1
|
Muscioni M, Chiarenza AA, Fernandez DBH, Dreossi D, Bacchia F, Fanti F. Cranial anatomy of Acynodon adriaticus and extreme durophagous adaptations in Eusuchia (Reptilia: Crocodylomorpha). Anat Rec (Hoboken) 2024; 307:3653-3684. [PMID: 39267238 DOI: 10.1002/ar.25574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/17/2024]
Abstract
Acynodon adriaticus, a small eusuchian from the Late Cretaceous of Italy, is known for its well-preserved cranial and postcranial material. Despite its excellent preservation, many details remain hidden due to the physical overlap between the elements and matrix obliteration. We used Micro-CT scans to reveal previously overlooked anatomical features and describe in detail the cranial and dental anatomy of this taxon, shedding new light on its palaeoecology. The holotypic specimen, SC 57248, represents a mature individual exhibiting signs of hyperossification, developed ornamentation, and various pathologies, including jaw arthritis and a possible dental anomaly. Acynodon adriaticus exhibits significant durophagous adaptations, including a robust, brevirostrine skull optimized for powerful biting and stress-load capacity. Its specialized dentition, lacking caniniform teeth, features anterior chisel-like teeth and hypertrophic posterior molariforms with thick enamel, indicative of a diet specializing in hard-shelled prey. The dentition pattern, accelerated molariform replacement rate, and reduced orbit size suggest adaptations for durophagous foraging in turbid, densely vegetated aquatic environments. The paleoecological context during the Late Cretaceous, characterized by increased freshwater habitats and high invertebrate diversity, likely facilitated the evolution of such specialized traits in A. adriaticus. This small crocodylomorph likely foraged slowly in shallow, benthic environments, using its powerful bite to process mollusks and large arthropods. The study of A. adriaticus, along with comparisons with other crocodylomorphs and ecomorphologically similar taxa like Iharkutosuchus makadii and Gnatusuchus pebasensis, provides a valuable morphofunctional model for understanding the evolutionary pathways of extinct crocodylians to durophagy.
Collapse
Affiliation(s)
- Marco Muscioni
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
- Museo Geologico Giovanni Capellini, Università di Bologna, Bologna, Italy
| | | | | | | | | | - Federico Fanti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
- Museo Geologico Giovanni Capellini, Università di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Narváez I, de Celis A, Escaso F, Martín de Jesús S, Pérez-García A, Ortega F. A new Crocodyloidea from the middle Eocene of Zamora (Duero Basin, Spain). Anat Rec (Hoboken) 2024. [PMID: 38444286 DOI: 10.1002/ar.25422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
The eusuchian crocodyliforms recorded in the Eocene levels of the Spanish Duero Basin belong to three lineages: Planocraniidae, with the species Duerosuchus piscator; Alligatoroidea, represented by several specimens of the genus Diplocynodon; and Crocodyloidea, which includes several specimens traditionally attributed to Asiatosuchus. The genus Asiatosuchus, established in 1940 based on a middle Eocene species from Mongolia, has subsequently served as a wastebasket taxon for Paleogene remains belonging to several species, not only from Asia but also belonging to the European and North American records. Many of these species are known by highly fragmentary remains, sharing the presence of characters such as a flat and triangular skull, and long symphyses in the lower jaw, recognized as characteristic for the crocodyloids. In addition to isolated cranial remains, among the material traditionally attributed to Asiatosuchus at the Duero Basin stands out a nearly complete skull and a left mandible, from the middle Eocene area of Casaseca de Campeán (Zamora Province). The present study analyses in detail these specimens, previously reported during the 1980s, but analyzed in a very preliminary way. They are included for the first time in a phylogenetic analysis to establish the systematic position of this Spanish form. The results confirm that it corresponds to a new species of basal crocodyloid, defined here as Asiatosuchus oenotriensis sp. nov.
Collapse
Affiliation(s)
- Iván Narváez
- Grupo de Biología Evolutiva, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Madrid, Spain
| | - Ane de Celis
- Grupo de Biología Evolutiva, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Madrid, Spain
| | - Fernando Escaso
- Grupo de Biología Evolutiva, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Madrid, Spain
| | - Santiago Martín de Jesús
- Colección de Vertebrados Fósiles de la Cuenca del Duero (Sala de las Tortugas), Departamento de Geología, Facultad de Ciencias, Universidad de Salamanca, Salamanca, Spain
| | - Adán Pérez-García
- Grupo de Biología Evolutiva, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Madrid, Spain
| | - Francisco Ortega
- Grupo de Biología Evolutiva, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Madrid, Spain
| |
Collapse
|
3
|
Puértolas-Pascual E, Kuzmin IT, Serrano-Martínez A, Mateus O. Neuroanatomy of the crocodylomorph Portugalosuchus azenhae from the late cretaceous of Portugal. J Anat 2023; 242:1146-1171. [PMID: 36732084 PMCID: PMC10184551 DOI: 10.1111/joa.13836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
We present the first detailed braincase anatomical description and neuroanatomical study of Portugalosuchus azenhae, from the Cenomanian (Late Cretaceous) of Portugal. This eusuchian crocodylomorph was originally described as a putative Crocodylia and one of the oldest representatives of this clade; however, its phylogenetic position remains controversial. Based on new data obtained from high resolution Computed Tomography images (by micro-CT scan), this study aims to improve the original description of this taxon and also update the scarce neuroanatomical knowledge of Eusuchia and Crocodylia from this time interval, a key period to understand the origin and evolution of these clades. The resulting three-dimensional models from the CT data allowed a detailed description of its well-preserved neurocranium and internal cavities. Therefore, it was possible to reconstruct the cavities of the olfactory region, nasopharyngeal ducts, brain, nerves, carotid arteries, blood vessels, paratympanic sinus system and inner ear, which allowed to estimate some neurosensorial capabilities. By comparison with other crocodylomorphs, these analyses showed that Portugalosuchus, back in the Cenomanian, already displayed an olfactive acuity, sight, hearing and cognitive skills within the range of that observed in other basal eusuchians and crocodylians, including extant species. In addition, and in order to test its disputed phylogenetic position, these new anatomical data, which helped to correct and complete some of the original observations, were included in one of the most recent morphology-based phylogenies. The position of Portugalosuchus differs slightly from the original publication since it is now located as a "thoracosaurid" within Gavialoidea, but still as a crocodylian. Despite all this, to better contrast these results, additional phylogenetic analyses including this new morphological character coding together with DNA data should be performed.
