1
|
Zabihi MR, Moradi Z, Safari N, Salehi Z, Kavousi K. Revealing disease subtypes and heterogeneity in common variable immunodeficiency through transcriptomic analysis. Sci Rep 2024; 14:23899. [PMID: 39396099 PMCID: PMC11470955 DOI: 10.1038/s41598-024-74728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Common Variable Immunodeficiency (CVID) is a primary immunodeficiency characterized by reduced levels of specific immunoglobulins, resulting in frequent infections, autoimmune disorders, increased cancer risk, and diminished antibody production despite an adequate B cell count. With its clinical manifestations being highly variable, the classification of CVID, including the widely recognized Freiburg classification, is primarily based on clinical symptoms and genetic variations. Our study aims to refine the classification of CVID by analyzing transcriptomics data to identify distinct disease subtypes. We utilized the GSE51405 dataset, examining transcriptomic profiles from 30 CVID patients without complications. Employing a combination of clustering techniques-KMeans, hierarchical agglomerative clustering, spectral clustering, and Gaussian Mixture models-and differential gene expression analysis with R's limma package, we integrated molecular findings with demographic data (age and gender) through correlation analysis and identified common genes among clusters. Three distinct clusters of CVID patients were identified using KMeans, Agglomerative Clustering, and Gaussian Mixture Models, highlighting the disease's heterogeneity. Differential expression analysis unveiled 31 genes with variable expression levels across these clusters. Notably, nine genes (EIF5A, RPL21, ANP32A, DTX3L, NCF2, CDC42EP3, CHP1, FOLR3, and DEFA4) exhibited consistent differential expression across all clusters, independent of demographic factors. The study recommends categorizing patients based on the four genes, NCF2, CHP1, FOLR3, and DEFA4-as they may assist in prognostic prediction. Transcriptomic analysis of common variable immunodeficiency (CVID) patients identified three distinct clusters based on gene expression, independent of age and gender. Nine differentially expressed genes were identified across these clusters, suggesting potential biomarkers for CVID subtype classification. These findings highlight the genetic heterogeneity of CVID and provide novel insights into disease classification and potential personalized treatment approaches.
Collapse
Affiliation(s)
- Mohammad Reza Zabihi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Moradi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Safari
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Ameratunga R, Longhurst H, Leung E, Steele R, Lehnert K, Woon ST. Limitations in the clinical utility of vaccine challenge responses in the evaluation of primary antibody deficiency including Common Variable Immunodeficiency Disorders. Clin Immunol 2024; 266:110320. [PMID: 39025346 DOI: 10.1016/j.clim.2024.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Vaccine challenge responses are an integral component in the diagnostic evaluation of patients with primary antibody deficiency, including Common Variable Immunodeficiency Disorders (CVID). There are no studies of vaccine challenge responses in primary hypogammaglobulinemia patients not accepted for subcutaneous/intravenous immunoglobulin (SCIG/IVIG) replacement compared to those accepted for such treatment. Vaccine challenge responses in patients enrolled in two long-term prospective cohorts, the New Zealand Hypogammaglobulinemia Study (NZHS) and the New Zealand CVID study (NZCS), were compared in this analysis. Almost all patients in the more severely affected SCIG/IVIG treatment group achieved protective antibody levels to tetanus toxoid and H. influenzae type B (HIB). Although there was a highly significant statistical difference in vaccine responses to HIB, tetanus and diphtheria toxoids, there was substantial overlap in both groups. In contrast, there was no significant difference in Pneumococcal Polysaccharide antibody responses to Pneumovax® (PPV23). This analysis illustrates the limitations of evaluating vaccine challenge responses in patients with primary hypogammaglobulinemia to establish the diagnosis of CVID and in making decisions to treat with SCIG/IVIG. The conclusion from this study is that patients with symptoms attributable to primary hypogammaglobulinemia with reduced IgG should not be denied SCIG/IVIG if they have normal vaccine responses.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Park Rd, Grafton Auckland 1010, New Zealand.
