearance after GMH and its underlying mechanism of IL-20R1/ERK/Nrf2 signaling pathway. Methods A total of 240 Sprague-Dawley P7 rat pups were used. GMH was induced by intraparenchymal injection of bacterial collagenase. rIL-19 was administered intranasally 1 hour post-GMH. IL-20R1 CRISPR was administered intracerebroventricularly, or Nrf2 antagonist ML385 was administered intraperitoneally 48 hours and 1 hour before GMH induction, respectively. Neurobehavior, Western blot, immunohistochemistry, histology, and hemoglobin assay were used to evaluate treatment regiments in the short- and long-term. Results Endogenous IL-19, IL-20R1, IL-20R2, and scavenger receptor CD163 were increased after GMH. rIL-19 treatment improved neurological deficits, reduced hematoma volume and hemoglobin content, reduced ventriculomegaly, and attenuated cortical thickness loss. Additionally, treatment increased ERK, Nrf2, and CD163 expression, whereas IL-20R1 CRISPR-knockdown plasmid and ML385 inhibited the effects of rIL-19 on CD163 expression. Conclusion rIL-19 treatment improved hematoma clearance and attenuated neurological deficits induced by GMH, which was mediated through the upregulation of the IL-20R1/ERK/Nrf2 pathways. rIL-19 treatment may provide a promising therapeutic strategy for the GMH patient population.
Collapse
|
8
|
Gao W, Wen H, Liang L, Dong X, Du R, Zhou W, Zhang X, Zhang C, Xiang R, Li N. IL20RA signaling enhances stemness and promotes the formation of an immunosuppressive microenvironment in breast cancer. Theranostics 2021; 11:2564-2580. [PMID: 33456560 PMCID: PMC7806486 DOI: 10.7150/thno.45280] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
Rationale: Tumor microenvironment interacts with tumor cells to regulate their stemness properties through various cytokines and cytokine receptors. Previous studies revealed the possible role of interleukin 20 receptor subunit alpha (IL20RA) signaling in the progression of several types of tumors. However, its regulatory effects on the stemness and the microenvironment of breast cancer need to be studied. Methods: Immunohistochemical staining and western blot analysis were used to evaluate the association between IL20RA and SOX2 in breast tumors and noncancerous tissues. Enzyme-linked immunosorbent assay and TCGA dataset analysis were performed to determine the function of IL20RA signaling in breast cancer progression. Gain- and loss-of-function methods were performed to examine the effects of IL20RA on the stemness of breast cancer cells. The stemness features were analyzed by detecting the expression of core stemness genes, side population (SP), sphere formation ability, and aldehyde dehydrogenase (ALDH) activity. Flow cytometric analysis was applied to detect the changes of tumor-infiltration lymphocytes in tumor tissues in mice. Based on the relevant molecular mechanisms elucidated in this study, a novel IL20RA-targeted liposomal nanoparticle encapsulating the signal transducer and activator of transcription 3 (STAT3) inhibitor stattic (NP-Stattic-IL20RA) was synthesized. These NPs were combined with anti-programmed death ligand 1 (PD-L1) antibody and chemotherapy to inhibit the development of breast tumors in mice. Results: IL20RA is highly expressed in human breast cancers and is positively associated with the SOX2 expression. IL20RA increases the SP and ALDHbr proportions of breast cancer cells, enhances the sphere formation ability, and promotes the expression of core stemness genes, such as Sox2 and Oct4, as well as increases chemoresistance of breast cancer cells. IL20RA promotes the tumor-initiating ability and lung metastasis of breast cancer cells in vivo. In addition, IL20RA activates the Janus kinase 1 (JAK1)-STAT3-SOX2 signaling pathway, leading to increased expression of PD-L1 and reduced recruitment of anti-cancer lymphocytes, including CD8+ T cells and natural killer cells. Meanwhile, IL20RA signaling enhances the proportion of myeloid-derived suppressor cells. Combined with anti-PD-L1 antibody and NPs-Stattic-IL20RA, the chemotherapeutic efficacy was increased in breast cancer mouse models in vivo. Conclusion: Collectively, our results reveal that the IL20RA pathway is a novel signaling pathway involved in promoting the stemness features of breast cancer along with the formation of a tumor-favorable immune microenvironment. Targeting the IL20RAhi population with STAT3 signaling inhibition combined with anti-PD-L1 antibody can increase the therapeutic efficacy of chemotherapeutic agents for breast cancer. This study thus introduces a promising novel strategy for breast cancer therapy.
Collapse
|
9
|
IL-20 antagonist suppresses PD-L1 expression and prolongs survival in pancreatic cancer models. Nat Commun 2020; 11:4611. [PMID: 32929072 PMCID: PMC7490368 DOI: 10.1038/s41467-020-18244-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and cancer-associated cachexia (CAC) are multifactorial and characterized by dysregulated inflammatory networks. Whether the proinflammatory cytokine IL-20 is involved in the complex networks of PDAC and CAC remains unclear. Here, we report that elevated IL-20 levels in tumor tissue correlate with poor overall survival in 72 patients with PDAC. In vivo, we establish a transgenic mouse model (KPC) and an orthotopic PDAC model and examine the therapeutic efficacy of an anti-IL-20 monoclonal antibody (7E). Targeting IL-20 not only prolongs survival and attenuates PD-L1 expression in both murine models but also inhibits tumor growth and mitigates M2-like polarization in the orthotopic PDAC model. Combination treatment with 7E and an anti-PD-1 antibody shows better efficacy in inhibiting tumor growth than either treatment alone in the orthotopic PDAC model. Finally, 7E mitigates cachexic symptoms in CAC models. Together, we conclude IL-20 is a critical mediator in PDAC progression. The pro-inflammatory cytokine IL-20 promotes tumor growth in several cancer types. Here, the authors show that high levels of IL-20 are associated with poor survival in patients with pancreatic ductal adenocarcinoma (PDAC) and that IL-20 blockade reduces tumor growth and alleviates cachexia symptoms in mouse models of PDAC.