Collapse
Affiliation(s)
- Eduardo Puértolas-Pascual
- Aragosaurus-IUCA, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,GeoBioTec, Departamento de Ciências da Terra FCT, Universidade Nova de Lisboa, Caparica, Portugal.,Museu da Lourinhã, Lourinhã, Portugal
| | - Ivan T Kuzmin
- Department of Vertebrate Zoology, Saint Petersburg State University, St. Petersburg, Russian Federation
| | | | - Octávio Mateus
- GeoBioTec, Departamento de Ciências da Terra FCT, Universidade Nova de Lisboa, Caparica, Portugal.,Museu da Lourinhã, Lourinhã, Portugal
| |
Collapse
|
4
|
Young MT, Bowman CIW, Erb A, Schwab JA, Witmer LM, Herrera Y, Brusatte SL. Evidence for a novel cranial thermoregulatory pathway in thalattosuchian crocodylomorphs. PeerJ 2023; 11:e15353. [PMID: 37151298 PMCID: PMC10162039 DOI: 10.7717/peerj.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Thalattosuchian crocodylomorphs were a diverse clade that lived from the Early Jurassic to the Early Cretaceous. The subclade Metriorhynchoidea underwent a remarkable transition, evolving from semi-aquatic ambush predators into fully aquatic forms living in the open oceans. Thalattosuchians share a peculiar palatal morphology with semi-aquatic and aquatic fossil cetaceans: paired anteroposteriorly aligned grooves along the palatal surface of the bony secondary palate. In extant cetaceans, these grooves are continuous with the greater palatine artery foramina, arteries that supply their oral thermoregulatory structures. Herein, we investigate the origins of thalattosuchian palatal grooves by examining CT scans of six thalattosuchian species (one teleosauroid, two early-diverging metriorhynchoids and three metriorhynchids), and CT scans of eleven extant crocodylian species. All thalattosuchians had paired osseous canals, enclosed by the palatines, that connect the nasal cavity to the oral cavity. These osseous canals open into the oral cavity via foramina at the posterior terminus of the palatal grooves. Extant crocodylians lack both the external grooves and the internal canals. We posit that in thalattosuchians these novel palatal canals transmitted hypertrophied medial nasal vessels (artery and vein), creating a novel heat exchange pathway connecting the palatal vascular plexus to the endocranial region. Given the general hypertrophy of thalattosuchian cephalic vasculature, and their increased blood flow and volume, thalattosuchians would have required a more extensive suite of thermoregulatory pathways to maintain stable temperatures for their neurosensory tissues.
Collapse
Affiliation(s)
- Mark T. Young
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
- LWL-Museum für Naturkunde, Münster, Germany
| | | | - Arthur Erb
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julia A. Schwab
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Lawrence M. Witmer
- Department of Biomedical Sciences, Ohio University, Athens, Ohio, United States
| | - Yanina Herrera
- Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
| | | |
Collapse
|
5
|
Sellers KC, Nieto MN, Degrange FJ, Pol D, Clark JM, Middleton KM, Holliday CM. The effects of skull flattening on suchian jaw muscle evolution. Anat Rec (Hoboken) 2022; 305:2791-2822. [PMID: 35661427 DOI: 10.1002/ar.24912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022]
Abstract
Jaw muscles are key features of the vertebrate feeding apparatus. The jaw musculature is housed in the skull whose morphology reflects a compromise between multiple functions, including feeding, housing sensory structures, and defense, and the skull constrains jaw muscle geometry. Thus, jaw muscle anatomy may be suboptimally oriented for the production of bite force. Crocodylians are a group of vertebrates that generate the highest bite forces ever measured with a flat skull suited to their aquatic ambush predatory style. However, basal members of the crocodylian line (e.g., Prestosuchus) were terrestrial predators with plesiomorphically tall skulls, and thus the origin of modern crocodylians involved a substantial reorganization of the feeding apparatus and its jaw muscles. Here, we reconstruct jaw muscles across a phylogenetic range of crocodylians and fossil suchians to investigate the impact of skull flattening on muscle anatomy. We used imaging data to create 3D models of extant and fossil suchians that demonstrate the evolution of the crocodylian skull, using osteological correlates to reconstruct muscle attachment sites. We found that jaw muscle anatomy in early fossil suchians reflected the ancestral archosaur condition but experienced progressive shifts in the lineage leading to Metasuchia. In early fossil suchians, musculus adductor mandibulae posterior and musculus pterygoideus (mPT) were of comparable size, but by Metasuchia, the jaw musculature is dominated by mPT. As predicted, we found that taxa with flatter skulls have less efficient muscle orientations for the production of high bite force. This study highlights the diversity and evolution of jaw muscles in one of the great transformations in vertebrate evolution.