| | - Hilary Longhurst
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Park Rd, Grafton Auckland 1010, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Health and Medical Sciences, University of Auckland, Symonds St, Auckland 1010, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Park Rd, Grafton Auckland 1010, New Zealand
| |
Collapse
|
3
|
Ameratunga R, Woon ST, Leung E, Lea E, Chan L, Mehrtens J, Longhurst HJ, Steele R, Lehnert K, Lindsay K. The autoimmune rheumatological presentation of Common Variable Immunodeficiency Disorders with an overview of genetic testing. Semin Arthritis Rheum 2024; 65:152387. [PMID: 38330740 DOI: 10.1016/j.semarthrit.2024.152387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Primary immunodeficiency Disorders (PIDS) are rare, mostly monogenetic conditions which can present to a number of specialties. Although infections predominate in most PIDs, some individuals can manifest autoimmune or inflammatory sequelae as their initial clinical presentation. Identifying patients with PIDs can be challenging, as some can present later in life. This is often seen in patients with Common Variable Immunodeficiency Disorders (CVID), where symptoms can begin in the sixth or even seventh decades of life. Some patients with PIDs including CVID can initially present to rheumatologists with autoimmune musculoskeletal manifestations. It is imperative for these patients to be identified promptly as immunosuppression could lead to life-threatening opportunistic infections in these immunocompromised individuals. These risks could be mitigated by prior treatment with subcutaneous or intravenous (SCIG/IVIG) immunoglobulin replacement or prophylactic antibiotics. Importantly, many of these disorders have an underlying genetic defect. Individualized treatments may be available for the specific mutation, which may obviate or mitigate the need for hazardous broad-spectrum immunosuppression. Identification of the genetic defect has profound implications not only for the patient but also for affected family members, who may be at risk of symptomatic disease following an environmental trigger such as a viral infection. Finally, there may be clinical clues to the underlying PID, such as recurrent infections, the early presentation of severe or multiple autoimmune disorders, as well as a relevant family history. Early referral to a clinical immunologist will facilitate appropriate diagnostic evaluation and institution of treatment such as SCIG/IVIG immunoglobulin replacement. This review comprises three sections; an overview of PIDs, focusing on CVID, secondly genetic testing of PIDs and finally the clinical presentation of these disorders to rheumatologists.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - James Mehrtens
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary J Longhurst
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karen Lindsay
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| |
Collapse
|
4
|
Ameratunga R, Leung E, Woon ST, Lea E, Allan C, Chan L, Longhurst H, Steele R, Snell R, Lehnert K. Challenges for gene editing in common variable immunodeficiency disorders: Current and future prospects. Clin Immunol 2024; 258:109854. [PMID: 38013164 DOI: 10.1016/j.clim.2023.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 11/29/2023]
Abstract
The original CRISPR Cas9 gene editing system and subsequent innovations offers unprecedented opportunities to correct severe genetic defects including those causing Primary Immunodeficiencies (PIDs). Common Variable Immunodeficiency Disorders (CVID) are the most frequent symptomatic PID in adults and children. Unlike many other PIDs, patients meeting CVID criteria do not have a definable genetic defect and cannot be considered to have an inborn error of immunity (IEI). Patients with a CVID phenotype carrying a causative mutation are deemed to have a CVID-like disorder consequent to an IEI. Patients from consanguineous families often have highly penetrant early-onset autosomal recessive forms of CVID-like disorders. Individuals from non-consanguineous families may have autosomal dominant CVID-like disorders with variable penetrance and expressivity. This essay explores the potential clinical utility as well as the current limitations and risks of gene editing including collateral genotoxicity. In the immediate future the main application of this technology is likely to be the in vitro investigation of epigenetic and polygenic mechanisms, which are likely to underlie many cases of CVID and CVID-like disorders. In the longer-term, the CRISPR Cas9 system and other gene-based therapies could be utilized to treat CVID-like disorders, where the underlying IEI is known.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Euphemia Leung
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Edward Lea
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Caroline Allan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Russell Snell
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Perrott SL, Macleod AD. Associations between Antiepileptic Use and Hypogammaglobulinaemia: Findings from a Population-Based Case-Control Study Using Data Linkage. Neuroepidemiology 2023; 57:355-366. [PMID: 37734327 DOI: 10.1159/000533699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Increased mortality in epilepsy due to infections (other than pneumonia) has been demonstrated. Small case series of people on antiepileptic drugs (AEDs) have described hypogammaglobulinaemia, which may predispose to infections. It is unclear whether hypogammaglobulinaemia is more frequent in people on AEDs, what AEDs it is associated with, or what clinical impact it has. In this population-based study, we aimed to determine whether AEDs were associated with hypogammaglobulinaemia, which AEDs were associated, and whether the associations may be causal. METHODS We conducted an unmatched case-control study using data linkage of routinely collected biochemistry, prescribing, and morbidity datasets in North-East Scotland from 2009-2021. Cases were participants with immunoglobulin levels less than the reference range. Controls were those with normal/high immunoglobulin levels. Logistic regression was used to investigate associations between AED exposure and any hypogammaglobulinaemia, adjusting for age, sex, and comorbidity. We also analysed low IgA, IgM, and IgG separately. We analysed "any AED" exposure and common individual drugs separately. Cumulative exposure data were used to determine whether an exposure-response relationship was present. RESULTS 18,666 cases and 127,157 controls were identified. Use of any AED was associated with increased risk of hypogammaglobulinaemia (adjusted odds ratio [aOR] 1.20 [95% CI: 1.15-1.25]). Phenytoin use was strongly associated with low IgA (aOR 5.90 [95% CI: 3.04, 10.43]). Carbamazepine and lamotrigine were also associated with low IgA. Apart from topiramate, which was associated with a non-significant decrease in odds of hypogammaglobulinaemia, there was a consistent increase in odds of hypogammaglobulinaemia across most AEDs studied. Panhypogammaglobulinaemia was associated with any AED use, carbamazepine, lamotrigine, gabapentin, and multiple AED use. There was evidence of an exposure-response relationship between any AED use and any hypogammaglobulinaemia, low IgA, and low IgG. Carbamazepine and probably lamotrigine also had an exposure-response relationship with any hypogammaglobulinaemia. DISCUSSION AEDs may increase hypogammaglobulinaemia risk. Specific classes of immunoglobulins are differentially affected, and the exposure-response analysis suggests this may be causal. Further work should investigate the clinical impact of these findings. Clinicians should check immunoglobulin levels if unusual or recurrent infections occur in patients treated with AEDs.