Collapse
|
10
|
Burmeister AR, Marriott I. The Interleukin-10 Family of Cytokines and Their Role in the CNS. Front Cell Neurosci 2018; 12:458. [PMID: 30542269 PMCID: PMC6277801 DOI: 10.3389/fncel.2018.00458] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Resident cells of the central nervous system (CNS) play an important role in detecting insults and initiating protective or sometimes detrimental host immunity. At peripheral sites, immune responses follow a biphasic course with the rapid, but transient, production of inflammatory mediators giving way to the delayed release of factors that promote resolution and repair. Within the CNS, it is well known that glial cells contribute to the onset and progression of neuroinflammation, but it is only now becoming apparent that microglia and astrocytes also play an important role in producing and responding to immunosuppressive factors that serve to limit the detrimental effects of such responses. Interleukin-10 (IL-10) is generally considered to be the quintessential immunosuppressive cytokine, and its ability to resolve inflammation and promote wound repair at peripheral sites is well documented. In the present review article, we discuss the evidence for the production of IL-10 by glia, and describe the ability of CNS cells, including microglia and astrocytes, to respond to this suppressive factor. Furthermore, we review the literature for the expression of other members of the IL-10 cytokine family, IL-19, IL-20, IL-22 and IL-24, within the brain, and discuss the evidence of a role for these poorly understood cytokines in the regulation of infectious and sterile neuroinflammation. In concert, the available data indicate that glia can produce IL-10 and the related cytokines IL-19 and IL-24 in a delayed manner, and these cytokines can limit glial inflammatory responses and/or provide protection against CNS insult. However, the roles of other IL-10 family members within the CNS remain unclear, with IL-20 appearing to act as a pro-inflammatory factor, while IL-22 may play a protective role in some instances and a detrimental role in others, perhaps reflecting the pleiotropic nature of this cytokine family. What is clear is that our current understanding of the role of IL-10 and related cytokines within the CNS is limited at best, and further research is required to define the actions of this understudied family in inflammatory brain disorders.
Collapse
Affiliation(s)
- Amanda R Burmeister
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
11
|
|
12
|
Lee JY, Park YJ, Oh N, Kwack KB, Park KS. A transcriptional complex composed of ER(α), GATA3, FOXA1 and ELL3 regulates IL-20 expression in breast cancer cells. Oncotarget 2018; 8:42752-42760. [PMID: 28514748 PMCID: PMC5522103 DOI: 10.18632/oncotarget.17459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/15/2017] [Indexed: 11/25/2022] Open
Abstract
Interleukin-20 (IL-20) is a member of the IL-10 family. IL-20 expression is regulated by a transcription elongation factor, Ell3, in estrogen receptor-positive (ER(+)) breast cancer cells. In this study, we demonstrated that ER(α), GATA3 and FOXA1 form a transcriptional complex with Ell3 to regulate IL-20 expression in ER(+) breast cancer cells. We also determined that GATA3 and FOXA1 share a binding site with ER(α) in the interleukin-20 promoter. Furthermore, we found that FOXA1 represses IL-20 expression, whereas GATA3 and ER(α) activate it. In addition, we demonstrated that Ell3 associates with ER(α) to increase its binding affinity to the IL-20 promoter, which may prevent FOXA1 binding to the same region of this promoter. Our results expand upon the current understanding of the regulatory mechanism of IL-20 in cancer.
Collapse
Affiliation(s)
- Jae Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Young Joon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Nuri Oh
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Kyu Bum Kwack
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| |
Collapse
|
13
|
Wang HH, Hsu YH, Chang MS. IL-20 bone diseases involvement and therapeutic target potential. J Biomed Sci 2018; 25:38. [PMID: 29690863 PMCID: PMC5913811 DOI: 10.1186/s12929-018-0439-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Millions of people around the world suffer from bone disorders, likes osteoporosis, rheumatoid arthritis (RA), and cancer-induced osteolysis. In general, the bone remodeling balance is determined by osteoclasts and osteoblasts, respectively responsible for bone resorption and bone formation. Excessive inflammation disturbs the activities of these two kinds of cells, typically resulting in the bone loss. MAIN BODY IL-20 is emerging as a potent angiogenic, chemotactic, and proinflammatory cytokine related to several chronic inflammatory disorders likes psoriasis, atherosclerosis, cancer, liver fibrosis, and RA. IL-20 has an important role in the regulation of osteoclastogenesis and osteoblastogenesis and is upregulated in several bone-related diseases. The anti-IL-20 monoclonal antibody treatment has a therapeutic potential in several experimental disease models including ovariectomy-induced osteoporosis, cancer-induced osteolysis, and bone fracture. CONCLUSION This review article provides an overview describing the IL-20's biological functions in the common bone disorders and thus providing a novel therapeutic strategy in the future.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ming-Shi Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|