Collapse
Affiliation(s)
- Kaleb C Sellers
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA.,Department of Clinical Anatomy and Osteopathic Principles and Practice, Rocky Vista University, Parker, Colorado, USA
| | - Mauro Nicolas Nieto
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Córdoba, Argentina
| | - Federico J Degrange
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Córdoba, Argentina
| | - Diego Pol
- CONICET, Museo Paleontológico Egidio Feruglio, Trelew, Argentina
| | - James M Clark
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Kevin M Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
6
|
Kuzmin IT, Boitsova EA, Gombolevskiy VA, Mazur EV, Morozov SP, Sennikov AG, Skutschas PP, Sues H. Braincase anatomy of extant Crocodylia, with new insights into the development and evolution of the neurocranium in crocodylomorphs. J Anat 2021; 239:983-1038. [PMID: 34176132 PMCID: PMC8546529 DOI: 10.1111/joa.13490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Present-day crocodylians exhibit a remarkably akinetic skull with a highly modified braincase. We present a comprehensive description of the neurocranial osteology of extant crocodylians, with notes on the development of individual skeletal elements and a discussion of the terminology used for this project. The quadrate is rigidly fixed by multiple contacts with most braincase elements. The parabasisphenoid is sutured to the pterygoids (palate) and the quadrate (suspensorium); as a result, the basipterygoid joint is completely immobilized. The prootic is reduced and externally concealed by the quadrate. It has a verticalized buttress that participates in the canal for the temporal vasculature. The ventrolateral processes of the otoccipitals completely cover the posteroventral region of the braincase, enclose the occipital nerves and blood vessels in narrow bony canals and also provide additional sutural contacts between the braincase elements and further consolidate the posterior portion of the crocodylian skull. The otic capsule of crocodylians has a characteristic cochlear prominence that corresponds to the lateral route of the perilymphatic sac. Complex internal structures of the otoccipital (extracapsular buttress) additionally arrange the neurovascular structures of the periotic space of the cranium. Most of the braincase elements of crocodylians are excavated by the paratympanic pneumatic sinuses. The braincase in various extant crocodylians has an overall similar structure with some consistent variation between taxa. Several newly observed features of the braincase are present in Gavialis gangeticus and extant members of Crocodylidae to the exclusion of alligatorids: the reduced exposure of the prootic buttress on the floor of the temporal canal, the sagittal nuchal crest of the supraoccipital projecting posteriorly beyond the postoccipital processes and the reduced paratympanic pneumaticity. The most distinctive features of the crocodylian braincase (fixed quadrate and basipterygoid joint, consolidated occiput) evolved relatively rapidly at the base of Crocodylomorpha and accompanied the initial diversification of this clade during the Late Triassic and Early Jurassic. We hypothesize that profound rearrangements in the individual development of the braincases of basal crocodylomorphs underlie these rapid evolutionary modifications. These rearrangements are likely reflected in the embryonic development of extant crocodylians and include the involvement of neomorphic dermal anlagen in different portions of the developing chondrocranium, the extensive ossification of the palatoquadrate cartilage as a single expanded quadrate and the anteromedial inclination of the quadrate.
Collapse
Affiliation(s)
- Ivan T. Kuzmin
- Department of Vertebrate ZoologySaint Petersburg State UniversitySt. PetersburgRussian Federation
| | - Elizaveta A. Boitsova
- Department of Vertebrate ZoologySaint Petersburg State UniversitySt. PetersburgRussian Federation
| | - Victor A. Gombolevskiy
- Research and Practical Clinical Center of Diagnostics and Telemedicine TechnologiesMoscowRussian Federation
| | - Evgeniia V. Mazur
- Department of Vertebrate ZoologySaint Petersburg State UniversitySt. PetersburgRussian Federation
| | - Sergey P. Morozov
- Research and Practical Clinical Center of Diagnostics and Telemedicine TechnologiesMoscowRussian Federation
| | | | - Pavel P. Skutschas
- Department of Vertebrate ZoologySaint Petersburg State UniversitySt. PetersburgRussian Federation
| | - Hans‐Dieter Sues
- Department of PaleobiologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| |
Collapse
|
7
|
Rio JP, Mannion PD. Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem. PeerJ 2021; 9:e12094. [PMID: 34567843 PMCID: PMC8428266 DOI: 10.7717/peerj.12094] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
First appearing in the latest Cretaceous, Crocodylia is a clade of semi-aquatic, predatory reptiles, defined by the last common ancestor of extant alligators, caimans, crocodiles, and gharials. Despite large strides in resolving crocodylian interrelationships over the last three decades, several outstanding problems persist in crocodylian systematics. Most notably, there has been persistent discordance between morphological and molecular datasets surrounding the affinities of the extant gharials, Gavialis gangeticus and Tomistoma schlegelii. Whereas molecular data consistently support a sister taxon relationship, in which they are more closely related to crocodylids than to alligatorids, morphological data indicate that Gavialis is the sister taxon to all other extant crocodylians. Here we present a new morphological dataset for Crocodylia based on a critical reappraisal of published crocodylian character data matrices and extensive firsthand observations of a global sample