Collapse
Affiliation(s)
- Sarah L Perrott
- Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Angus D Macleod
- Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
7
|
Fathi N, Mojtahedi H, Nasiri M, Abolhassani H, Yousefpour Marzbali M, Esmaeili M, Salami F, Biglari F, Rezaei N. How do nuclear factor kappa B (NF-κB)1 and NF-κB2 defects lead to the incidence of clinical and immunological manifestations of inborn errors of immunity? Expert Rev Clin Immunol 2023; 19:329-339. [PMID: 36706462 DOI: 10.1080/1744666x.2023.2174105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Genetic defects affect the manner of the immune system's development, activation, and function. Nuclear factor-kappa B subunit 1 (NF-κB1) and NF-κB2 are involved in different biological processes, and deficiency in these transcription factors may reveal clinical and immunological difficulties. AREAS COVERED This review article gathers the most frequent clinical and immunological remarkable characteristics of NF-κB1 and NF-κB2 deficiencies. Afterward, an effort is made to describe the biological mechanism, which is likely to be the cause of these clinical and immunological abnormalities. EXPERT OPINION The present review article has explained the mechanism of contributions of the NF-κB1 and NF-κB2 deficiency in revealing immunodeficiency symptoms, specifically immunological and clinical manifestations. These mechanisms demonstrate the importance of NF-κB1 and NF-κB2 signaling pathways for B and T cell development, activation, antibody production, and immunotolerance. The manifestation of a mutation can range from no symptoms to severe complications in a family.
Collapse
Affiliation(s)
- Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Mojtahedi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Nasiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Mahsa Yousefpour Marzbali
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,International Network of Stem Cell (INSC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Furozan Biglari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Lee WI, Fang YF, Huang JL, You HL, Hsieh MY, Huang WT, Liang CJ, Kang CC, Wu TS. Distinct Lymphocyte Immunophenotyping and Quantitative Anti-Interferon Gamma Autoantibodies in Taiwanese HIV-Negative Patients with Non-Tuberculous Mycobacterial Infections. J Clin Immunol 2023; 43:717-727. [PMID: 36624329 DOI: 10.1007/s10875-022-01423-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE The presence of anti-interferon-γ autoantibodies (AutoAbs-IFN-γ) is not rare in patients suffering from persistent non-tuberculous mycobacterial (NTM) infections that are characteristic of adult-onset immunodeficiency syndrome. The immune disturbances in this distinct disorder remain to be elucidated. METHODS Patients with NTM infections but without effective response over 3 months' treatment were referred to our institute to quantify their level of AutoAbs-IFN-γ after excluding defective IL12/23-IFN-γ circuit and reactive oxygen species production. The AutoAbs-IFN-γ and percentage of lymphocyte subpopulations most relevant to T and B cell pools were assessed and compared with age-matched healthy controls. RESULTS A total of 31 patients were enrolled during the 15-year study period (2008-2022), 20 patients with > 50% suppression of IFN-γ detection at 1:100 serum dilution were classified into the Auto-NTM group. The remaining 11 with negligible suppression were assigned to the No Auto-NTM group. Mycobacterium chimaera-intracellulare group (MAC), M. kansasii, and M. abscessus were the most common pathogens. Pneumonia (19 vs 7), lymphadenitis (11 vs 5), Salmonella sepsis (6 vs 2), osteomyelitis (5 vs 1), and cutaneous herpes zoster (4 vs 4) were the main manifestations in both the Auto-NTM and No Auto-NTM groups who had similar onset-age (55.3 vs 53.6 years; p = 0.73) and follow-up duration (71.9 vs 54.6 months; p = 0.45). The Auto-NTM group had significantly higher transitional (IgM + + CD38 + +), CD19 + CD21-low, and plasmablast (IgM-CD38 + +) in the B cell pool, with higher effector memory (CD4 + /CD8 + CD45RO + CCR7 -), senescent CD8 + CD57 + , and Th17 cells, but lower naïve (CD4 + /CD8 + CD45RO - CCR7 +) and Treg cells in the T cell pool when compared to the No Auto-NTM and healthy groups. NTM patients with/without AutoAbs-IFN-γ had lower Th1-like Tfh (CD4 + CXCR5 + CXCR3 + CCR6 -) cells. All Auto-NTM patients still had non-remitted mycobacterial infections and higher AutoAbs-IFN-γ despite anti-CD20 therapy in 3 patients. CONCLUSION In patients with suspected adult-onset immunodeficiency syndrome, two thirds (20/31) were recognized as having significantly inhibitory AutoAbs-IFN-γ with higher antibody-enhancing transitional, CD19 + CD21-low and plasmablast B cells; as well as higher effector memory, senescent CD8 + CD57 + and Th17 cells, but lower naïve T and Treg cells in contrast to those with negligible AutoAbs-IFN-γ. Such immunophenotyping disturbances might correlate with the presence of AutoAbs-IFN-γ. However, the mutual mechanisms need to be further clarified.