of crocodylians. This comprises the most taxonomically comprehensive crocodylian dataset to date (144 OTUs scored for 330 characters) and includes a new, illustrated character list with modifications to the construction and scoring of characters, and 46 novel characters. Under a maximum parsimony framework, our analyses robustly recover Gavialis as more closely related to Tomistoma than to other extant crocodylians for the first time based on morphology alone. This result is recovered regardless of the weighting strategy and treatment of quantitative characters. However, analyses using continuous characters and extended implied weighting (with high k-values) produced the most resolved, well-supported, and stratigraphically congruent topologies overall. Resolution of the gharial problem reveals that: (1) several gavialoids lack plesiomorphic features that formerly drew them towards the stem of Crocodylia; and (2) more widespread similarities occur between species traditionally divided into tomistomines and gavialoids, with these interpreted here as homology rather than homoplasy. There remains significant temporal incongruence regarding the inferred divergence timing of the extant gharials, indicating that several putative gavialids ('thoracosaurs') are incorrectly placed and require future re-appraisal. New alligatoroid interrelationships include: (1) support for a North American origin of Caimaninae in the latest Cretaceous; (2) the recovery of the early Paleogene South American taxon Eocaiman as a 'basal' alligatoroid; and (3) the paraphyly of the Cenozoic European taxon Diplocynodon. Among crocodyloids, notable results include modifications to the taxonomic content of Mekosuchinae, including biogeographic affinities of this clade with latest Cretaceous-early Paleogene Asian crocodyloids. In light of our new results, we provide a comprehensive review of the evolutionary and biogeographic history of Crocodylia, which included multiple instances of transoceanic and continental dispersal.
Collapse
Affiliation(s)
- Jonathan P. Rio
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Philip D. Mannion
- Department of Earth Sciences, University College London, London, United Kingdom
| |
Collapse
|
8
|
Blanco A. Importance of the postcranial skeleton in eusuchian phylogeny: Reassessing the systematics of allodaposuchid crocodylians. PLoS One 2021; 16:e0251900. [PMID: 34106925 PMCID: PMC8189472 DOI: 10.1371/journal.pone.0251900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
Our current knowledge on the crocodyliform evolution is strongly biased towards the skull morphology, and the postcranial skeleton is usually neglected in many taxonomic descriptions. However, it is logical to expect that it can contribute with its own phylogenetic signal. In this paper, the changes in the tree topology caused by the addition of the postcranial information are analysed for the family Allodaposuchidae, the most representative eusuchians in the latest Cretaceous of Europe. At present, different phylogenetic hypotheses have been proposed for this group without reaching a consensus. The results of this paper evidence a shift in the phylogenetic position when the postcranium is included in the dataset, pointing to a relevant phylogenetic signal in the postcranial elements. Finally, the phylogenetic relationships of allodaposuchids within Eusuchia are reassessed; and the internal relationships within Allodaposuchidae are also reconsidered after an exhaustive revision of the morphological data. New and improved diagnoses for each species are here provided.
Collapse
Affiliation(s)
- Alejandro Blanco
- Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
- Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| |
Collapse
|
9
|
The Tetrapod Fossil Record from the Uppermost Maastrichtian of the Ibero-Armorican Island: An Integrative Review Based on the Outcrops of the Western Tremp Syncline (Aragón, Huesca Province, NE Spain). GEOSCIENCES 2021. [DOI: 10.3390/geosciences11040162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The South-Pyrenean Basin (northeastern Spain) has yielded a rich and diverse record of Upper Cretaceous (uppermost Campanian−uppermost Maastrichtian) vertebrate fossils, including the remains of some of the last European dinosaurs prior to the Cretaceous-Paleogene (K-Pg) extinction event. In this work, we update and characterize the vertebrate fossil record of the Arén Sandstone and Tremp formations in the Western Tremp Syncline, which is located in the Aragonese area of the Southern Pyrenees. The transitional and continental successions of these sedimentary units are dated to the late Maastrichtian, and exploration of their outcrops has led to the discovery of numerous fossil remains (bones, eggshells, and tracks) of dinosaurs, including hadrosauroids, sauropods, and theropods, along with other tetrapods such as crocodylomorphs, testudines, pterosaurs, squamates, and amphibians. In particular, this fossil record contains some of the youngest lambeosaurine hadrosaurids (Arenysaurus and Blasisaurus) and Mesozoic crocodylomorphs (Arenysuchus and Agaresuchus subjuniperus) in Europe, complementing the lower Maastrichtian fossil sites of the Eastern Tremp Syncline. In addition, faunal comparison with the fossil record of Hațeg island reveals the great change in the dinosaur assemblages resulting from the arrival of lambeosaurine hadrosaurids on the Ibero-Armorican island, whereas those on Haţeg remained stable. In the light of its paleontological richness, its stratigraphic continuity, and its calibration within the last few hundred thousand years of the Cretaceous, the Western Tremp Syncline is one of the best places in Europe to study the latest vertebrate assemblages of the European Archipelago before the end-Cretaceous mass extinction.
Collapse
|
10
|
Ristevski J, Yates AM, Price GJ, Molnar RE, Weisbecker V, Salisbury SW. Australia's prehistoric 'swamp king': revision of the Plio-Pleistocene crocodylian genus Pallimnarchus de Vis, 1886. PeerJ 2020; 8:e10466. [PMID: 33391869 PMCID: PMC7759136 DOI: 10.7717/peerj.10466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
The crocodylian fossil record from the Cenozoic of Australasia is notable for its rich taxonomic diversity, and is primarily represented by members of the clade Mekosuchinae. Reports of crocodylian fossils from Australia date back to the late nineteenth century. In 1886, Charles Walter de Vis proposed the name Pallimnarchus pollens for crocodylian fossils from southeast Queensland-the first binomen given to an extinct crocodylian taxon from Australia. Pallimnarchus has come to be regarded as a large, broad-snouted crocodylian from Australia's Plio-Pleistocene, and numerous specimens, few of which are sufficiently complete, have been assigned to it by several authors throughout the twentieth century. In the late 1990s, the genus was expanded to include a second species, Pallimnarchus gracilis. Unfortunately, the original syntype series described as Pallimnarchus pollens is very fragmentary and derives from more than one taxon, while a large part of the subsequently selected lectotype specimen is missing. Because descriptions and illustrations of the complete lectotype do not reveal any autapomorphic features, we propose that Pallimnarchus pollens should be regarded as a nomen dubium. Following this decision, the fossil material previously referred to Pallimnarchus is of uncertain taxonomic placement. A partial skull, formerly assigned to Pallimnarchus pollens and known as 'Geoff Vincent's specimen', possesses many features of diagnostic value and is therefore used as basis to erect a new genus and species-Paludirex vincenti gen. et sp. nov. A comprehensive description is given for the osteology of 'Geoff Vincent's specimen' as well as aspects of its palaeoneurology, the latter being a first for an extinct Australian crocodyliform. The newly named genus is characterized by a unique combination of premaxillary features such as a distinctive arching of the anterior alveolar processes of the premaxillae, a peculiar arrangement of the first two premaxillary alveoli and a large size disparity between the 3rd and 4th premaxillary alveoli. These features presently allow formal recognition of two species within the genus, Paludirex vincenti and Paludirex gracilis comb. nov., with the former having comparatively more robust rostral proportions than the latter. The Paludirex vincenti holotype comes from the Pliocene Chinchilla Sand of the Darling Downs, south-eastern Queensland, whereas the material assigned to Paludirex gracilis is from the Pleistocene of Terrace Site Local Fauna, Riversleigh, northwest Queensland. Phylogenetic analyses recover Paludirex vincenti as a mekosuchine, although further cladistic assessments are needed to better understand the relationships within the clade.
Collapse
Affiliation(s)
- Jorgo Ristevski
- School of Biological Sciences, The Univeristy of Queensland, Brisbane, QLD, Australia
| | - Adam M. Yates
- Museum of Central Australia, Museum and Art Gallery of the Northern Territory, Alice Springs, NT, Australia
| | - Gilbert J. Price
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ralph E. Molnar
- University of California Museum of Paleontology, Berkeley, CA, USA
| | - Vera Weisbecker
- School of Biological Sciences, The Univeristy of Queensland, Brisbane, QLD, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Steven W. Salisbury
- School of Biological Sciences, The Univeristy of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Dumont MV, Santucci RM, de Andrade MB, de Oliveira CEM. Paleoneurology of Baurusuchus (Crocodyliformes: Baurusuchidae), ontogenetic variation, brain size, and sensorial implications. Anat Rec (Hoboken) 2020; 305:2670-2694. [PMID: 33211405 DOI: 10.1002/ar.24567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 10/18/2020] [Indexed: 12/23/2022]
Abstract
Knowledge on crocodyliform paleoneurology has significantly improved with development of computed tomography. However, studies so far have been able to reconstruct brain endocasts based only on single specimens for each taxon. Here for the first time, we reconstructed brain endocasts for multiple fossil specimens of the same crocodyliform taxon (Baurusuchus), consisting of complete skulls of two medium sized specimens, one large adult, and a late juvenile. In addition, we were able to reconstruct the inner ear anatomy of a fragmentary skull using microtomography. We present estimates of brain size using simple models, based on modern Crocodylia, able to adapt brain to endocranial cavity ratios to expected ontogenetic variation instead of using fixed ratios. We also analyzed relative brain sizes, olfactory ratios, facial sensation, alert head posture, best hearing frequencies, and hearing range. The calculated endocranial volumes showed that they can be greatly altered by taphonomic processes, altering both total and partial endocranial volumes. Reconstructed endocasts are compatible with different degrees of occupation along the endocranial cavity and some of their characteristics might be useful as phylogenetic characters. The relative brain size of Baurusuchus seems to be small in comparison to modern crocodilians. Sensorial abilities were somewhat similar to modern crocodilians and hearing ranges and best mean frequencies remarkably similar to modern taxa, whereas olfactory ratio values are a little higher. Differing from its modern relatives, Baurusuchus hypothesized alert head posture is compatible with a terrestrial habit.
Collapse
Affiliation(s)
- Marcos V Dumont
- Federal Institute of Brasília, Brasília, Brazil.,University of Brasília, Brasília, Brazil
| | | | - Marco Brandalise de Andrade
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, School of Health and Life Sciences, Porto Alegre, Brazil
| | | |
Collapse
|
12
|
Puértolas-Pascual E, Young MT, Brochu CA. Introducing the First European Symposium on the Evolution of Crocodylomorpha. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe First European Symposium on the Evolution of Crocodylomorpha took place during the XVI Annual Meeting of the European Association of Vertebrate Palaeontologists (EAVP) organized by NOVA University of Lisbon (UNL) in Caparica, Portugal. Fourteen lectures and five posters were presented at the symposium in June 26th–July 1st, 2018. This special issue showcases twelve papers based on symposium contributions.