Collapse
Affiliation(s)
- Wen-I Lee
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yao-Fan Fang
- Department of Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jing-Long Huang
- Department of Pediatrics, New Taipei Municipal TuChen Hospital, New Taipei, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Meng-Ying Hsieh
- Division of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wan-Ting Huang
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Jou Liang
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chen-Chen Kang
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ting-Shu Wu
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Elsink K, Huibers MMH, Hollink IHIM, Simons A, Zonneveld-Huijssoon E, van der Veken LT, Leavis HL, Henriet SSV, van Deuren M, van de Veerdonk FL, Potjewijd J, Berghuis D, Dalm VASH, Vermont CL, van de Ven AAJM, Lambeck AJA, Abbott KM, van Hagen PM, de Bree GJ, Kuijpers TW, Frederix GWJ, van Gijn ME, van Montfrans JM. Implementation of Early Next-Generation Sequencing for Inborn Errors of Immunity: A Prospective Observational Cohort Study of Diagnostic Yield and Clinical Implications in Dutch Genome Diagnostic Centers. Front Immunol 2022; 12:780134. [PMID: 34992599 PMCID: PMC8724043 DOI: 10.3389/fimmu.2021.780134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Inborn errors of immunity (IEI) are a heterogeneous group of disorders, affecting different components of the immune system. Over 450 IEI related genes have been identified, with new genes continually being recognized. This makes the early application of next-generation sequencing (NGS) as a diagnostic method in the evaluation of IEI a promising development. We aimed to provide an overview of the diagnostic yield and time to diagnosis in a cohort of patients suspected of IEI and evaluated by an NGS based IEI panel early in the diagnostic trajectory in a multicenter setting in the Netherlands. Study Design We performed a prospective observational cohort study. We collected data of 165 patients with a clinical suspicion of IEI without prior NGS based panel evaluation that were referred for early NGS using a uniform IEI gene panel. The diagnostic yield was assessed in terms of definitive genetic diagnoses, inconclusive diagnoses and patients without abnormalities in the IEI gene panel. We also assessed time to diagnosis and clinical implications. Results For children, the median time from first consultation to diagnosis was 119 days versus 124 days for adult patients (U=2323; p=0.644). The median turn-around time (TAT) of genetic testing was 56 days in pediatric patients and 60 days in adult patients (U=1892; p=0.191). A definitive molecular diagnosis was made in 25/65 (24.6%) of pediatric patients and 9/100 (9%) of adults. Most diagnosed disorders were identified in the categories of immune dysregulation (n=10/25; 40%), antibody deficiencies (n=5/25; 20%), and phagocyte diseases (n=5/25; 20%). Inconclusive outcomes were found in 76/165 (46.1%) patients. Within the patient group with a genetic diagnosis, a change in disease management occurred in 76% of patients. Conclusion In this cohort, the highest yields of NGS based evaluation for IEI early in the diagnostic trajectory were found in pediatric patients, and in the disease categories immune dysregulation and phagocyte diseases. In cases where a definitive diagnosis was made, this led to important disease management implications in a large majority of patients. More research is needed to establish a uniform diagnostic pathway for cases with inconclusive diagnoses, including variants of unknown significance.