Collapse
Affiliation(s)
- Eduardo Puértolas-Pascual
- Faculdade de Ciências e Tecnologia-GeoBioTec, NOVA University of Lisbon, Monte de Caparica, Caparica, Portugal
- Museu da Lourinhã, Lourinhã, Portugal
- Aragosaurus-IUCA Research Group, Universidad de Zaragoza, Zaragoza, Spain
| | - Mark T Young
- School of GeoSciences, Grant Institute, The King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, USA
| |
Collapse
|
13
|
Blanco A, Puértolas-Pascual E, Marmi J, Moncunill-Solé B, Llácer S, Rössner GE. Late Cretaceous (Maastrichtian) crocodyliforms from north-eastern Iberia: a first attempt to explain the crocodyliform diversity based on tooth qualitative traits. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
During recent years, knowledge about crocodyliform diversity of the uppermost Cretaceous from Europe has been substantially improved. Palaeontological efforts have also been focused on microvertebrate diversity and its palaeoecological implications. Isolated crocodylomorph teeth are, by far, one of the most frequently recovered elements in microvertebrate samples. In the present paper, morphological features of crocodylomorph teeth collected throughout the complete Maastrichtian series of the southern Pyrenean basin (north-eastern Spain), together with several mandibular remains, are described and analysed. Teeth were grouped in morphotypes and their taxonomic significance is discussed. The results highlight a diverse crocodylomorph assemblage in this area throughout the Maastrichtian. In addition, feeding habits and environmental preferences are inferred for the identified taxa according to dental features, occurrences and taphonomy.
Collapse
Affiliation(s)
- Alejandro Blanco
- Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
- SNSB – Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Eduardo Puértolas-Pascual
- Faculdade de Ciências e Tecnologia-GeoBioTec, Universidade Nova de Lisboa, Monte de Caparica, Portugal
- Grupo Aragosaurus–IUCA, Área de Paleontología, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, Zaragoza, Spain
| | - Josep Marmi
- Institut Català de Paleontologia Miquel Crusafont, Escola Industrial, Sabadell, Spain
| | - Blanca Moncunill-Solé
- Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
- Dipartimento di Scienze, Università degli Studi Roma Tre, Largo S. L. Murialdo, Rome, Italy
| | - Sergio Llácer
- Institut Català de Paleontologia Miquel Crusafont, Escola Industrial, Sabadell, Spain
| | - Gertrud E Rössner
- SNSB – Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
14
|
Massonne T, Vasilyan D, Rabi M, Böhme M. A new alligatoroid from the Eocene of Vietnam highlights an extinct Asian clade independent from extant Alligator sinensis. PeerJ 2019; 7:e7562. [PMID: 31720094 PMCID: PMC6839522 DOI: 10.7717/peerj.7562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/27/2019] [Indexed: 11/20/2022] Open
Abstract
During systematic paleontological surveys in the Na Duong Basin in North Vietnam between 2009 and 2012, well-preserved fossilized cranial and postcranial remains belonging to at least 29 individuals of a middle to late Eocene (late Bartonian to Priabonian age (39–35 Ma)) alligatoroid were collected. Comparative anatomical study of the material warrants the diagnosis of a new taxon, Orientalosuchus naduongensis gen. et sp. nov. The combined presence of an enlarged fifth maxillary tooth, prominent preorbital ridges, a large supraoccipital exposure on the skull table, a palatine-pterygoid suture anterior to the posterior end of the suborbital fenestra, and a pterygoid forming a neck surrounding the choana is unique to this species. Unlike previous phylogenies, our parsimony analysis recovers a monophyletic Late Cretaceous to Paleogene East to Southeastern Asian alligatoroid group, here named Orientalosuchina. The group includes Orientalosuchus naduongensis, Krabisuchus siamogallicus, Eoalligator chunyii, Jiangxisuchus nankangensis and Protoalligator huiningensis, all of them sharing a medial shifted quadrate foramen aerum. The recognition of this clade indicates at least two separate dispersal events from North America to Asia: one during the Late Cretaceous by Orientalosuchina and one by the ancestor of Alligator sinensis during the Paleogene or Neogene, the timing of which is poorly constrained.
Collapse
Affiliation(s)
- Tobias Massonne
- Department of Geosciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany.,Senckenberg Center for Human Evolution and Palaeoecology, Tuebingen, Germany
| | - Davit Vasilyan
- JURASSICA Museum, Porrentruy, Switzerland.,Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Márton Rabi
- Department of Geosciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany.,Central Natural Science Collections, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Madelaine Böhme
- Department of Geosciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany.,Senckenberg Center for Human Evolution and Palaeoecology, Tuebingen, Germany
| |
Collapse
|
15
|
Narváez I, Brochu CA, De Celis A, Codrea V, Escaso F, Pérez-García A, Ortega F. New diagnosis for Allodaposuchus precedens, the type species of the European Upper Cretaceous clade Allodaposuchidae. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Allodaposuchus precedens is a basal member of Eusuchia, which was established almost a century ago on a set of cranial and postcranial fragmentary remains from the lower Maastrichtian of Vălioara, Romania. It was the first described member and type species of Allodaposuchidae, a recently described European clade representing one of the nearest outgroups to Crocodylia. Although our understanding of the group has expanded in recent years through the description of new forms, a review of Al. precedens is needed. The detailed revision of the classical material from Vălioara, including cranial and postcranial remains, and a comparison with the nearly complete skull from the Romanian synchronous locality of Oarda de Jos, allows us to emend the diagnosis for Al. precedens.