Collapse
Affiliation(s)
- Kim Elsink
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon M H Huibers
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Iris H I M Hollink
- Department of Clinical Genetics, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Annet Simons
- Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Centre, Radboud University, Nijmegen, Netherlands.,Radboud Institute for Oncology, Radboud University Medical Center, Radboud University, Nijmegen, Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lars T van der Veken
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Stefanie S V Henriet
- Department of Pediatric Infectious Diseases and Immunology, Amalia's Children Hospital, Radboud University Nijmegen Medical Centre, Radboud University, Nijmegen, Netherlands
| | - Marcel van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Judith Potjewijd
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht University, Maastricht, Netherlands
| | - Dagmar Berghuis
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology; Department of Immunology, Erasmus University Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Clementien L Vermont
- Department of Pediatric Infectious Diseases, Immunology and Rheumatology, Sophia Children's Hospital, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Annick A J M van de Ven
- Department of Internal Medicine and Allergology, Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, Netherlands
| | - Annechien J A Lambeck
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kristin M Abbott
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Allergy & Clinical Immunology; Department of Immunology, Erasmus University Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Godelieve J de Bree
- Department of Internal Medicine, Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Geert W J Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Mariëlle E van Gijn
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
10
|
Ameratunga R, Longhurst H, Lehnert K, Steele R, Edwards ESJ, Woon ST. Are All Primary Immunodeficiency Disorders Inborn Errors of Immunity? Front Immunol 2021; 12:706796. [PMID: 34367167 PMCID: PMC8335567 DOI: 10.3389/fimmu.2021.706796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Emily S J Edwards
- B Cell Differentiation Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| |
Collapse
|
11
|
Ameratunga R, Jordan A, Cavadino A, Ameratunga S, Hills T, Steele R, Hurst M, McGettigan B, Chua I, Brewerton M, Kennedy N, Koopmans W, Ahn Y, Barker R, Allan C, Storey P, Slade C, Baker A, Huang L, Woon ST. Bronchiectasis is associated with delayed diagnosis and adverse outcomes in the New Zealand Common Variable Immunodeficiency Disorders cohort study. Clin Exp Immunol 2021; 204:352-360. [PMID: 33755987 DOI: 10.1111/cei.13595] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Common variable immunodeficiency disorders (CVID) are multi-system disorders where target organ damage is mediated by infective, autoimmune and inflammatory processes. Bronchiectasis is probably the most common disabling complication of CVID. The risk factors for bronchiectasis in CVID patients are incompletely understood. The New Zealand CVID study (NZCS) is a nationwide longitudinal observational study of adults, which commenced in 2006. In this analysis, the prevalence and risk factors for bronchiectasis were examined in the NZCS. After informed consent, clinical and demographic data were obtained with an interviewer-assisted questionnaire. Linked electronic clinical records and laboratory results were also reviewed. Statistical methods were applied to determine if variables such as early-onset disease, delay in diagnosis and increased numbers of infections were associated with greater risk of bronchiectasis. One hundred and seven adult patients with a diagnosis of CVID are currently enrolled in the NZCS, comprising approximately 70% of patients known to have CVID in New Zealand. Fifty patients (46·7%) had radiologically proven bronchiectasis. This study has shown that patients with compared to those without bronchiectasis have an increased mortality at a younger age. CVID patients with bronchiectasis had a greater number of severe infections consequent to early-onset disease and delayed diagnosis. Indigenous Māori have a high prevalence of CVID and a much greater burden of bronchiectasis compared to New Zealand Europeans. Diagnostic latency has not improved during the study period. Exposure to large numbers of infections because of early-onset disease and delayed diagnosis was associated with an increased risk of bronchiectasis. Earlier diagnosis and treatment of CVID may reduce the risk of bronchiectasis and premature death in some patients.
Collapse
Affiliation(s)
- R Ameratunga
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - A Jordan
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - A Cavadino
- School of Population Health, University of Auckland, Auckland, New Zealand
| | - S Ameratunga
- School of Population Health, University of Auckland, Auckland, New Zealand.,Population Health Directorate, Counties Manukau Health, Auckland, New Zealand
| | - T Hills
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - R Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - M Hurst
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - B McGettigan
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, WA, Australia
| | - I Chua
- Department of Clinical Immunology, Christchurch Hospital, Christchurch, New Zealand
| | - M Brewerton
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - N Kennedy
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - W Koopmans
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Y Ahn
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - R Barker
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - C Allan
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - P Storey
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - C Slade
- Walter and Eliza Hall Institute, Melbourne, VIC, Australia
| | - A Baker
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - L Huang
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - S-T Woon
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Ameratunga R, Allan C, Lehnert K, Woon ST. Perspective: Application of the American College of Medical Genetics Variant Interpretation Criteria to Common Variable Immunodeficiency Disorders. Clin Rev Allergy Immunol 2021; 61:226-235. [PMID: 33818703 DOI: 10.1007/s12016-020-08828-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency disorders (CVIDs) are rare primary immunodeficiency diseases (PIDs) mostly associated with late onset antibody failure leading to immune system failure. Patients with CVID are predisposed to disabling complications such as bronchiectasis and systemic autoimmunity. In recent years a large number of genetic defects have become associated with these disorders. Patients with a causative mutation are deemed to have CVID-like disorders, while those with mutations predisposing to or modifying disease severity remain within the spectrum of CVID as defined by current diagnostic criteria. Next-generation sequencing (NGS) allows simultaneous analysis of multiple genes. Potential mutations identified from NGS are commonly evaluated with the American College of Medical Genetics (ACMG) variant interpretation criteria to determine their pathogenicity (causality). Patients with CVID and CVID-like disorders have marked genetic, allelic, and phenotypic heterogeneity. Although all patients with a CVID phenotype should undergo genetic testing, the complexity of the genetics associated with these disorders is challenging. Variants of unknown significance (VUS) remain a significant barrier to realising the full potential of NGS in CVID and CVID-like disorders. Here we explore the nuances of applying the ACMG criteria to patients with CVID and CVID-like disorders. Close collaboration between the clinician, bioinformatics, and genetics professionals will improve the diagnostic yield from genetic testing and reduce the frequency of VUS.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand. .,Department of Clinical Immunology, Auckland City Hospital, Auckland, 1010, New Zealand. .,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand.
| | - Caroline Allan
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
13
|
龚 胜, 蒲 银, 谢 玲, 杨 晓, 毛 辉. [Common variable immune deficiency in adult patients: analysis of 13 cases and literature review]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1213-1219. [PMID: 32895181 PMCID: PMC7429157 DOI: 10.12122/j.issn.1673-4254.2020.08.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the clinical and immunological characteristics, treatment and prognosis of common variable immune deficiency (CVID) in adult patients. METHODS We retrospectively analyzed the clinical data of 13 adult patients hospitalized in our hospital for CVID diagnosed according to the criteria in International Consensus Document (2016), and analyzed their clinical manifestations, laboratory test results, imaging findings, pathological examinations and treatments. RESULTS The mean age of onset was 24.46±16.82 years in these patients, who had a mean age of 32.54±14.86 years at diagnosis with a median diagnostic delay of 5 years (IQR: 2-15 years). The main manifestation of the patients was repeated infections, including repeated respiratory tract infection (10 cases; 76.9%) and repeated diarrhea (3 cases; 23.1%). Three (23.1%) of the patients had autoimmune disease and 10 (76.9%) had chronic pulmonary disease. IgG, IgA and IgM were decreased in all the patients. The proportion of CD4+T cells decreased in 10 patients (76.9%), CD8+T cells increased in 11 patients (84.6%), and CD4/ CD8 decreased in 10 patients (76.9%). Complement C3 decreased in 58.3% (7/12) and C4 decreased in 33.3% (4/12) of the patients. Twelve patients (92.3%) were treated with intravenous infusion of gamma globulin with symptomatic treatments. One patient died due to massive gastrointestinal hemorrhage, and the other patients showed improve ments after the treatments and were discharged. CONCLUSIONS The clinical manifestations of CVID are diverse, and recurrent respiratory tract infection is the most common manifestation. Decreased IgG often accompanied by lowered IgA and IgM levels is a common finding in laboratory tests. The treatment of CVID currently relies on gamma globulin with symptomatic treatments for the complications.
Collapse
Affiliation(s)
- 胜兰 龚
- />四川大学华西医院呼吸与危重症学科,四川 成都 610041Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 银 蒲
- />四川大学华西医院呼吸与危重症学科,四川 成都 610041Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 玲俐 谢
- />四川大学华西医院呼吸与危重症学科,四川 成都 610041Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 晓娅 杨
- />四川大学华西医院呼吸与危重症学科,四川 成都 610041Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 辉 毛
- />四川大学华西医院呼吸与危重症学科,四川 成都 610041Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Mat Ripen A, Ghani H, Chear CT, Chiow MY, Syed Yahya SNH, Kassim A, Mohamad SB. Whole exome sequencing identifies compound heterozygous variants of CR2 gene in monozygotic twin patients with common variable immunodeficiency. SAGE Open Med 2020; 8:2050312120922652. [PMID: 32547748 PMCID: PMC7249565 DOI: 10.1177/2050312120922652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/26/2020] [Indexed: 11/16/2022] Open
Abstract
Objectives: A pair of female Malay monozygotic twins who presented with recurrent upper
respiratory tract infections, hepatosplenomegaly, bronchiectasis and
bicytopenia were recruited in this study. Both patients were suspected with
primary immunodeficiency diseases. However, the definite diagnosis was not
clear due to complex disease phenotypes. The objective of this study was to
identify the causative gene mutation in these patients. Methods: Lymphocyte subset enumeration test and whole exome sequencing were
performed. Results: We identified a compound heterozygous CR2 mutation
(c.1916G>A and c.2012G>A) in both patients. These variants were then
confirmed using Sanger sequencing. Conclusion: Whole exome sequencing analysis of the monozygotic twins revealed compound
heterozygous missense mutations in CR2.