Collapse
Affiliation(s)
- Iván Narváez
- Grupo de Biología Evolutiva, Facultad de Ciencias, UNED, Madrid, Spain
| | - Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA, USA
| | - Ane De Celis
- Grupo de Biología Evolutiva, Facultad de Ciencias, UNED, Madrid, Spain
| | - Vlad Codrea
- Department of Geology, Faculty of Biology-Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Fernando Escaso
- Grupo de Biología Evolutiva, Facultad de Ciencias, UNED, Madrid, Spain
| | - Adán Pérez-García
- Grupo de Biología Evolutiva, Facultad de Ciencias, UNED, Madrid, Spain
| | - Francisco Ortega
- Grupo de Biología Evolutiva, Facultad de Ciencias, UNED, Madrid, Spain
| |
Collapse
|
16
|
Sookias RB. Exploring the effects of character construction and choice, outgroups and analytical method on phylogenetic inference from discrete characters in extant crocodilians. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Phylogenies for fossil taxa must be inferred from morphology, but accuracy of inference is questionable. Here, morphological characters for extant crocodilians are investigated to assess how to improve inference accuracy. The homoplasy of characters is assessed against a DNA-based phylogenetic tree. Cranial characters are significantly less homoplastic, but this result is perhaps confounded by research effort. Meristic characters are significantly more homoplastic and should be used with caution. Characters were reassessed first hand and documented. Those characters passing tests of robust construction are significantly less homoplastic. Suggestions are made for means to improve coding of discrete characters. Phylogenies inferred using only robust characters and a reassessed matrix, including corrected scorings, were not overall closer to the DNA tree, but did often place the gharial (Gavialis) in a position agreeing with or closer to it. The effects of the choice of analytical method were modest, but Bayesian analysis of the reassessed matrix placed Gavialis and Mecistops (slender-snouted crocodile) in DNA-concordant positions. Use of extant rather than extinct outgroups, even with the original matrix, placed Gavialis in a more DNA-concordant position, as did factoring out 3D skull shape. The morphological case for placement of Gavialis outside other extant crocodilians is arguably overstated, with many characters linked to skull shape.
Collapse
Affiliation(s)
- Roland B Sookias
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße, Berlin, Germany
| |
Collapse
|
17
|
D’Amore DC, Harmon M, Drumheller SK, Testin JJ. Quantitative heterodonty in Crocodylia: assessing size and shape across modern and extinct taxa. PeerJ 2019; 7:e6485. [PMID: 30842900 PMCID: PMC6397764 DOI: 10.7717/peerj.6485] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/19/2019] [Indexed: 12/31/2022] Open
Abstract
Heterodonty in Crocodylia and closely related taxa has not been defined quantitatively, as the teeth rarely have been measured. This has resulted in a range of qualitative descriptors, with little consensus on the condition of dental morphology in the clade. The purpose of this study is to present a method for the quantification of both size- and shape-heterodonty in members of Crocodylia. Data were collected from dry skeletal and fossil specimens of 34 crown crocodylians and one crocodyliform, resulting in 21 species total. Digital photographs were taken of each tooth and the skull, and the margins of both were converted into landmarks and semilandmarks. We expressed heterodonty through Foote's morphological disparity, and a principal components analysis quantified shape variance. All specimens sampled were heterodont to varying degrees, with the majority of the shape variance represented by a 'caniniform' to 'molariform' transition. Heterodonty varied significantly between positions; size undulated whereas shape was significantly linear from mesial to distal. Size and shape appeared to be primarily decoupled. Skull shape correlated significantly with tooth shape. High size-heterodonty often correlated with relatively large caniniform teeth, reflecting a prioritization of securing prey. Large, highly molariform, distal teeth may be a consequence of high-frequency durophagy combined with prey size. The slender-snouted skull shape correlated with a caniniform arcade with low heterodonty. This was reminiscent of other underwater-feeding tetrapods, as they often focus on small prey that requires minimal processing. Several extinct taxa were very molariform, which was associated with low heterodonty. The terrestrial peirosaurid shared similarities with large modern crocodylian taxa, but may have processed prey differently. Disparity measures can be inflated or deflated if certain teeth are absent from the tooth row, and regression analysis may not best apply to strongly slender-snouted taxa. Nevertheless, when these methods are used in tandem they can give a complete picture of crocodylian heterodonty. Future researchers may apply our proposed method to most crocodylian specimens with an intact enough tooth row regardless of age, species, or rearing conditions, as this will add rigor to many life history studies of the clade.