Collapse
Affiliation(s)
- Adiratna Mat Ripen
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Hamidah Ghani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Chai Teng Chear
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Mei Yee Chiow
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Sharifah Nurul Husna Syed Yahya
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Asiah Kassim
- Paediatric Institute, Kuala Lumpur Hospital, Ministry of Health, Kuala Lumpur, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Aggarwal V, Banday AZ, Jindal AK, Das J, Rawat A. Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis 2019; 7:26-37. [PMID: 32181273 PMCID: PMC7063417 DOI: 10.1016/j.gendis.2019.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Common variable immunodeficiency disorders (CVID), a heterogeneous group of inborn errors of immunity, is the most common symptomatic primary immunodeficiency disorder. Patients with CVID have highly variable clinical presentation. With the advent of whole genome sequencing and genome wide association studies (GWAS), there has been a remarkable improvement in understanding the genetics of CVID. This has also helped in understanding the pathogenesis of CVID and has drastically improved the management of these patients. A multi-omics approach integrating the DNA sequencing along with RNA sequencing, proteomics, epigenetic and metabolomics profile is the need of the hour to unravel specific CVID associated disease pathways and novel therapeutic targets. In this review, we elaborate various techniques that have helped in understanding the genetics of CVID.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aaqib Zaffar Banday
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Kumar Jindal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jhumki Das
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
16
|
Song J, Lleo A, Yang GX, Zhang W, Bowlus CL, Gershwin ME, Leung PSC. Common Variable Immunodeficiency and Liver Involvement. Clin Rev Allergy Immunol 2018; 55:340-351. [PMID: 28785926 PMCID: PMC5803456 DOI: 10.1007/s12016-017-8638-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary B-cell immunodeficiency disorder, characterized by remarkable hypogammaglobulinemia. The disease can develop at any age without gender predominance. The prevalence of CVID varies widely worldwide. The underlying causes of CVID remain largely unknown; primary B-cell dysfunctions, defects in T cells and antigen-presenting cells are involved. Although some monogenetic defects have been identified in some CVID patients, it is likely that CVID is polygenic. Patients with CVID develop recurrent and chronic infections (e.g., bacterial infections of the respiratory or gastrointestinal tract), autoimmune diseases, lymphoproliferation, malignancies, and granulomatous lesions. Interestingly, autoimmunity can be the only clinical manifestation of CVID at the time of diagnosis and may even develop prior to hypogammaglobulinemia. The diagnosis of CVID is largely based on the criteria established by European Society for Immunodeficiencies and Pan-American Group for Immunodeficiency (ESID/PAGID) and with some recent modifications. The disease can affect multiple organs, including the liver. Clinical features of CVID patients with liver involvement include abnormal liver biochemistries, primarily elevation of alkaline phosphatase (ALP), nodular regenerative hyperplasia (NRH), or liver cirrhosis and its complications. Replacement therapy with immunoglobulin (Ig) and anti-infection therapy are the primary treatment regimen for CVID patients. No specific therapy for liver involvement of CVID is currently available, and liver transplantation is an option only in select cases. The prognosis of CVID varies widely. Further understanding in the etiology and pathophysiology will facilitate early diagnosis and treatments to improve prognosis.
Collapse
Affiliation(s)
- Junmin Song
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Guo Xiang Yang
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| |
Collapse
|
17
|
Psoriasis treated with adalimumab in a patient with common variable immune deficiency: A case report. DERMATOL SIN 2018. [DOI: 10.1016/j.dsi.2018.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Maglione PJ, Cols M, Cunningham-Rundles C. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency. Curr Allergy Asthma Rep 2017; 17:77. [PMID: 28983810 DOI: 10.1007/s11882-017-0746-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.
Collapse
Affiliation(s)
- Paul J Maglione
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA.
| |
Collapse
|
19
|
Uzunhan Y, Jeny F, Kambouchner M, Didier M, Bouvry D, Nunes H, Bernaudin JF, Valeyre D. The Lung in Dysregulated States of Humoral Immunity. Respiration 2017; 94:389-404. [PMID: 28910817 DOI: 10.1159/000480297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In common variable immunodeficiency, lung manifestations are related to different mechanisms: recurrent pneumonias due to encapsulated bacteria responsible for diffuse bronchiectasis, diffuse infiltrative pneumonia with various patterns, and lymphomas, mostly B cell extranodal non-Hodgkin type. The diagnosis relies on significant serum Ig deficiency and the exclusion of any primary or secondary cause. Histopathology may be needed. Immunoglobulin (IgG) replacement is crucial to prevent infections and bronchiectasis. IgG4-related respiratory disease, often associated with extrapulmonary localizations, presents with solitary nodules or masses, diffuse interstitial lung diseases, bronchiolitis, lymphadenopathy, and pleural or pericardial involvement. Diagnosis relies on international criteria including serum IgG4 dosage and significantly increased IgG4/IgG plasma cells ratio in pathologically suggestive biopsy. Respiratory amyloidosis presents with tracheobronchial, nodular, and cystic or diffuse interstitial lung infiltration. Usually of AL (amyloid light chain) subtype, it may be localized or systemic, primary or secondary to a lymphoproliferative process. Very rare other diseases due to nonamyloid IgG deposits are described. Among the various lung manifestations of dysregulated states of humoral immunity, this article covers only those associated with the common variable immunodeficiency, IgG4-related disease, amyloidosis, and pulmonary light-chain deposition disease. Autoimmune connective-vascular tissue diseases or lymphoproliferative disorders are addressed in other chapters of this issue.
Collapse
|
20
|
Maglione PJ. Autoimmune and Lymphoproliferative Complications of Common Variable Immunodeficiency. Curr Allergy Asthma Rep 2016; 16:19. [PMID: 26857017 DOI: 10.1007/s11882-016-0597-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Common variable immunodeficiency (CVID) is frequently complicated by the development of autoimmune and lymphoproliferative diseases. With widespread use of immunoglobulin replacement therapy, autoimmune and lymphoproliferative complications have replaced infection as the major cause of morbidity and mortality in CVID patients. Certain CVID complications, such as bronchiectasis, are likely to be the result of immunodeficiency and are associated with infection susceptibility. However, other complications may result from immune dysregulation rather than immunocompromise. CVID patients develop autoimmunity, lymphoproliferation, and granulomas in association with distinct immunological abnormalities. Mutations in transmembrane activator and CAML interactor, reduction of isotype-switched memory B cells, expansion of CD21 low B cells, heightened interferon signature expression, and retained B cell function are all associated with both autoimmunity and lymphoproliferation in CVID. Further research aimed to better understand that the pathological mechanisms of these shared forms of immune dysregulation may inspire therapies beneficial for multiple CVID complications.
Collapse
Affiliation(s)
- Paul J Maglione
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA.
| |
Collapse
|
21
|
Zheng JF, Chen YM, Chen DY, Lin CH, Chen HH. The Incidence and Prevalence of Thromboangiitis Obliterans in Taiwan: A Nationwide, Population-based Analysis of Data Collected from 2002 to 2011. Clinics (Sao Paulo) 2016; 71:399-403. [PMID: 27464297 PMCID: PMC4946527 DOI: 10.6061/clinics/2016(07)08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/10/2016] [Accepted: 04/15/2016] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To estimate the incidence and prevalence of thromboangiitis obliterans in Taiwan in the period spanning from 2002 to 2011. METHODS We identified all incident and prevalent cases with a diagnosis of thromboangiitis obliterans (International Classification of Diseases, Ninth Revision code 443.1) in the period spanning from 2002 to 2011 using Taiwan's National Health Insurance Research Database. We calculated the age- and sex-specific incidence and prevalence rates of thromboangiitis obliterans during the study period. RESULTS From 2002 to 2011, 158 patients were diagnosed with thromboangiitis obliterans; of these, 76% were men. Most (63%) of the patients were <50 years old when they were first diagnosed. After reaching 20 years of age, the incidence rate increased with age and peaked among those aged ≥60 years. The average incidence rate of thromboangiitis obliterans during the 2002-2011 period was 0.068 per 105 years. The incidence of thromboangiitis obliterans decreased with time, from 0.10 per 105 years in 2002 to 0.04 per 105 years in 2011. The prevalence increased from 0.26 × 10-5 in 2002 to 0.65 × 10-5 in 2011. CONCLUSION This is the first epidemiologic study of thromboangiitis obliterans using claims data from a general population in Taiwan. This nationwide, population-based study found that the incidence and prevalence of thromboangiitis obliterans in Taiwan in the 2002-2011 period were lower than those in other countries before 2000. This study also revealed a trend of decreasing incidence with simultaneous increasing prevalence of thromboangiitis obliterans in Taiwan from 2002 to 2011.
Collapse
Affiliation(s)
- Jie-Fu Zheng
- Taichung Veterans General Hospital, Division of Allergy, Immunology and Rheumatology
| | - Yi-Ming Chen
- Taichung Veterans General Hospital, Division of Allergy, Immunology and Rheumatology
- Department of Medical Research
- Department of Medical Education, Taichung, Taiwan
- National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Der-Yuan Chen
- Taichung Veterans General Hospital, Division of Allergy, Immunology and Rheumatology
- Department of Medical Research
- Department of Medical Education, Taichung, Taiwan
- National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Ching-Heng Lin
- National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Hsin-Hua Chen
- Taichung Veterans General Hospital, Division of Allergy, Immunology and Rheumatology
- Department of Medical Research
- Department of Medical Education, Taichung, Taiwan
- National Yang-Ming University, School of Medicine, Taipei, Taiwan
- National Chung-Hsing University, Institute of Biomedical Science and Rong Hsing Taichung Veterans General Hospital, Taichung, Taiwan
- Chung-Shan Medical University, School of Medicine, Taichung, Taiwan
- National Yang-Ming University, Institute of Public Health and Community Medicine Research Center, Taiwan
| |
Collapse
|
22
|
Bogaert DJA, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet 2016; 53:575-90. [PMID: 27250108 DOI: 10.1136/jmedgenet-2015-103690] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary antibody deficiency characterised by hypogammaglobulinaemia, impaired production of specific antibodies after immunisation and increased susceptibility to infections. CVID shows a considerable phenotypical and genetic heterogeneity. In contrast to many other primary immunodeficiencies, monogenic forms count for only 2-10% of patients with CVID. Genes that have been implicated in monogenic CVID include ICOS, TNFRSF13B (TACI), TNFRSF13C (BAFF-R), TNFSF12 (TWEAK), CD19, CD81, CR2 (CD21), MS4A1 (CD20), TNFRSF7 (CD27), IL21, IL21R, LRBA, CTLA4, PRKCD, PLCG2, NFKB1, NFKB2, PIK3CD, PIK3R1, VAV1, RAC2, BLK, IKZF1 (IKAROS) and IRF2BP2 With the increasing number of disease genes identified in CVID, it has become clear that CVID is an umbrella diagnosis and that many of these genetic defects cause distinct disease entities. Moreover, there is accumulating evidence that at least a subgroup of patients with CVID has a complex rather than a monogenic inheritance. This review aims to discuss current knowledge regarding the molecular genetic basis of CVID with an emphasis on the relationship with the clinical and immunological phenotype.
Collapse
Affiliation(s)
- Delfien J A Bogaert
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Karim Y Vermaelen
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|