Collapse
Affiliation(s)
- Domenic C. D’Amore
- Department of Natural Sciences, Daemen College, Amherst, NY, United States of America
| | - Megan Harmon
- Department of Natural Sciences, Daemen College, Amherst, NY, United States of America
| | - Stephanie K. Drumheller
- Department of Earth and Planetary Sciences, University of Tennessee—Knoxville, Knoxville, TN, United States of America
| | - Jason J. Testin
- Department of Physical Science, Physics and Pre-Engineering, Iowa Western Community College, Council Bluffs, IA, United States of America
| |
Collapse
|
18
|
Wilberg EW, Turner AH, Brochu CA. Evolutionary structure and timing of major habitat shifts in Crocodylomorpha. Sci Rep 2019; 9:514. [PMID: 30679529 PMCID: PMC6346023 DOI: 10.1038/s41598-018-36795-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
Extant crocodylomorphs are semiaquatic ambush predators largely restricted to freshwater or estuarine environments, but the group is ancestrally terrestrial and inhabited a variety of ecosystems in the past. Despite its rich ecological history, little effort has focused on elucidating the historical pattern of ecological transitions in the group. Traditional views suggested a single shift from terrestrial to aquatic in the Early Jurassic. However, new fossil discoveries and phylogenetic analyses tend to imply a multiple-shift model. Here we estimate ancestral habitats across a comprehensive phylogeny and show at least three independent shifts from terrestrial to aquatic and numerous other habitat transitions. Neosuchians first invade freshwater habitats in the Jurassic, with up to four subsequent shifts into the marine realm. Thalattosuchians first appear in marine habitats in the Early Jurassic. Freshwater semiaquatic mahajangasuchids are derived from otherwise terrestrial notosuchians. Within nearly all marine groups, some species return to freshwater environments. Only twice have crocodylomorphs reverted from aquatic to terrestrial habitats, both within the crown group. All living non-alligatorid crocodylians have a keratinised tongue with salt-excreting glands, but the lack of osteological correlates for these adaptations complicates pinpointing their evolutionary origin or loss. Based on the pattern of transitions to the marine realm, our analysis suggests at least four independent origins of saltwater tolerance in Crocodylomorpha.
Collapse
Affiliation(s)
- Eric W Wilberg
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
19
|
Mateus O, Puértolas-Pascual E, Callapez PM. A new eusuchian crocodylomorph from the Cenomanian (Late Cretaceous) of Portugal reveals novel implications on the origin of Crocodylia. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly064] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Octávio Mateus
- Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia- GeoBioTec, Monte de Caparica, Portugal
- Museu da Lourinhã, Rua João Luis de Moura, Lourinhã, Portugal
| | - Eduardo Puértolas-Pascual
- Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia- GeoBioTec, Monte de Caparica, Portugal
- Museu da Lourinhã, Rua João Luis de Moura, Lourinhã, Portugal
- Aragosaurus-IUCA Research group, Zaragoza, Spain
| | - Pedro M Callapez
- CGUC – Centro de Geofísica/Dep. Ciências da Terra, FCTUC, Univ.Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| |
Collapse
|
20
|
Kuzmin IT, Skutschas PP, Boitsova EA, Sues HD. Revision of the large crocodyliformKansajsuchus(Neosuchia) from the Late Cretaceous of Central Asia. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ivan T Kuzmin
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Pavel P Skutschas
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Elizaveta A Boitsova
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Hans-Dieter Sues
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
21
|
Ősi A, Young MT, Galácz A, Rabi M. A new large-bodied thalattosuchian crocodyliform from the Lower Jurassic (Toarcian) of Hungary, with further evidence of the mosaic acquisition of marine adaptations in Metriorhynchoidea. PeerJ 2018; 6:e4668. [PMID: 29761038 PMCID: PMC5949208 DOI: 10.7717/peerj.4668] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022] Open
Abstract
Based on associated and three-dimensionally preserved cranial and postcranial remains, a new thalattosuchian crocodyliform, Magyarosuchus fitosi gen. et sp. nov. from the Lower Jurassic (Upper Toarcian) Kisgerecse Marl Formation, Gerecse Mountains, Hungary is described here. Phylogenetic analyses using three different datasets indicate that M. fitosi is the sister taxon of Pelagosaurus typus forming together the basal-most sub-clade of Metriorhynchoidea. With an estimated body length of 4.67-4.83 m M. fitosi is the largest known non-metriorhynchid metriorhynchoid. Besides expanding Early Jurassic thalattosuchian diversity, the new specimen is of great importance since, unlike most contemporaneous estuarine, lagoonal or coastal thalattosuchians, it comes from an 'ammonitico rosso' type pelagic deposit of the Mediterranean region of the Tethys. A distal caudal vertebra having an unusually elongate and dorsally projected neural spine implies the presence of at least a rudimentary hypocercal tail fin and a slight ventral displacement of the distal caudal vertebral column in this basal metriorhynchoid. The combination of retaining heavy dorsal and ventral armors and having a slight hypocercal tail is unique, further highlighting the mosaic manner of marine adaptations in Metriorhynchoidea.
Collapse
Affiliation(s)
- Attila Ősi
- Department of Paleontology, Eötvös University, Budapest, Hungary
- Department of Paleontology and Geology, Hungarian Natural History Museum, Budapest, Hungary
| | - Mark T. Young
- Grant Institute, School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - András Galácz
- Department of Paleontology, Eötvös University, Budapest, Hungary
| | - Márton Rabi
- Central Natural Science Collections, Martin-Luther Universität Halle-Wittenberg, Halle, Germany
- Institute for Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Tennant JP, Mannion PD, Upchurch P. Evolutionary relationships and systematics of Atoposauridae (Crocodylomorpha: Neosuchia): implications for the rise of Eusuchia. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12400] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan P. Tennant
- Department of Earth Science and Engineering; Imperial College London; South Kensington London SW7 2AZ UK
| | - Philip D. Mannion
- Department of Earth Science and Engineering; Imperial College London; South Kensington London SW7 2AZ UK
| | - Paul Upchurch
- Department of Earth Sciences; University College London; Gower Street London WC1E 6BT UK
| |
Collapse
|